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Abstract 

An important aspect of any manufacturing environment is efficient job scheduling. With 

an increase in manufacturing facilities focused on producing goods with a cellular manufacturing 

approach, the need arises to schedule jobs optimally into cells at a specific time. A mathematical 

model has been developed to represent a standard cellular manufacturing job scheduling problem. 

The model incorporates important parameters of the jobs and the cells along with other system 

constraints. With each job and each cell having its own distinguishing parameters, the task of 

scheduling jobs via integer linear programming quickly becomes very difficult and time-

consuming. In fact, such a job scheduling problem is of the NP-Complete complexity class. In an 

attempt to solve the problem within an acceptable amount of time, several heuristics have been 

developed to be applied to the model and examined for problems of different sizes and difficulty 

levels, culminating in an ultimate heuristic that can be applied to most size problems. The 

ultimate heuristic uses a greedy multi-phase iterative process to first assign jobs to particular cells 

and then to schedule the jobs within the assigned cells. The heuristic relaxes several variables and 

constraints along the way, while taking into account the flexibility of the different jobs and the 

current load of the different cells. Testing and analysis shows that when the heuristic is applied to 

various size job scheduling problems, the solving time is significantly decreased, while still 

resulting in a near optimal solution.  
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1 Introduction 

1.1 Problem Statement 

 In today’s fast-paced and ever-changing society, significant value is placed on 

efficiency, timing, and cost. Globalization is here to stay and will continue to impact the 

way companies around the world conduct business. To remain competitive in comparison 

to lower-cost manufacturers around the globe, more and more U.S. manufacturing 

facilities are moving away from departmental manufacturing and turning towards cellular 

manufacturing approaches, as shown in Figure 1.1, to improve efficiencies.  
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Figure 1.1: Shift from Departmental to Cellular Manufacturing 

 

Within a departmental manufacturing environment, a job needs to travel through 

several different work centers, each dedicated to completing a single step in the overall 

process of manufacturing the job. This type of manufacturing setup lends itself to batch 

and queue processing, resulting in jobs with excessive travel times and waiting times and 
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thus longer than necessary overall lead times. On the other hand, in a cellular 

manufacturing environment, several work cells comprise the manufacturing space. Each 

cell has the capability to complete each step in the process necessary to manufacture a 

job. Once a job begins in a cell, each step in the overall process ensues until the job is 

complete. This type of manufacturing setup promotes flow, resulting in minimal waiting 

times and travel times, shorter lead times, and better customer responsiveness.  

Optimax Systems, located in Ontario, NY, is an innovative manufacturer of 

precision optics. They provide optical products, such as aspheres, cylinders, prisms, 

spheres, and optical coatings. Optimax typically provides precision optics to customers 

with a standard lead time between 6 weeks and 10 weeks. However, Optimax also offers 

an expedited service that provides their customers optics in as little as one week at a 

premium price. Two years ago, Optimax operated in a departmental manufacturing 

environment. Each department specialized in one step of the process of making an optic. 

For example, there was a grinding department that strictly focused on grinding the piece of 

glass. After grinding, the piece would head to the polishing department to be polished. 

This movement between the departments would continue until the optic completed each 

assigned step in the designated process. This method of producing an optic was a huge 

inefficiency. Each job would sit and wait on a shelf in a queue to be processed at each 

department. Departments were not strategically located by distance, so when a job was 

finished at one department, an employee had to walk the job to the next department and 

set the job on the new department’s shelf. Furthermore, employees did not know which 

job in the queue should be processed next. There was excessive and unnecessary work 

accounted for in the process time, waiting time, and travel time. As the business continued 
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to grow, this type of manufacturing approach began to compromise Optimax’s key 

strategies. It was necessary for Optimax to improve their approach to continue to be an 

important player in the optics industry.  

Recently, Optimax has undergone an enormous facelift. They have gone from 

departmental, batch and queue processing to cellular, flow-focused manufacturing. Instead 

of having several departments that only complete one step in the process, Optimax now 

has several cells that complete all or most steps in the process. The next step in Optimax’s 

transition is to optimize the scheduling of the jobs to the cells. Optimax has approximately 

15 cells where jobs can be scheduled. Each cell has different parameters, including 

employee skills, equipment cost, and capacity. Each job has different parameters, such as 

potential profit, due date, specifications, and production requirements. Optimax is in need 

of a job scheduling tool that allows for real-time scheduling, based on current jobs as well 

as forecasted jobs. Furthermore, with frequent expedited orders, the job scheduler must be 

able to dynamically handle the addition of these jobs in a short period of time where 

capacity may be limited. The research performed in this thesis will aim to represent the 

job scheduling problem that is currently faced by Optimax and many other companies that 

operate in a cellular manufacturing environment. It will allow cellular manufacturers to 

more optimally schedule jobs throughout their facility to keep up with their key strategies 

and the ever-changing needs of their customers. 

Most manufacturing facilities require some tool or technique to efficiently 

schedule jobs through the facility, regardless of the manufacturing method. Inefficient 

scheduling of jobs can compromise timeliness, quality, inventory, and most importantly 

profits. A tool that schedules jobs in a cellular manufacturing environment would be 
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valuable to many facilities turning to this approach. The tool would allow manufacturers 

to attempt to minimize cost. Potential byproducts of the tool would include the ability to 

increase profits, while improving on-time delivery and customer responsiveness. 

Additionally, the tool would provide additional forecasting capabilities. Manufacturers 

could look ahead to see what type of cells have extra capacity or little capacity and quote 

jobs accordingly, attempting to always keep a near full-capacity facility. Figure 1.2 

displays the main concept of such a tool.  

 

 

Figure 1.2: Job Scheduling Main Concept 

 

 There are several jobs, which are either in the work queue or forecasted to be 

produced in the future. Each job has different properties or parameters as shown, which 

may include completion time, early start date, due date, and production requirements. 

Similarly, there are several different cells each with different properties, including 

equipment, employee skills, feasibility, and cost. The goal of the job scheduler, through 
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the use of a job scheduler algorithm, is to optimally assign the jobs to the cells at a 

specific time based upon an objective function that aims to maximize or minimize a 

specific set of criteria. 

Figure 1.3 is an example of a potential output that the job scheduler could 

develop. Each job is assigned to a specific cell at a specific time. The duration of the job 

is based upon the estimated completion time, as assigned by the process engineering 

department or the manufacturing department. The chart shows the manufacturing facility 

the blocks of time dedicated to producing jobs, as well as the blocks of time where there 

is availability to potentially book an order for a job.  
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Figure 1.3: Potential Job Scheduler Output 
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This output is not only helpful to the production control department, which may 

schedule the jobs, but to the sales team as well. Since the job scheduler takes into account 

forecasted jobs also, this type of output can also be used as a forecasting tool. When the 

sales team is preparing a quote, they can look at the most up-to-date job schedule, to see 

the plant capacity, and more specifically cell capacity, at any particular time. If the plant 

or a specific cell has low availability at a particular time that a customer wants to place an 

order, the sales team may choose to present a high quote to the customer. On the other 

hand, if the plant or cell has high availability at a particular time, they may present a low 

quote to ensure that they receive the job and keep the facility running at an acceptable 

level. Therefore, if the facility receives an order during a low availability time period at a 

higher price, the additional profit outweighs the extra cost, such as overtime, to complete 

the job on time. Conversely, if the facility gains an order during a high availability time 

period at a lower price, the sacrifice in profit is outweighed by keeping the workers busy 

and not having to pay them without positive cash flow. 

Providing such a schedule is not as simple as just placing jobs into cells at any 

time. Several factors must be considered to ensure that all parameters of the problem are 

met. For example, every job that needs to be scheduled has an associated due date driven 

by the customer and agreed upon by the manufacturing company. Similarly, production 

of a job may not be able to begin until a certain date, due to raw material or tooling 

needs. Job to cell feasibility comes into play, as each cell may not have equal capabilities, 

based on personnel and equipment, to produce a job. Therefore, each job will have a 

corresponding list of potential feasible cells that the job can run in. The potential job 

scheduler output also shows a few other important parameters of a cellular manufacturing 
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environment. Jobs are scheduled in only one cell, only one job is scheduled in a cell at 

any particular time, and once a job is scheduled to begin it is produced without pre-

emption. All parameters of the different jobs and different cells, as well as the parameters 

of cellular manufacturing can be described technically by a mathematical model, to be 

displayed and discussed in more detail in Chapter 2. Through the use of integer linear 

programming an optimal solution to a defined objective function can be achieved.   

The mathematical representation of a cellular job scheduling problem is 

intrinsically complex. To truly characterize the actual size of the job scheduling problem 

faced by manufacturing facilities, such as Optimax, a representative number of jobs, 

cells, and time periods are needed to provide a truly beneficial schedule. Several 

parameters of the job and the cells must also be considered for added effectiveness. 

Furthermore, due to the dynamic nature of manufacturing facilities, the scheduling 

method must be a relatively quick process to be valuable. At every point that a new order 

arrives, the job schedule must be rerun to accommodate the new job to supply the new 

order. It is imperative that the job scheduling is as close to real-time scheduling as 

possible. However, the size and complexity of the job scheduling problem significantly 

impacts the time to solve for the optimal solution using integer linear programming via 

the mathematical model. In fact, as David W. Sellers wrote in “A Survey of Approaches 

to the Job Shop Scheduling Problem”, job scheduling problems are of the NP-Complete 

complexity class [24]. It is practically impossible to investigate every potential feasible 

solution, except in the easiest problem sets. More specifically, Garey and Johnson 

showed that the multiprocessor scheduling problem is NP-Complete through a 

polynomial transformation from partition problems [9]. The job scheduling problem to be 
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investigated in this thesis is a more specific case of the multiprocessor scheduling 

problem in which the multiple cells represent multiple processors and tasks are 

represented by jobs with their corresponding length (completion time) and deadline (due 

date). 

Therefore, the problem to be addressed in this thesis is realized. There is a need to 

develop a job schedule for a cellular manufacturing facility. A mathematical model 

allows for the cellular job scheduling problem to be represented, while integer linear 

programming allows for the job schedule solution. However, the job schedule must be 

realized in real-time due to the dynamic nature of manufacturing. Yet, due to the size and 

complexity of the job scheduling problem as represented by the mathematical model, the 

integer linear program cannot recognize even a feasible solution schedule, let alone an 

optimal solution schedule, in a reasonable time frame to be of any value to the 

manufacturing facility.  

Since conventional optimization techniques cannot be used to solve the cellular 

job scheduling problem faced by companies such as Optimax, it will be necessary to 

develop alternative methods and apply them to the mathematical model to more 

efficiently solve the scheduling problem to be of better use to the manufacturing facility. 

The work in this thesis involves the creation of a mathematical model that represents a 

cellular job scheduling problem and further work proves the complexity class of the 

problem. The only way to guarantee an optimal solution is to completely enumerate all 

points in the problem. Since this is not an acceptable alternative, due to time concerns, 

the research in this thesis will investigate and examine heuristic methods that will create 

more efficiency in the schedule solving process. The heuristic methods will aim to take 
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advantage of the structure of the problem detailed in Chapter 2 to allow for more 

efficiency in the solving process. The heuristic methods will reduce the search space, 

thereby attempting to reduce the overall solving time, while aiming to meet all of the 

constraints of the problem. The attempted result is a near optimal solution schedule to a 

NP-Complete job scheduling problem in a significantly decreased, acceptable amount of 

computation time.  

 

1.2 Literature Review  

 A tremendous amount of research and work has been done related to job 

scheduling. A variety of heuristic procedures and classical optimization tools have been 

used to solve several different job scheduling problems. In this literature review, several 

methods of solving a wide range of difficult and complex job scheduling problems have 

been investigated. The summary section will provide a brief explanation of the research 

direction of this thesis.  

 

1.2.1 Scheduling Methods 

 Much research has been done on job scheduling using decision rules. Research 

was performed to determine optimal earliest time to start processing jobs [12]. Each job 

must be processed on the same machine, with random time duration. Each job has its own 

due date and a penalty for not meeting the due date, but also has an associated inventory 

cost for being completed before the due date. Heuristics used in this problem focus on 

decision-making regarding the random operations and cost parameters. The average 

processing time combined with the central limit theorem is used to determine the 
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probability that a job will meet the due date. These probabilities and decision-making 

rules can be used to determine the associated costs of completing the job early or late. 

 A team of researchers studied the development and implementation of a job 

scheduler at a glass factory, where each job has a precedence constraint, an urgency 

constraint, a due date, early date, and a late date [3]. Each job is made up of one or more 

operations. An initial feasible solution is developed by quickly satisfying all precedence 

and resource constraints, while intending to maximize machine utilization and minimize 

work in process. After initialization, the jobs are assigned to machines by a priority 

criterion and then an improving phase follows. Additional heuristics such as round robin, 

parallel tasks, and work in next queue were investigated. A modified due date method 

was decided upon which sufficiently satisfied due dates and work in progress. 

 Scheduling rules were developed for job shops that do not assume that the cost of 

tardiness per unit is the same for each job and that the holding cost is not proportional to 

the flowtime of the job [17]. A weighted slack rule was used that attempts to minimize 

the maximum weighted tardiness and weighted variance of tardiness of jobs. A weighted 

flow due date rule was also used, which attempts to yield the minimum values for the 

maximum flow time and weighted variance of flow time of jobs. Another team 

investigated the inapproximability of the no-wait job scheduling problem using the 

makespan criterion [11]. In this type of environment there is no waiting allowed between 

the executions of consecutive operations of the same job.  Once a job is started, it must be 

completed operation by operation, without pre-emption. It was found that the polynomial 

time approximation scheme does not exist. 

10  



 Decision rules are beneficial to job scheduling because they are relatively easy to 

comprehend, fairly simple to relate to the problem, and normally improve solving time. 

However, with problems of larger magnitude and complexity, the advantages of decision 

rules tend to diminish. Decisions rules do not provide optimal solutions to problems, and 

typically the more difficult the problems become, the further the decision rule solution is 

from the optimal. Thus, developing a decision rule is not an ideal choice for a heuristic to 

aid in solving the cellular job scheduling problem. 

Mathematical programming is another scheduling method. Linear programming 

and mixed integer programming are more specific methods that fall into this category. 

Mathematical programming is advantageous because complete enumeration of the 

problem can be achieved resulting in a true optimal solution. Researchers investigated 

manufacturing systems where a high variety of products of different volumes must be 

produced on a tight due date [15]. They used the feasibility function to schedule jobs in a 

multi-machine random job shop. The objective is to balance the number of tardy and 

early jobs, which will reduce the difference between the maximum and minimum lateness 

of jobs. A simulation model with a multi-agent architecture was developed to allow for 

comparison of a researched feasibility function method versus common scheduling rules. 

The results show that the feasibility function is very beneficial for job scheduling.  

 An optimization-oriented method was used for simulation-based job scheduling, 

which integrated capacity adjustment [4]. The goal of this method is to eliminate tardy 

jobs within a manufacturing facility. The proposed method integrates parameter-space-

search-improvement into the scheduling procedure. To gain a near optimal solution, a 

local search is completed to shorten the computation time. The method was tested using 
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data from a practical large-scale system, but it was found that the computation time was 

still too long. 

 CPLEX-computed job schedules were compared with the self-tuning dynP job 

scheduler [13]. The dynP scheduler dynamically changes the active scheduling policy, so 

to accurately reflect changing characteristics of waiting jobs. For the CPLEX method, an 

integer problem was developed. Time scaling was applied, which allowed the schedule to 

be computed on a larger than one second precise scale. The results of this comparison 

showed that both methods provided very similar solutions. However, the self-tuning dynP 

scheduler provided the solutions in much less time than the CPLEX method. A 

polynomial algorithm was used for two-job shop scheduling with scheduling flexibility 

[22]. The routing of the job is not fixed but it must be determined from several 

alternatives. The developed algorithm is based on a geometric approach and uses 

dynamic programming to construct a network which helps to determine the optimal 

solution. This algorithm can be applied on any regular minimizing objective function. 

The algorithm can also be changed to work with multi-resource operations.  

 Mathematical programming methods are beneficial because they allow for 

obtaining an optimal solution. However, with complete enumeration on a NP-Complete 

problem, the solving time associated with classical optimization for a linear program or 

mixed integer program would be excessively long. The disadvantage of the lengthy time 

to solve for the optimal far outweighs the benefit created by obtaining the optimal 

solution.  
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1.2.2 Solving Methods 

 Solving the cellular job scheduling problem is not a simple task. Again the 

multiprocessor problem has been shown to be NP-Complete through a polynomial 

transformation from partition problems. Manufacturing facilities operate in dynamic 

environments. Orders can be received at any moment and the manufacturing floor must 

be able to react to accommodate the new job from the new order. Therefore, it is not an 

acceptable alternative to completely enumerate all points in the problem. The 

manufacturing facility needs the solution schedule in real-time. The solving method must 

provide a near-optimal solution in an acceptable amount of time. Several solving 

methods, including genetic algorithms, search methods, neighborhood relations, and 

greedy approaches, aim to solve the job scheduling problem with mixed results.  

 Heuristic hybridization and genetic search were used as a procedure to 

computationally provide a feasible solution to a job scheduling problem [18]. The 

problem was adapted to a genetic algorithm by the Active-Schedule Generation and a 

Priority-List algorithm, with a hopping scheme. An Evolutionary Intracell Scheduler 

(EVIS) provided iterative schedule improvement, resulting in near optimal solutions in 

reasonable computation time. Another approach used a multi-pass heuristic approach 

combined with a genetic algorithm [25]. The steps in the process included dispatch, 

initialization, evaluation, and then a loop which consisted of selection, mating, mutating, 

evaluation again, and replacement. The computational time was proved to be 

significantly less. Another genetic algorithm proposed for the job scheduling problem 

involved release and due-dates, with various tardiness criteria as objectives [6]. Different 

priority rules, such as first in first out, shortest process time, and critical ratio are used to 
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improve the decision process. A permutation was developed which prioritizes any two 

operations involved in the problem. They found that the capabilities of a genetic 

algorithm decrease with an increasing problem size. With the help of a multi-stage 

decomposition, the search space is reduced and the genetic algorithm works well. 

 Co-evolution and sub-evolution processes were introduced into a genetic 

algorithm to tackle job scheduling [10]. Co-evolution was used to provide makespan and 

idle time schedule criteria as the fitness functions of the operation-based genetic 

algorithm. Subsequently, to provide high diversity for chromosome population, sub-

evolution was used so that the total job waiting time schedule constraint is the fitness 

function for the genetic algorithm. With modifications to the standard deviation and 

average of the computational results, this method shows robustness in solving the job 

scheduling problem. Another genetic algorithm combined with a data mining based meta-

heuristic was proposed to solve the job scheduling problem [7]. This genetic algorithm 

generates a learning population of feasible solutions, which are then mined by the mean 

of classifier systems. The mining step produces decision rules that are transformed into a 

meta-heuristic allowing for the efficient scheduling of operations to machines.  

 To build upon the efficiency of genetic algorithms, a team of researchers 

proposed a hybrid heuristic genetic algorithm [8]. Scheduling rules, such as shortest 

processing time and most work remaining were integrated into the genetic evolution 

process. To improve the solution performance, the neighborhood search technique was 

adopted as a supplementary procedure. The new hybrid genetic algorithm was proved to 

be effective and efficient in comparison to other methods, including the neighborhood 

search heuristic, simulated annealing, and traditional genetic algorithm. An immune 
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algorithm method was proposed that goes through a series of steps, including 

initialization of antibodies, initialization of antigens, evaluation, generation, and 

calculation [23]. The binary strings will gather to the point where the good value of the 

fitness function is found. In comparison to genetic algorithms, the proposed immune 

algorithms provide solutions in faster computation times. 

A job scheduling method was investigated using group constraints, which means 

that a job schedule for each line is decided upon and jobs dealing with the same process 

must be grouped [14]. The research included a rapid generation of an initial feasible 

solution by analyzing job flexibility according to an influential degree of a whole plan. 

Improvement rules were used in combination with a tabu search, which resulted in 

improvement of the total evaluation and confirmed effectiveness. 

 A stochastic strategy was developed for solving the job scheduling problem [16]. 

A tabu search was proposed and formalized to get a near optimal solution. The procedure 

is based on an iterative “neighborhood search.” The tabu search keeps track of not only 

short term information, but long term information as well. Two strategies, intensification 

and diversification, are used to efficiently solve the problem in polynomial time. Another 

search technique is based upon relaxing and then imposing the capacity constraints on a 

few critical operations [24]. Subsequently, this technique is incorporated into a fast tabu 

search algorithm. Results from this technique show that the approach is very effective, by 

improving upon a range of test problems. 

 A heuristic was developed based on the tree search procedure for job scheduling 

to minimize total weighted tardiness [5]. Each job has specific due dates and delay 

penalties. A schedule is determined by minimizing the maximum tardiness subject to 
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fixed sub-schedules solved at each node of the search tree and the successor nodes are 

generated, where the sub-schedules of the operations are fixed. Therefore, a schedule is 

obtained at each node and the sub-optimum solution is determined among the obtained 

schedules. Results show that the algorithm can find sub-optimum solutions with minimal 

computation time. 

 An extension of the job scheduling problem was studied, where the job routings 

are directed acyclic graphs that can model partial orders of operations and that contain 

sets of alternative subgraphs consisting of several operations each [19]. A tabu search and 

a genetic algorithm are used as heuristics, based upon two common subroutines. The first 

inserts a set of operations into a partial schedule and the other improves a schedule with 

fixed routing alternatives. The first subroutine relies on an efficient insertion technique, 

while the second subroutine is a generalization of standard methods for job scheduling. 

Results show that the methods proposed provide optimal solutions for three open 

problems. 

 Methods were researched for manufacturing environments with random job 

arrivals, non-deterministic processing times, and unpredictable events, such as machine 

breakdowns. A complete multi-agent framework, including Lagrange multipliers, is used 

to schedule jobs in this type of flexible workplace [1]. This approach combines real-time 

decision making with predictive decision making, which can combat various different 

scheduling problems. Another multi-agent scheduling method integrates earliness and 

tardiness objectives for a flexible job shop, consistent with the just-in-time manufacturing 

philosophy [27]. A job-routing and sequencing mechanism distinguishes jobs with one 
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operation left and jobs with multiple operations left. The results of the research show that 

the proposed multi-agent scheduling method outperforms existing scheduling methods.  

 A job scheduling problem was researched, in which each job must process one 

task on m machines [2]. The determination of the longest paths is the critical 

computation. Heuristics are used by employing a neighborhood relation. To obtain a 

neighbor, a single arc from a longest path is reversed and so these transition steps 

guarantee a feasible schedule. Using logarithmic cooling schedules, the problem can be 

solved within polynomial time. 

  A greedy heuristic was developed for the flexible job scheduling problem, which 

is concerned with the assignment of operations to machines, as well as the sequence of 

the operations [21]. The first job is fixed to start the polynomial algorithm. The next job, 

with associated operations, is combined with the first job. The combinations are 

organized in a Gantt chart according to the optimal schedule. The algorithm continues 

until all jobs are formed into appropriate combinations, which gives the optimal job to 

machine assignment.   

 A heuristic schedule was used based upon asymptotic optimality in probability for 

open shops with job overlaps [20]. This approach focuses on scheduling applications 

where parallel processing within a job is possible. The objective is to output an optimal 

schedule while minimizing the summation of completion times of the jobs. The heuristic 

orders the jobs by the average processing time of the operations of the job. A lower 

bound on the optimal cost of each job is also introduced. The lower bound is used to 

prove asymptotic optimality in probability of the heuristic when the processing times are 

independently and identically distributed from any distribution with a finite variance. 
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 Genetic algorithms, search methods, neighborhood relations, and greedy 

approaches are all nice methods to solving the job scheduling problem. However, there is 

no guarantee that any of these methods will achieve the goal of solving for a near-optimal 

solution to a NP-Complete problem in an acceptable computation time to be of use to a 

dynamic manufacturing environment. Therefore, this thesis will develop a heuristic that 

can be applied to a mathematical model that represents a cellular job scheduling problem. 

The heuristic will take advantage of the structure of the model to solve more efficiently, 

while maintaining an acceptable level of optimality. The work will aim to leverage 

several aspects of the mathematical model as well as specific characteristics of jobs and 

cells contained in the scheduling problem to improve the efficiency of solving the cellular 

job scheduling problem detailed in the mathematical model in Chapter 2.  
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2 Formulation 

2.1 Mathematical Model 

In this chapter, a developed mathematical model is presented to solve the job 

scheduling problem that is representative of a cellular manufacturing environment. The 

creation and design of the mathematical model is crucial to the types of heuristics that 

can be applied to the problem. The research that is completed for the thesis will be based 

upon this model. This mathematical model will schedule jobs in queue, as well as 

forecasted jobs, to the best possible cell for production at the best possible time(s), 

according to an objective function. It also describes important factors for jobs and cells, 

using input parameters and constraints.  

 

Notation  

(1, 2,..., , 1, 2,..., )j job n n n n q= + + +       (2.1) 

• jobs in queue (  1, 2,..., )n

• jobs forecasted ( 1, 2,..., )n n n q+ + +  

(1, 2,..., )c cell p=          (2.2) 

(1,2,..., )t time r=          (2.3) 

 

Decision Variables 

jcX =  {1 if job j is assigned to cell c; 0 otherwise}     (2.4) 

jctY =  {1 if job j is processed in cell c at time t; 0 otherwise}   (2.5) 

S j = time t that job j starts        (2.6) 
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F j = time t that job j finishes        (2.7) 

 

Input Parameters 

jd =  time t that job j is due                                                                 (2.8) 

je =  earliest time t to start job j                                                           (2.9) 

    ct j = length of time to complete job j                                                                       (2.10) 

jcf  = job j to cell c feasibility       (2.11) 

• (1…feasible, 0…infeasible) 

jcm =  cost per unit time to produce job j in cell c     (2.12) 

 

Objective Function 

( )* *jc jc j
j c

Minimize Z X m ct=∑ ∑       (2.13) 

 

Constraints 

1jc
c

X = ∀∑ j

c

         (2.14) 

,jc jcX f j≤ ∀          (2.15) 

( )*jct jc
t

Y TIME X j≤∑ ,c∀

,c t

       (2.16)

1jct
j

Y ≤ ∀∑          (2.17) 

( )* * 1jct jct jt Y TIME Y S j c t+ − ≥ ∀ , ,      (2.18) 

20  



*j jct , ,F t Y j c t≥ ∀          (2.19) 

jct jc
c t

Y ct= ∀∑∑ j         (2.20) 

jSe jj ∀≤          (2.21)

jdF jj ∀≤          (2.22) 

jctSF jjj ∀−=− 1                                                                         (2.23) 

 

The mathematical model is clearly represented by three indicies; job, cell, and 

time. The job notation, in 2.1, describes the list of jobs to be scheduled, with 

accompanying actual job numbers. The cell notation, in 2.2, describes the list of cells that 

jobs can be scheduled in, with accompanying cell names. The time notation, in 2.3, 

describes the length of the discetized time periods, with accompanying time units. The 

three indicies will be used to schedule a job to a specific cell over specific time periods.  

The mathematical model involves four decision variables. The assignment 

variable, shown in 2.4, is a two-dimensional (job, cell) binary variable that is equal to 1 if 

a job is assigned to a specific cell or 0 otherwise. Similarly, the schedule variable, shown 

in 2.5, is a three-dimensional (job, cell, time) binary variable that is equal to 1 if a job is 

assigned to a specific cell during a particular time. Otherwise the value of the variable is 

equal to 0. The start time variable, shown in 2.6, gives the time period that a job is 

scheduled to begin production, while the finish time variable, shown in 2.7, gives the 

time period that a job is scheduled to complete production.   

The first job parameter that will be included in the mathematical model is due date, 

shown in 2.8. Due date is one of the main driving forces behind the scheduling of jobs. 
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Simply put, it provides a worst-case date for when the job must be completed that aligns 

with the needs of the customer. The customer expects the job to be delivered in 

accordance with the due date. If the job is not delivered on time it is likely that the 

company’s reputation can be damaged or profits can be sacrificed. Therefore, due dates 

supply a simple to understand baseline date that is to be met for each job.  

Early start date, shown in 2.9, is another job parameter that will be included in the 

mathematical model. Early start date operates in a similar manner to due date. It provides 

a best-case date for when a job can actually begin manufacturing. Early start date is a 

critical job parameter mainly for a few reasons. First, it comes into play with forecasted 

jobs that have yet to be confirmed for production. Manufacturing facilities do not want to 

begin production of a forecasted job, until there is a better understanding of whether the 

job will truly come to fruition. Secondly, inventory concerns come into play. It costs time 

and money to store products in inventory on both the producer and customer sides. The 

producer doesn’t want the job to be completed too early, resulting in a significant finished 

goods inventory cost. Similarly, the customer doesn’t want the product too soon before it 

is needed, resulting in additional storage costs. Finally, the early start date is put in place 

due to the availability of specialized tools and materials. Typically, there is some sort of 

lead time associated with the delivery of raw materials or tools needed for the production 

of a job. Obviously, the job cannot begin until the necessary materials and tools are 

available to the cell.  

The final job-specific parameter to be included in the mathematical model is 

completion time, shown in 2.10. The completion time is defined as the number of time 

periods that a job will take for full production. For the purposes of this research, 
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completion time will be of a deterministic nature. Typically, the completion time of a 

particular job would be determined by historical manufacturing data and information 

associated with similar past jobs. The completion time is important because is provides the 

block of time that a job must be scheduled for within a cell.  

  One cell input parameter that will be included in the mathematical model is known 

as feasibility, shown in 2.11. Each job is either feasible or infeasible with each of the 

different cells. This method provides a simple, straight forward approach to assigning 

feasibility of a job to a cell. Additionally, this method allows for compiling several 

different parameters into one parameter. The feasibility looks at many job parameters and 

cell parameters to determine the feasibility relationship between each job and each cell. At 

a minimum, the feasibility parameter takes into account specifications and production 

requirements of a job and the equipment and employee skills of a cell. If the necessary 

specifications and production requirements of a job match the equipment and employee 

skills that are located in a cell, the job is feasible for production in that particular cell. On 

the other hand, if the specifications and production requirements of a job don’t align with 

the equipment and employee skills of a cell, that relationship is infeasible.  

The final parameter, cost, shown in 2.12, provides a cost per time unit of 

manufacturing a particular job in a specific cell. Cost incorporates several different 

smaller costs associated with the manufacturing of a job in a cell. For example, each cell 

has an employee wage cost associated with it. Some cells have multiple employees and/or 

high-skilled employees that increase the wage cost. In addition, there is a burden cost 

associated with each cell that may incorporate equipment cost and square footage cost. 

The cost parameter also serves as an extension of the feasibility parameter. Although the 

23  



feasibility parameter is binary, job to cell feasibility is actually not so cut and dry. For a 

particular job, there are some cells that are very good matches for production, there are 

some cells that are impossible for production, and there are some cells in between that 

could produce the job if necessary. Thus, the cost parameter comes into play with the cells 

in between to allow for some continuity within feasibility. For instance, Job A matches the 

parameters of Cell X very well. More often than not, Job A should be scheduled for 

production in Cell X. However, Job A could be scheduled to Cell Y, if Cell X is full and 

production is absolutely necessary by a certain date. The cost parameter associated with 

the Job A to Cell Y relationship can be inflated to an appropriate level to allow Job A to 

be scheduled to Cell Y, but simultaneously ensures that it happens only if absolutely 

necessary. 

The goal of any firm or company should be to maximize profit. However since 

profit is difficult to represent from a scheduling perspective, the objective, shown in 2.13, 

in this model is to schedule the jobs accordingly to minimize the overall cost associated 

with producing the set of jobs in their assigned cells.  

There are several conditions or constraints that must be met while scheduling the 

jobs, in accordance with cellular manufacturing principles. First each job must be 

produced entirely within only one cell, as represented in 2.14 and known as the “one cell 

only” constraint. The assigned cell for a particular job must be a feasible cell, as 

represented in 2.15 and known as the “cell feasibility” constraint. If a job is not assigned 

to a particular cell, it can’t be scheduled in that cell, as represented in 2.16 and known as 

the “schedule only if assigned” constraint. TIME is defined as the value of the latest time 

in the set of time periods. Furthermore, within one cell, only one job can be worked on at 
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any particular time, as represented in 2.17 and known as the “one job at a time” 

constraint. The starting time of a job is determined using the “starting time” constraint, 

shown in 2.18, while the finishing time of a job is determined using the “finishing time” 

constraint, shown in  2.19. A job must be scheduled for the entirety of the designated 

completion time, as represented in 2.20 and known as the “scheduled time equals 

completion time” constraint, while not being scheduled before its early start date, as 

represented by 2.21 and known as the “early start date” constraint, or after its due date, as 

represented by 2.22 and known as the “due date” constraint. Once a job is scheduled for a 

particular time, it must remain in the cell until completion, in a sequential manner, as 

represented in 2.23 and known as the “sequential time” constraint.  

For the purpose of this thesis, the mathematical model has been formulated using 

a software program known as Optimization Programming Language (OPL), version 3.7, 

from a company called ILOG. The problem will then be solved using OPL and a solution 

tool known as CPLEX. The baseline OPL model along with a glossary of terms to allow 

for easy translation can be found in Appendix A.  

 

2.2 Job Scheduling Problem Sizes 

There are an endless number of job scheduling problems that arise from the 

numerous combinations of input parameters, as well as the quantity of jobs, cells, and 

time periods. To address this concern, for the purpose of this work, the job scheduling 

problems will reflect the general state of job scheduling problems at facilities that operate 

in a cellular manufacturing environment, such as Optimax Systems, Inc., described in 

Chapter 1.  

25  



 Typically, at any given time, the manufacturing facility is approximately 

operating at 85% capacity. This means that the jobs currently planned to be produced 

occupy 85% of the facility’s physical work time to complete the jobs. Of course, this 

number is not constant and can fluctuate higher and lower depending on the market 

demand for goods.  

 A 10-week or 2.5-month time frame looking forward portrays the window of time 

that most facilities are concerned with to be scheduled. This allows for scheduling of jobs 

with a 6-10 week lead time. It also allows for scheduling of expedited jobs that must be 

scheduled with shorter lead times, potentially delaying other jobs.  

 The completion time of jobs is dependent on the quantity of parts in the job and 

the difficulty of the job. Simple jobs may take as little as one day to complete, while 

more difficult jobs can take upwards of 5 days or a full work week for completion. Some 

jobs can begin to be produced as soon as the order is confirmed. However, some jobs 

must be delayed due to material, tool, inventory, or forecasting reasons. The early start 

date takes these concerns into account, while adjusting the due date to provide a 

reasonable window of time for completion for any particular job.  

 Cell break points of 5 cells, 10 cells, and 15 cells will be used for 

experimentation. Obviously, jobs are not feasible to all cells, and a job may be a better fit 

for a certain cell than another cell. On average, jobs are allocated as feasible to 40% of 

the cells. This does not mean that each job is feasible to 40% of the cells, but overall 40% 

of the cells are feasible for all the jobs. For example, in the case of a 5-cell problem, Job 

1 is feasible to only one cell, but Job 2 is feasible to three cells. For Job 2, each of the 

three feasible cells may not be equally feasible. This is where cost comes into play. The 
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most difficult feasible cell will be allocated a higher cost in comparison to the easier 

feasible cells.  

To bring it all together, 12 different job scheduling cases, as shown in Table 2.1, 

will be run as a set of different experiments, based on problem size. Along the left side of 

the table is the number of cells located within the problem. Along the top side of the table 

is the number of time periods, represented by days, located within the problem. The table 

shows the size of each case in terms of cell-days. Simply put, cell-days are calculated as 

the product of the number of cells and the number of days within the problem. This 

represents the total number of time slots that must be scheduled, or purposely not 

scheduled via the schedule variables. Typically the higher the number of cell-days, the 

more difficult the scheduling problem becomes. The size of the problem is shown in 

Table 2.2. 

 
 (4 weeks) (6 weeks) (8 weeks) (10 weeks) 
 20 days 30 days 40 days 50 days 
5  cells 100 cell-days 150 cell-days 200 cell-days 250 cell-days 
10 cells 200 cell-days 300 cell-days 400 cell-days 500 cell-days 
15 cells 300 cell-days 450 cell-days 600 cell-days 750 cell-days 

 
Table 2.1: Job Scheduling Problem Cases 

 
 
 

Cell-Days Problem Size 
100-200 Small 
250-300 Medium 
400-500 Large 
600-750 Extra-Large 

 
Table 2.2: Job Scheduling Problem Sizes 
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Since the completion times of jobs are normally between 1 day and 5 days, the 

completion times are assigned randomly between 1-5 days. Capacity is normally at about 

85%. Therefore, the number of jobs that each case will have is calculated by multiplying 

the total cell-days by the average capacity (85%) and then dividing by the average 

completion time (3 days). Table 2.3 shows the number of jobs located within each 

scheduling problem case.  

 
 (4 weeks) (6 weeks) (8 weeks) (10 weeks) 
 20 days 30 days 40 days 50 days 
5  cells 29 jobs 43 jobs 57 jobs 71 jobs 
10 cells 57 jobs 85 jobs 114 jobs 142  jobs 
15 cells 85 jobs 128 jobs 170 jobs 213 jobs 

 
Table 2.3: Number of Jobs in Job Scheduling Cases 

  

Due to the large number of different experiments that were to be run, synthetic 

data was generated through random number techniques. Table 2.4 shows the methods to 

determine each of the input parameters.  

 
Input Parameter Method of Generation 
Completion Time Randomly assigns a completion time (1,2,3,4,5). 
Due Date Randomly assigns a due date; due dates skewed towards later time 

periods. 
Early Start Randomly assigns an early start date, based upon due date; early 

start dates skewed towards earlier time periods. 
Feasible Randomly allocates feasibility between each job and cell at a 40% 

chance of feasibility (1-feasible, 0-infeasible). 
Cost Randomly allocates cost (1,2,3,4,5) between each job and feasible 

cell. 
 

Table 2.4: Input Parameter Determination 
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 Table 2.5 displays approximate solving times for the problem sizes when 

attempting to solve optimally using integer linear programming via the developed 

mathematical model. Some problems take shorter or longer to solve than the given range, 

but a large majority of the problems fall within the range. The results reiterate the need to 

investigate a more efficient procedure to solve for problems of these sizes, especially the 

extra large problems, which are representative of the problems faced by companies such 

as Optimax. It is critical that a good solution be achieved in a reasonable timeframe to be 

of use to a dynamic manufacturing facility that requires real-time scheduling. 

 

 
Problem Size 

Optimal Solution 
Approximate Solving Range 

Small 1 minute – 1 hour 
Medium 1 hour – 1 day 

Large 1 day – 3 days 
Extra-Large 3 days – 1 week + 

 

Table 2.5: Approximate Solving Times 
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3 Solution Methodology 

3.1 Development and Evolution 

 The formulation of the mathematical model significantly impacts the types of 

heuristics that can be applied to more efficiently solve the problem. The goal of the 

mathematical model was not only to represent the job scheduling problem of a cellular 

manufacturing facility, but to also allow the acceptance of different potential heuristic 

procedures. Once again, the objective of this job scheduling problem is to schedule all the 

jobs to a specific cell over a designated amount of time, while minimizing overall cost. In 

simplest form, only the schedule variable, Yjct, is necessary to deliver all the information 

to the manufacturing facility. The schedule variable shows exactly what job is assigned to 

what cell and at what time(s), through a binary notation. However, with the addition of 

the assignment variable, Xjc, the problem can easily be broken down into two separate 

phases, assigning (jobs to cells) and scheduling (jobs to times within assigned cells). The 

ability to split the problem into separate phases, assigning and scheduling, enables the 

problem to be simplified through heuristic techniques. The heuristic will take advantage 

of the structure of the model to solve more efficiently, while maintaining an acceptable 

level of optimality. The developed heuristic will work to leverage the structure of the 

mathematical model of jobs and cells contained in the scheduling problem to improve the 

efficiency of solving the cellular job scheduling problem detailed in the mathematical 

model in Chapter 2. 

 A heuristic method does not just suddenly develop out of nowhere on its own. 

Instead the heuristic evolves from several different ideas through a process of repetitive 

trial and error, as well as significant experimentation. There are numerous ways to go 
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about creating a heuristic, including relaxing constraints and relaxing integer variables. 

The size and difficulty of a job scheduling problem greatly impacts the capability of a 

heuristic when applied to the problem. The evolution of the heuristic to be detailed in this 

thesis started with attempts to solve small-sized problems and slowly progressed to 

solving larger-sized problems. The techniques developed in the smaller problems are 

adjusted and expanded upon so that they can be applied to the larger problems.  

 

3.2 Small Problems 

 With 200 cell-days or less, small problems are the simplest class to be examined 

within this research. Small problems are likely the type of problem that a department area 

or small company, with smaller lead times, would face on a consistent basis. More often 

than not, small problems can be solved optimally through use of the baseline 

mathematical model, without the use of any heuristic procedures. Nevertheless, the 

computation time for solving optimally can range anywhere from a couple seconds to a 

couple minutes to a couple hours. By using just a few simple procedures, the problem-

solving can be quickened and a feasible (potentially optimal) solution can be found in a 

fraction of the time. Figure 3.1 shows a simple heuristic method to find a solution to a 

small-sized problem by relaxing integrality of the assignment and schedule variables, as 

well as the “one cell only” constraint.  

In stage 1, relax the integrality on the schedule variable, to allow all jobs to be 

assigned to one and only one cell in a small amount of time. All jobs are assigned to a 

cell, but are not scheduled at specific times in accordance with early start dates and due 

dates. The solution is far from feasible, yet still provides useful information to carry into 

31  



the next stage. Transform each job-to-cell assignment variable into a constraint and add 

them to the mathematical model to be used in stage 2.  

 

Run 
Model

Stage 1:
Assign all jobs to only one cell

1. Relax integrality on schedule 
variable

Stage 2:
Schedule jobs within assigned cells

1. Transform job-to-cell assignment 
variable into constraints
2. Relax integrality on assignment 
variable
3. Change schedule variable back to 
integer form
4. Allow multiple cell assignments via 
constraint

Are all jobs still 
assigned to only 

one cell?

Run 
Model

Optimal 
Solution

YES

NO

Stage 3...n:
Reschedule infeasible jobs

1. Eliminate job-to-cell assignment 
constraint for job(s) that were assigned 
to multiple cells

Run 
Model

Are all jobs 
assigned to only 

one cell?

Heuristic 
Feasible 
Solution

YES

NO  

Figure 3.1: Heuristic Strategy #1 – Small Problem 

  

For stage 2, change the schedule variable back to its original integer form. Instead 

relax the integrality on the assignment variable. In addition, relax the “one cell only” 

constraint, to now allow for multiple cell assignments per job. Since in stage 1, early start 

dates and due dates were not met, it is possible that all jobs assigned to a cell cannot be 

appropriately scheduled in that particular cell. Therefore, by relaxing the “one cell only” 

constraint, a job can be assigned and scheduled over two cells, if necessary.  

After running the model again, if a solution is found where all jobs are assigned to 

only one cell, the solution is optimal. If one or more jobs are assigned to multiple cells, 
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the solution is infeasible. Eliminate the job-to-cell assignment constraint added in stage 2 

for the job(s) that are assigned to multiple cells and run the model again. Continue this 

process until all jobs are assigned to one and only one cell. At this point, a feasible 

solution is found, with the possibility that the solution is still optimal. Normally, this 

entire heuristic process takes no more than a few seconds depending on the magnitude of 

the problem.  

Beneficially, this heuristic procedure provides an optimal or feasible solution in a 

short amount of computation time on a very consistent basis with problems of small 

magnitude. On the other hand, the heuristic can get caught in a large loop at stage 3, if 

jobs continue to get assigned to multiple cells. This leads to a longer computation time 

and backtracks to a more difficult problem. Furthermore, as the size of the problem at 

hand increases, the ability of this heuristic to provide a solution quickly diminishes. A 

more difficult problem spells more cells, more time, and more jobs. With an increase in 

the number of jobs, this heuristic has difficulty assigning all the jobs to one cell in stage 

1. Additionally, as the number of cell-days increases, it is more difficult to schedule the 

jobs even if they can be assigned to distinct cells. 

 

3.3 Medium Problems 

 In one way or another, medium problems experience a slight increase in the 

number of jobs, number of cells, or the number of time periods. Due to the increase of the 

dimensions of the problem, the strategy to acquire a solution must be adapted in relation 

to smaller problems. Medium problems still have a slim chance to be solved optimally, 

without any modifications to the baseline mathematical model. Nonetheless, the solving 
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process could take several minutes or even several hours. By applying a three-stage 

heuristic procedure to this size problem, the solving time can be significantly decreased, 

while not sacrificing considerable optimality to the objective. The crucial part of this 

heuristic is obtaining an initial feasible solution to the adjusted problem at hand as soon 

as possible. After an initial feasible solution is found, useful bits of information from the 

adjusted feasible solution can be adapted to the next stage to speed along the overall 

solution process. Figure 3.2 shows the basic concept of the heuristic procedure.  

 

 

Figure 3.2: Heuristic Strategy #2 – Medium Problem 
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Stage 1 involves changing the assignment variable and the schedule variable from 

the integer form to the continuous form. Since this is no longer an integer program 

whatsoever, an optimal solution is quickly obtained in just a few seconds. Although this 

solution is far from a good solution for the true problem, it provides useful information to 

carry on to the next stage.  

 In stage 2, the assignment variables from the stage 1 solution are analyzed. If a 

job-to-cell assignment variable is equal to 1, it represents a high importance, relative to 

the objective function, to schedule that job within that cell. Thus the job-to-cell 

assignment actually becomes a constraint and is added within the model. This occurs for 

all job-to-cell assignment variables that are equal to 1. Usually between 60%-70% of jobs 

are assigned solely to one cell after stage 1.  

 Before the model is run again, the schedule variable is changed back to a binary 

integer variable. This is a step in the right direction towards the true mathematical model, 

as jobs now must be scheduled for an entire time period, instead of portions of a time 

period. Additionally, the “one cell only” constraint is modified to allow for multiple cell 

assignments. Therefore, jobs can be assigned to more than just one cell. By changing this 

constraint, a feasible solution is found significantly faster than by forcing all of the jobs 

to be scheduled to only one cell. Now the model can be run once again.  

 The model has now been turned into a partial integer program. Understandably, 

the solving process is more time-consuming. Nevertheless, since many of the jobs have 

already been assigned to a distinct cell, a feasible solution is obtained to the problem at 

hand, typically within about a minute. Next, a balancing act must occur as the longer 

program runs, the better the solution becomes, resulting in better information to carry into 
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the next stage. After approximately 2 minutes, if the solution is not yet optimal, but is 

feasible, the model can be stopped and the procedure can continue with the best feasible 

solution. Two minutes was chosen for several reasons. First, time is not compromised 

significantly as two minutes is a very short amount of time for such a problem of this 

magnitude. Secondly, a feasible solution can typically be found within two minutes for 

this set of problems. Finally, after two minutes, the solution doesn’t have much more 

room for improvement, but the time to achieve the improvement is significant. In the 

unlikely case that a feasible solution is not found within 2 minutes, allow the model to 

continue to run until a feasible solution is found.  

 In stage 3, the schedule variables from the stage 2 solution are analyzed. If a job is 

scheduled in only cell, the schedule variables for that job are transferred into the 

mathematical model in the form of constraints. After stage 2, about 75% of the jobs will 

be scheduled appropriately in one cell. This represents the eventual schedule for these 

jobs. However, before it can become the actual schedule, the remaining jobs must be 

scheduled. Since the schedule variables have been added to the mathematical model, all 

assignment variable constraints that were added in stage 2 can be removed. The 

remaining jobs are able to be scheduled to any feasible cell. 

 Before the model is run again, the mathematical model is changed back to its 

original form. The assignment variable is changed back to integer form. In addition, the 

“one cell only” constraint is changed back to allow for only one cell assignments. Now, 

the model can be run again in an attempt to find a good feasible solution to the true job 

scheduling problem. Typically, an optimal solution is found within one minute. The 
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model can be stopped after two minutes with a feasible solution, in the unlikely case that 

the model hasn’t yet found an optimal solution. The best feasible solution is used.  

 Due to the fact that several jobs have already been locked into place after stage 2, 

there is a chance that the problem is no longer feasible. Likely, one or two jobs could not 

be scheduled because other jobs were already scheduled to necessary time slots. In this 

case, adjustments must be made to achieve a workable solution. A workable solution 

comes in the form of allowing jobs to be scheduled over multiple cells, if necessary. This 

is a beneficial alternative, because the jobs are still completed on time, resulting in a 

satisfied customer. The “one cell only” constraint is again changed to allow for multiple 

cell assignments. However, another constraint, known as the “time overlap prevention” 

constraint, as shown in 3.1, must be added to prevent a job from being scheduled in two 

different cells at the same time.  

              
1jct

c
Y ≤ ∀∑ ,j t         (3.1) 

 
The model is run again and a workable solution is likely found. In the very unlikely case 

that the problem is still infeasible, the early start constraint can be relaxed to allow for 

jobs to start earlier and/or the time overlap constraint can be eliminated to achieve a 

workable solution.  

 Positively speaking, the heuristic strategy described in this section achieves a 

feasible solution (majority of the time) or a workable solution, within a reasonable time 

frame, without forfeiting significant portions of the objective. This strategy addresses 

some of the concerns from the smaller problem strategy, which allows this heuristic 

strategy to be applied to slightly larger problems. In contrast, the medium scale problem 
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heuristic strategy has a handful of downfalls that deduct from its usefulness. First and 

foremost, infeasibility has a slight chance of coming into play, since some scheduled jobs 

are locked into place before other jobs are scheduled. Though a workable solution can be 

achieved by relaxing constraints that do not impact delivery of jobs to customers, it can 

be very costly to the manufacturer to truly implement these relaxations on the 

manufacturing floor. There is a lack of definitiveness to this heuristic. Especially when 

the model is running within stage 2, an initial feasible solution is found at different times 

depending on the specific problem. While two minutes is used as the reference point, 

stopping the model for feasibility at different times can impact the final heuristic solution. 

Finally, once again, this heuristic strategy will have difficulty performing as the 

magnitude and difficulty of the job scheduling problem continues to amplify.  

 

3.4 Large Problems 

 Once again, large problems increase in size over medium problems by adding 

more jobs, more cells, and more time. Cell-days range from 400 to 500 days, while the 

number of jobs is between 100 and 150 jobs. It is highly unlikely that a problem of this 

size can be solved optimally with integer linear programming in conjunction with the 

baseline mathematical model. With a larger, more difficult problem, creative techniques 

must be used to expand upon the heuristic strategies developed for smaller problems. As 

shown in Figure 3.3, an additional stage is added to create this heuristic strategy, while 

adjusting other techniques developed in the heuristic strategies designed for smaller 

problems.  
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Figure 3.3: Heuristic Strategy #3 – Large Problem 

 

The heuristic strategy for this set of problems can be broken down into four main 

stages. The main difference between this heuristic and the previous heuristic is that all 

jobs are actually assigned to one and only one cell before any scheduling actually takes 

place. Again, it is critical that an initial feasible solution to the problem at hand is 
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obtained as soon as possible, so that useful bits of the adapted feasible solution can be 

transferred to the next stage to speed up the overall solution process.  

 Stage 1 involves relaxing the integrality of the assignment variable and the 

schedule variable, to allow most jobs to be assigned to one cell in a short amount of 

computation time. After the model is run, if a job is assigned to only one cell, the 

corresponding job-to-cell assignment variable is transformed into a constraint and added 

to the model. From here, the assignment variable is changed back to an integer variable, 

to allow the remaining jobs to be scheduled. Additionally, the “one cell only” constraint 

is relaxed to allow for multiple cell assignments. Therefore, jobs can be assigned to more 

than just one cell. Jobs that were assigned to a specific cell in stage 1 are now flexible 

enough to move to another cell if necessary. By changing this constraint, a feasible 

solution is found significantly faster than by forcing all of the jobs to be scheduled to 

only one cell. Now the model can be run once again for stage 2.  

 The model has now been turned into a partial integer program and as expected, 

the solving process takes longer. Yet, many of the jobs have already been assigned to a 

distinct cell, so a feasible solution is normally obtained to the problem on hand within a 

minute or so. If an optimal solution has not been found after 2 minutes, the model can be 

stopped and the procedure can continue with the best feasible solution. More likely than 

not, all jobs will be assigned distinctly to one cell at the end of this stage.  

 In stage 3, all of the assignment variable constraints added in stage 2 are 

eliminated. Instead, all of the new assignments from the stage 2 solution are analyzed. If 

a job-to-cell assignment variable is equal to 1, the job-to-cell assignment is added as a 

constraint within the model. The schedule variable is changed to integer form, while the 
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assignment variable is changed back once again to continuous form. Additionally, if 

necessary, jobs can actually move to a different cell than the one assigned to in stage 1 or 

stage 2. This is due to the fact that the model still allows for multiple cell assignments 

and the assignment variable is continuous, which allows it to happen at a lower cost to 

the objective.  

Next, a balancing act must occur, as the longer program runs, the better the 

solution becomes, delivering better results to transfer to stage 4. After approximately 2 

minutes, if the solution is not yet optimal, the model can be stopped (so long as there is a 

feasible solution) and the procedure can continue with the best feasible solution. Two 

minutes was chosen for similar reasons, as stated in the previous section regarding the 

medium problems.  

 In stage 4, the schedule variables from the stage 3 solution are analyzed. If a job is 

scheduled in only cell, the schedule variables for that job are transferred into the 

mathematical model in the form of constraints. After stage 2, normally over 90% of the 

jobs have been scheduled appropriately in one cell. This represents the eventual schedule 

for these jobs. However, before it can become the actual schedule, the remaining 10% of 

the jobs must be scheduled. Since the schedule variables have been added to the 

mathematical model, all assignment variable constraints that were added in stage 3 can be 

removed.  

 Prior to the model running, the mathematical model is changed back to its original 

form. The assignment variable is changed back to integer form and multiple cell 

assignments are again disallowed. Now, the model can be run again in an attempt to find 

a good feasible solution to the initial problem. Typically, an optimal solution is found 
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well within 2 minutes. However, in the unlikely case that it can’t, the model should be 

stopped (so long as there is a feasible solution). The best feasible solution is used.  

 Because several jobs have already been locked into place after stage 3, there is the 

possibility that the problem is no longer feasible. It is probable that a few jobs could not 

be scheduled because other jobs were already scheduled to necessary time slots. In this 

case, adjustments must be made to achieve a workable solution. The same modifications 

as explained with heuristic strategy #2 can once more be used to tackle this setback.  

 The large problem heuristic is very similar to the medium problem heuristic. The 

additional stage permits jobs to move from cell to cell, while also limiting the size of the 

problem within each stage. Therefore, the heuristic allows for larger problems to be 

solved feasibly, a majority of the time, within a reasonable computation time. Yet again, 

however, this heuristic has its fair share of pitfalls. Although it can handle larger, more 

difficult problems, infeasibility is now an even greater possibility, because significantly 

more jobs are initially assigned, which leads to more jobs being scheduled before others. 

Furthermore, there is still an uncertainty around when stages should be stopped. The 

question arises, “When is a feasible solution good enough?” This is a very tough question 

to answer and leads to ambiguity and inconsistency within the final solution. As problems 

continue to become more difficult, due to increasing number of jobs, cells, and time 

periods, the method of scheduling jobs detailed in this section and the two previous 

sections will no longer be able to handle the more complicated problems.  
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3.5 Ultimate Heuristic  

3.5.1 Background 

 Extra large problems consist of problems with 600-750 cell-days. The largest 

problem that will be examined contains 15 cells, 50 time periods, and 213 jobs. This scale 

problem is consistent of job scheduling problems face by several companies, including 

Optimax. The number of cells is suggestive of a full-size manufacturing facility with 

several different cells. The number of time periods is indicative of a business type in 

which completion lead times are typically in the 6-10 week timeframe. To solve a 

problem of this magnitude, a heuristic must innovatively be created that can handle the 

difficulty of the problem, but also addresses all of the concerns of the small, medium, and 

large problem heuristic strategies, previously presented. It is critical that the heuristic is 

able to schedule all jobs feasibly, with a definitive approach, in a rational sum of 

computation time.  

Retrospectively, the previous heuristics go awry in a few critical areas. First, 

when jobs are initially assigned to only one cell, only two factors are considered, cost and 

cell time capacity (equivalent to total time periods). Due to the objective function 

attempting to minimize cost, the mathematical model attempts to assign all jobs to the 

corresponding least cost cell. Each job typically ends up being assigned to its least cost 

cell, unless the cell capacity is maxed out, in which case, one or more jobs must be 

moved to a different higher cost cell. This procedure is fine, but it overlooks three major 

aspects of the problem, due dates and early start dates for each job, and current load (sum 

of completion times for assigned jobs) for each cell. At this point, since the schedule 

variable is not of integer form, several jobs can be assigned to the same cell, even though 
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it is impossible for all the jobs to meet  the “early start” constraint and “due date” 

constraint. Moreover, if one cell is cheaper across the board in comparison to other cells, 

the load could be maxed out, while the other cells are just fractionally full. For the maxed 

out cell, once the schedule variable is integer again, reviving the early start dates and due 

date, it is very unlikely that all jobs assigned to the cell can actually be appropriately 

scheduled within the cell. One or more jobs are scheduled over two separate cells and 

must slide entirely out of the maxed out cell into another cell. However, in an attempt to 

decrease the overall difficulty of the problem, heuristic strategies #2 and #3 call for 

cementing appropriately scheduled jobs to cells at specific times through the use of 

additional constraints. This is troublesome because the jobs that need to move to another 

cell may not have another feasible timeframe, due to the fact that several jobs have 

already been scheduled and forced into place. Since it is hard to understand where exactly 

the conflict occurs, it is difficult to un-schedule a clashing job and thus infeasibility sets 

in. The following tables illustrate this phenomenon using a simple problem, with 5 jobs, 3 

cells, and 5 time periods. Table 3.1 simply shows the scheduling grid that the job 

scheduler will attempt to fill with a feasible solution, while Table 3.2 displays the input 

parameters for the problem. 

  

1 2 3 4 5
Cell 1
Cell 2
Cell 3

TIME

 

Table 3.1: Scheduling Grid 
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Comp. Time Due Date Early Start Cell 1 Cell 2 Cell 3
Job 1 1 5 1 2 4 x
Job 2 2 3 1 2 1 x
Job 3 3 4 2 x 1
Job 4 3 5 1 2 x
Job 5 3 4 1 1 5 1

COST

4
5

  
*x denotes infeasible job-cell relationship 

 
Table 3.2: Input Parameters 

 

Table 3.3 shows the initial assignments, denoted by the completion time of the 

job, which the model would have made according to heuristic strategies #2 and #3. The 

cell load is also calculated for each cell at the bottom of the chart. 

 

Cell 1 Cell 2 Cell 3
Job 1 1
Job 2 2
Job 3 3
Job 4 3
Job 5 3

Cell Load 4 5 3  

Table 3.3: Initial Assignments (with completion time) and Cell Loads 

  

 At first glance the assignments look excellent as cost (16) is at a minimum. Each 

job is assigned to its least cost cell. Nevertheless, it is clearly noticeable that it is 

impossible to schedule both Job 2 and Job 3 within Cell 2 once early start dates and due 

dates are taken into account. In a larger problem, this conflict is not likely so apparent. 

Equally intriguing is the fact that Cell 2 also has the greatest cell load, which, regardless 

of the obvious conflict, makes it a greater candidate for a scheduling conflict once due 

date and early start date constraints come back into play. 
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 Regardless, heuristic strategies #2 and #3 push forward and begin scheduling jobs 

using integer schedule variables, while now allowing multiple cell assignments. Table 3.4 

shows the job schedule after this stage.  

 

1 2 3 4 5
Cell 1 Job2 Job4 Job4 Job4 Job1
Cell 2 Job2 Job3 Job3 Job3
Cell 3 Job5 Job5 Job5

TIME

 

Table 3.4: Initial Scheduling Grid 

 

 Job 1, Job 4, and Job 5 are able to be scheduled appropriately within their 

respective assigned cells. As previously determined, both Job 2 and Job 3 were unable to 

be scheduled within Cell 2. Since the cost to send Job 2 to Cell 1 is less than the cost to 

send Job3 to Cell 3, one time unit of Job 2 is scheduled in Cell 1. Now to ease the 

difficulty of the problem, heuristic strategies #2 and #3 call for all jobs that are scheduled 

appropriately in only one cell be locked into place by a job-to-cell-to-time schedule 

constraint. Thus, Job 1, Job 3, Job 4, and Job 5 are cemented into their current place. 

Although the heuristics free Job 2 from any cell assignment, it is too late at this point. Job 

2 no longer has a feasible time frame to be scheduled in. Cell 1 is the only other feasible 

cell for Job 2 and there is only one time period left within the cell. The scheduling 

problem is now infeasible. Jobs that were frozen in place captured time periods needed 

for Job 2. However, the original problem does have an optimal feasible solution, as 

shown in Table 3.5, with an objective value cost of 20. The heuristics could not achieve 

the optimal solution because more jobs were assigned to a cell than could be scheduled 

and furthermore, more flexible jobs were scheduled prior to less flexible jobs. 
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1 2 3 4 5
Cell 1 Job2 Job2 Job4 Job4 Job4
Cell 2 Job1 Job3 Job3 Job3
Cell 3 Job5 Job5 Job5

TIME

 

Table 3.5: Optimal Solution Scheduling Grid 

 

 The take away point from this example is twofold. First, jobs that may be over-

assigned to a particular cell, according to cell load, must be allowed ample possibility to 

move to another feasible cell. Additionally, a window of time can’t be locked up with a 

job until there is a strong likelihood that the timeframe will not be needed by another less 

flexible job. This is a critical balancing act, because permanently scheduling a job too 

soon can lead to infeasibility, but not constraining a job leads to a more difficult problem 

to solve.  

 Significant uncertainty creeps into the problem-solving process when a substantial 

number of cell-days must be scheduled all at once. This is what leads to the guessing 

game of when to stop the model after a feasible solution is found. The larger the problem 

becomes, the more cell-days there are to be scheduled and the longer it takes to find a 

feasible solution. Therefore, this issue will not be alleviated until a new method is in 

place to limit the number of cell-days that must be scheduled at once, while still not 

prematurely permanently scheduling jobs into a set time frame. 

 

3.5.2 Techniques 

 The techniques used in the ultimate heuristic address the concerns of the smaller 

sized problem heuristic strategies described previously. The ultimate heuristic uses 
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relaxations to multiple variables and constraints to create a framework, which leads into 

an iterative greedy process that takes into account flexibility of the jobs and the current 

loads of the cells.  

 First, all jobs must be assigned to one and only one cell, using a greedy approach. 

This allows the scheduling of the jobs to occur at a much faster rate. The model does not 

need to be concerned with assigning and scheduling all jobs simultaneously. Instead the 

model can focus on scheduling the jobs within the assigned cells, and when necessary 

move a job to a different cell. When dealing with so many jobs, the assignment process 

must be completed over two stages. The first stage consists of relaxing integrality for 

both the assignment variable and the schedule variable. If the assignment variable for a 

particular job assigns the job to only one cell, the assignment variable is converted to a 

constraint within the model. Now, the assignment variable is returned to its original 

integer form and the model is run again, allowing multiple cell assignments via the “one 

cell only” constraint. Multiple cell assignments are allowed to speed up the solving 

process. Every job will now be distinctly assigned to only one cell. Yet again, each 

assignment variable is converted into a constraint. By relaxing the “one cell only” 

constraint, as shown in 3.2, a job will have the ability to move out of its assigned cell if it 

is absolutely necessary.  

                                

1ji
i

X j≥ ∀∑ (3.2) 

 

Up until this point, not much is different from the previous heuristic strategies. 

This is a great method to assign jobs to cells because jobs are optimally assigned to the 
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lowest cost cells. However, the model finds itself in a familiar situation, as scheduling the 

jobs within the cells is a whole other matter. There are 750 cell-days that must be 

scheduled within a problem containing 15 cells and 50 time periods. Once jobs begin to 

be scheduled, jobs will undoubtedly have to move to different cells to meet all the 

constraints. It is impossible for the mathematical model to handle so many schedule 

variables all at once. The previous heuristic strategies attempt to tackle this issue, but 

sometimes wind up with an infeasible solution. The “one job at a time” constraint, 

significantly contributes to the model being unable to schedule all the jobs in a timely 

manner. If each time within each cell, could handle multiple jobs the problem could be 

solved in a fraction of the time. It is imperative to find a method that iteratively relaxes 

this constraint to schedule jobs within cells without locking up critical time windows 

potentially needed by less flexible jobs.  

 In comes a new input parameter called for by the ultimate heuristic, known as 

normalized flexibility, as shown in 3.3. It is used to firmly schedule inflexible jobs prior 

to the most flexible jobs. Flexibility, shown in 3.4, is calculated based upon a job’s 

completion time, early start date, due date, and number of respective feasible cells. 

Flexibility is entered into the model using a normalized scale. The normalized flexibility 

function is shown in 3.5. The greatest flexibility of any job within the problem is used as 

the divisor for normalizing all the flexibilities. Therefore, the normalized flexibility will 

be on the scale from 0-1. Normalization provides simplicity within the problem and 

offers consistency amongst all job scheduling problems. The flexibility calculations can 

take place automatically before the model is run. The normalized flexibility function 

along with Table 3.6 shows the flexibility and normalization calculation process.  
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jn =  normalized flexibility of job j        (3.3) 

 

flexibility = ( 1)*#DueDate EarlyStart FeasibleCells
CompletionTime

− +
           (3.4) 

 

jn = ( 1)*#
*

DueDate EarlyStart FeasibleCells
CompletionTime MaxFlexibility

− +
            (3.5)                 

 

Comp. Time Due Date Early Start Cell 1 Cell 2 Cell 3 # Feasible Flexibility Normalized
Job 1 1 5 1 1 1 x 2 10.0 1.00
Job 2 2 3 1 1 1 x 2 3.0 0.30
Job 3 3 4 2 x 1 1 2 2.0 0.20
Job 4 3 5 1 1 x 1 2 3.3 0.33
Job 5 3 4 1 1 1 1 3 4.0 0.40

FEASIBILITY

*x denotes infeasible job-cell relationship 

Table 3.6: Input Parameters with Normalized Flexibility 

 

 The table shows that Job 3 is the least flexible job, followed by Job2 and Job 4. 

Job 1 is the most flexible job as it takes only one time period to complete, while it has a 

large feasible time window for production and is feasible in two different cells. For the 

purpose of the ultimate heuristic, any job with a normalized flexibility of greater than 

0.25 and a completion time equal to 1, will be known as a “flexible” job and will be 

scheduled after all other jobs have already been permanently scheduled. This is done by 

changing the “scheduled time equals completion time” constraint as shown in Equation 

3.6. Jobs with a high flexibility have several options of where they can be scheduled. 

Likely, they can be scheduled anywhere across several different time periods and several 

different cells. 
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0.25 1j jif n and ct> =

jct jc
c t

Y ct j= ∀∑∑ otherwise

0jct
c t

Y j= ∀∑∑{              (3.6) 
Conveniently enough, it just so happens that the two most inflexible jobs (Job 2, 

Job3) within this set of data will be initially assigned to the same cell (Cell 2), as shown 

previously in Table 3.3, but both jobs are unable to be scheduled within the cell. As the 

example discovered, Cell 2 also has the greatest cell load after the assignment phase of all 

the cells, making it an obvious candidate for a scheduling conflict. Up until now, cell load 

has not been a factor examined while scheduling jobs. To put an end to this, the ultimate 

heuristic calls for a new decision variable, known as cell load, which will be introduced 

to the mathematical model after the assignment phase is complete. The cell load of a cell 

is calculated as the completion time of all the jobs currently assigned to the cell. To 

combat the issue of having to schedule so many cell-days at once, only one cell will be 

scheduled at a time within each stage of the ultimate heuristic. The cell load will provide 

the order of cells to be scheduled. The cell with the greatest load is scheduled first and so 

on. Leveraging cell load will allow over-assigned cells to export jobs to cells that can 

accommodate the jobs before time windows become locked up. The cell load is updated 

continuously with the completion of each stage. “Flexible” jobs with a normalized 

flexibility greater than 0.25 and a completion time equal to 1 are not included in the cell 

load because they are scheduled after all other jobs.  
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The ability to schedule only one cell per stage is created by splitting up the “one 

job at a time” constraint over the number of cells in the problem. For the cell to be 

scheduled next, as well as for all cells that have already been scheduled, the constraint 

allows only one job to be scheduled at a time. The remaining cells allow for as many jobs 

as possible to be scheduled at once. During any stage, the maximum number of cell-days 

truly being scheduled is equivalent to the number of time periods. This in itself is a 

tremendous simplification to the problem and should allow for a rapid optimal solution 

for each stage. Figure 3.4 shows the scheduling process according to the cell loads. 

 

Summary:     Constraints:

# Jobs = 5     1) tY
j

tj ∀≤∑ 5,1,
# Cells = 3 

Cell Loads:     2) tY
j

tj ∀≤∑
Cell Load [Cell 1] = 3 

Cell Load [Cell 2] = 5    3) 

Cell Load [Cell 3] = 3 

 

1,2,

tY
j

tj ∀≤∑ 5,3,

 Figure 3.4: Scheduling Cell by Cell According to Cell Load  

 

 After all the jobs have been assigned and the “flexible” jobs have been removed 

from being scheduled, the cell loads are calculated and are shown above. Since Cell 2 has 

the greatest cell load, it will be scheduled first. Therefore, within Cell 2, only one job can 

be scheduled at a time, as restricted by the second constraint. However, within Cell 1 and 

Cell 3, the constraint allows the maximum number of jobs (5) to be scheduled at any 

particular time. The model runs and the jobs appropriately scheduled within Cell 2 are 
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permanently scheduled. The jobs that are not correctly scheduled are reassigned to the 

next best cell and the process continues with the cell with the next greatest load.  

 Figure 3.5 shows the flow diagram for the ultimate heuristic. The ultimate 

heuristic uses a greedy multi-phase iterative process to first assign jobs to particular cells 

and then to schedule the jobs within the assigned cells. The heuristic relaxes several 

variables and constraints along the way, while taking into account the flexibility of the 

different jobs and the current load of the different cells. 
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Run 
Model

Stage 1:
Assign most jobs to only one cell

1. Relax integrality on assignment 
variable.
2. Relax integrality on schedule variable.

Stage 2:
Assign remaining jobs

to only one cell

1. If job is assigned to only one cell, 
transform job-to-cell assignment 
variable into constraints.
2. Change assignment variable back to 
integer form.

Are all 
assignments 

integer?

Stage 4...n:
Schedule remaining cell 
with greatest cell load 

1. For cell to be scheduled and all 
previously scheduled cells, allow only 
one job to be scheduled at one time.
2. For all remaining cells, allow the 
maximum number of jobs to be 
scheduled at one time.

Heuristic 
Feasible 
Solution

Stage 3:
Calculate cell loads

1. Add all job-to-cell assignment variables 
to the model as constraints. 
2. Change constraint to not schedule 
“flexible” jobs.
3. Add cell load variable and constraint to 
the model.

NO

Run 
Model

Run 
Model

Run 
Model

Run 
Model

1. Transform all 
schedule variables 
for current cell into 
constraints and add 
to the model.

≤ 20% cells 
not 

scheduled?

YES

NO

1. If a job is assigned to two cells, one of 
which has already been scheduled, 
disallow assignment to the current cell 
only.
2. If a job is assigned to multiple cells, 
change the assignment variable to the 
lowest value new cell that has not been 
scheduled yet and disallow assignment 
to the current cell.
3. With the exception of the job(s) 
assigned to multiple cells, transform all 
schedule variables for current cell into 
constraints and add to the model.

Any newly 
assigned 

cells already 
scheduled?

Stage n+1:
Schedule remaining cells

and “flexible” jobs

1. For all cells, allow only one job to be 
scheduled at one time
2. Change constraint to schedule “flexible” 
jobs.
3. Eliminate all assignment variables added 
from stage 1 and stage 2.
4. Change assignment variable back to 
integer form.

NO

Stage 0:
Adjust mathematical model to 

accommodate heuristic

1. Compute normalized flexibility input 
parameter.
2. Split up “one job at a time” constraint 
for each cell.
3. Adjust “schedule time equals 
completion time” constraint to 
accommodate “flexible” jobs

YES

YES

1. Relax integrality on 
assignment variable.
2. Change schedule variable 
back to integer form.
3. Change constraint to allow 
for multiple cell assignments.

Figure 3.5: Ultimate Heuristic 

 

Several of the techniques present within this heuristic have already been partially 

explained. To best describe the heuristic in its entirety and to illustrate the dynamics of 

the whole procedure, the same simple problem will be used, but the heuristic will be 

applied. Table 3.7 shows the input parameters for the problem.  
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Comp. Time Due Date Early Start Cell 1 Cell2 Cell3 Cell 1 Cell 2 Cell 3 # Feasible Flexibility Normalized
Job 1 1 5 1 2 4 x 1 1 x 2 10.0 1.00
Job 2 2 3 1 2 1 x 1 1 x 2 3.0 0.30
Job 3 3 4 2 x 1 4 x 1 1 2 2.0 0.20
Job 4 3 5 1 2 x 5 1 x 1 2 3.3 0.33
Job 5 3 4 1 3 5 1 1 1 1 3 4.0 0.40

FEASIBILITYCOST

*x denotes infeasible job-cell relationship 

Table 3.7: Input Parameters with Normalized Flexibility 

 

The following is the state of the OPL model and the OPL data after stage 0 is 

complete. The grayed contents are additions or changes made to the baseline 

mathematical model to accommodate the heuristic. A double backslash (//) denotes a 

comment within the programming code and therefore the entire following line is not 

actually used in the model.  

 

OPL Model: 

Notation: 

int nbCell = ...; 
range Cell 1..nbCell; 
 
int nbTime = ...; 
range Time 1..nbTime; 
 
int nbJob = ...; 
range Job 1..nbJob; 
 
Input Parameters: 
 
float+ feasible[Job,Cell]=...; 
float+ completionTime[Job]=...; 
float+ earlyStart[Job]=...; 
float+ dueDate[Job]=...; 
float+ cost[Job,Cell]=...; 
float+ flexibility[Job]=...; 
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Decision Variables: 
 
var int+ assignment[Job,Cell] in 0..1; 
var int+ schedule[Job,Cell,Time] in 0..1; 
var float+ start[Job] in 1..nbTime; 
var float+ finish[Job] in 1..nbTime; 
//var float+ cellLoad[Cell] in 1..nbTime; 
 
Objective Function: 
 
minimize 
  
 sum(j in Job, c in Cell)   
 
   (assignment[j,c] * cost[j,c] * completionTime[j]) 
 
Constraints: 
 
subject to { 
 
//one cell only               
   forall (j in Job) 
      sum (c in Cell) 
         assignment[j,c] = 1;  
 
//cell feasibility 
   forall (j in Job & c in Cell) 
         assignment[j,c]<=feasible[j,c]; 
 
//schedule only if assigned 
   forall (j in Job, c in Cell) 
      sum (t in Time) 
         schedule[j,c,t] <= nbTime * assignment[j,c]; 
 
//one job at a time 
   forall (t in Time) 
      sum (j in Job) 
         schedule[j,1,t] <= 1; 
          
   forall (t in Time) 
      sum (j in Job) 
         schedule[j,2,t] <= 1; 
          
   forall (t in Time) 
      sum (j in Job) 
         schedule[j,3,t] <= 1; 
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//scheduled time equals completion time 
   forall (j in Job) 
      if flexibility[j] > 0.25 & completionTime[j] = 1 then 
         sum (c in Cell, t in Time) 
            schedule[j,c,t]=completionTime[j] 
//          schedule[j,c,t]=0 
      else  
         sum (c in Cell, t in Time) 
            schedule[j,c,t]=completionTime[j] 
      endif;   
 
//starting time 
   forall (j in Job & c in Cell & t in Time) 
         t*schedule[j,c,t]+nbTime*(1-schedule[j,c,t]) >= start[j]; 
 
//finish time    
   forall (j in Job & c in Cell & t in Time) 
         finish[j]>=t*schedule[j,c,t]; 
 
//early start 
   forall (j in Job) 
         start[j]>=earlyStart[j]; 
 
//due date 
   forall (j in Job) 
         finish[j]<=dueDate[j]; 
 
//sequential       
   forall (j in Job) 
         finish[j]-start[j]=completionTime[j]-1; 
          
//cell load 
// forall (c in Cell) 
//      sum (j in Job, t in Time) 
//         schedule[j,c,t]=cellLoad[c]; 
 
}; 
 
OPL Data File: 
 
nbCell = 3; 
nbTime = 5; 
nbJob = 5; 
 
feasible = [[1,1,0],[1,1,0],[0,1,1],[1,0,1],[1,1,1]]; 
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completionTime = [1,2,3,3,3]; 
earlyStart = [1,1,2,1,1]; 
dueDate = [5,3,4,5,4]; 
cost = [[2,4,0],[2,1,0],[0,1,4],[2,0,5],[1,5,1]]; 
flexibililty = [1.00,0.30,0.20,0.33,0.40]; 
 
 
 During stage 0, the flexibility input parameter is added to the model and the 

normalized flexibility values for each job are added into the data file. The cell load 

variable and constraint is present in the model, but are commented out until stage 3, when 

they are needed. The same can be said for the constraint that does not schedule “flexible” 

jobs. Finally, as a whole, the “one job at a time” constraint is unchanged. However, it has 

been split up over the three cells for ease of use starting at stage 4.  

 
Modified Variables for Stage 1: 
 
var float+ assignment[Job,Cell] in 0..1; 
var float+ schedule[Job,Cell,Time] in 0..1; 
 

 In stage 1, both the integrality on the assignment variable and the schedule 

variable is relaxed, in an attempt to assign as many jobs as possible in a short 

computation time. The model is run and the assignment variable results are shown below.  

 
Variable Results from Stage 1: (assigning initial jobs) 
 
assignment[1,1] = 1.0000 
assignment[2,2] = 1.0000 
assignment[3,2] = 1.0000 
assignment[4,1] = 1.0000 
assignment[5,1] = 0.6000 
assignment[5,3] = 0.4000 
 
New Constraints for Stage 2: 
 
assignment[1,1] = 1; 
assignment[2,2] = 1; 
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assignment[3,2] = 1; 
assignment[4,1] = 1; 
 
Modified Variables for Stage 2: 
 
var int+ assignment[Job,Cell] in 0..1; 
 
 

In stage 2, each assignment variable that is integer is converted to a constraint and 

added to the model. Job 5 is the only job from stage 1 not to be assigned solely to one 

cell. Therefore, assignment constraints will be added to the model for Jobs 1-4, as shown 

above, and the assignment variable is changed back to integer form before the model is 

run again. 

 
Variable Results from Stage 2: (assigning remaining jobs) 
 
assignment[1,1] = 1 
assignment[2,2] = 1 
assignment[3,2] = 1 
assignment[4,1] = 1 
assignment[5,3] = 1 
 
New Constraints for Stage 3: 
 
assignment[5,3] = 1; 
 
forall (c in Cell) 
   sum (j in Job, t in Time) 
      schedule[j,c,t]=cellLoad[c]; 
 
Modified Constraints for Stage 3: 
 
forall (j in Job) 
   if flexibility[j] > .25 & completionTime[j] = 1 then 
      sum (c in Cell, t in Time) 
//       schedule[j,c,t]=completionTime[j] 
         schedule[j,c,t]=0 
   else  
      sum (c in Cell, t in Time) 
         schedule[j,c,t]=completionTime[j] 
   endif;    
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New Variables for Stage 3: 
 
var float+ cellLoad[Cell] in 1..nbTime; 
 
 
 Heading into stage 3, all jobs have been distinctly assigned to one cell, with Job 5 

being constrained to Cell 3. The goal of stage 3 is to determine cell loads for each cell in 

order to provide the cell scheduling order. Therefore, the cell load variable and constraint 

are added to the model. This is its own stage for two main reasons. First, it takes 

significantly longer to determine the cell load when all jobs are not already assigned to 

one cell only. Secondly, the jobs that are “flexible” (flexibility > 0.25 and completion 

time = 1), can be removed from the cell load, by the slight modification to the constraint 

just shown. The commented line is removed and the line directly below is added to the 

model. “Flexible” jobs are still assigned to a cell to provide time gaps that offer added 

elasticity to the jobs that are scheduled first. The model is ready to be run again. 

 
Variable Results from Stage 3: (calculating cell loads) 
 
cellLoad[1] = 3.0000 
cellLoad[2] = 5.0000 
cellLoad[3] = 3.0000 
 
 
 
Modified Constraints for Stage 4: 
 
forall (t in Time) 
      sum (j in Job) 
         schedule[j,1,t] <= nbJob; 
          
forall (t in Time) 
      sum (j in Job) 
         schedule[j,2,t] <= 1; 
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forall (t in Time) 
      sum (j in Job) 
         schedule[j,3,t] <= nbJob; 
 
forall (j in Job) 
      sum (c in Cell) 
         assignment[j,c] >= 1;  
 
Modified Variables for Stage 4: 
 
var float+ assignment[Job,Cell] in 0..1; 
var int+ schedule[Job,Cell,Time] in 0..1; 
 
 
 Before any cells can be scheduled, the schedule variable is changed back to 

integer form, while the assignment variable is once again relaxed to a continuous 

variable, in order to easier allow jobs to move to different cells if necessary. In doing so, 

the “one cell only” constraint is also relaxed. Currently, Cell 2 has the greatest load and 

thereby will be scheduled first. If during any stage the greatest cell load for an 

unscheduled cell is equivalent for two different cells, arbitrarily choose a cell to schedule 

next. The constraints are changed to allow only one job at a time to be scheduled in Cell 

2. However, the maximum number of jobs can be scheduled at any time within Cell 1 and 

Cell 3. The modified constraints just shown permit this to happen. 

 
Variable Results from Stage 4: (scheduling Cell 2) 
 
cellLoad[1] = 4.0000 
cellLoad[2] = 4.0000 
cellLoad[3] = 3.0000 
 
assignment[1,1] = 1.0000 
assignment[2,1] = 0.2000 
assignment[2,2] = 1.0000 
assignment[3,2] = 1.0000 
assignment[4,1] = 1.0000 
assignment[5,3] = 1.0000 
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schedule[2,1,2] = 1 
 
schedule[4,1,1] = 1 
schedule[4,1,2] = 1 
schedule[4,1,3] = 1 
 
schedule[2,2,1] = 1 
 
schedule[3,2,2] = 1 
schedule[3,2,3] = 1 
schedule[3,2,4] = 1 
 
schedule[5,3,1] = 1 
schedule[5,3,2] = 1 
schedule[5,3,3] = 1 
 
 
New Constraints for Stage 5: 
 
assignment[2,1] = 1; 
 
schedule[3,2,2] = 1; 
schedule[3,2,3] = 1; 
schedule[3,2,4] = 1; 
 
Modified Constraints for Stage 5: 
 
assignment[2,2] = 0; 
 
forall (t in Time) 
      sum (j in Job) 
         schedule[j,1,t] <= 1; 
  

The grayed variables from stage 4 show that Job 2 gets assigned to two different 

cells and thus winds up getting scheduled across the two cells. Consequently, the 

assignment variable constraint is changed to assign Job 2 to Cell 1, the next best cell 

option cost-wise. If a job is assigned to multiple other un-scheduled cells with an 

equivalent variable value, constrain the job to the cell with the smallest cell load. Another 

assignment variable constraint is added to disallow Job 2 to be assigned to Cell 2 again. If 
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Cell 1 had already been scheduled, simply disallow scheduling to Cell 2, without forcing 

the job to Cell 1. This occurs because it is likely that Cell 1, since it had already been 

scheduled, will not have room for another job. To avoid changing the assignment again 

after the next stage, this modified action is taken. The remaining jobs scheduled in Cell 2, 

not assigned to multiple cells, now become permanently scheduled through use of the 

schedule variable constraints. Notice that Job 1 was not scheduled anywhere because it is 

a “flexible” job. Since Cell 1 has the greatest cell load of the jobs not yet scheduled, it 

will be scheduled next and so the “one job at a time” constraint is applied for Cell 1. The 

current state of the schedule, after Stage 4 and before Stage 5, is shown in Table 3.8. 

 

1 2 3 4 5
Cell 1
Cell 2 Job3 Job3 Job3
Cell 3

TIME

 

Table 3.8: State of Schedule after Stage 4 

 
Variable Results from Stage 5: (scheduling Cell 1) 
 
cellLoad[1] = 5.0000 
cellLoad[2] = 3.0000 
cellLoad[3] = 3.0000 
 
assignment[1,1] = 1.0000 
assignment[2,1] = 1.0000 
assignment[3,2] = 1.0000 
assignment[4,1] = 1.0000 
assignment[5,3] = 1.0000 
 
schedule[2,1,1] = 1 
schedule[2,1,2] = 1 
 
schedule[4,1,3] = 1 
schedule[4,1,4] = 1 
schedule[4,1,5] = 1 
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schedule[3,2,2] = 1 
schedule[3,2,3] = 1 
schedule[3,2,4] = 1 
 
schedule[5,3,1] = 1 
schedule[5,3,2] = 1 
schedule[5,3,3] = 1 
 
New Constraints for Stage 6: 
 
schedule[2,1,1] = 1; 
schedule[2,1,2] = 1; 
schedule[4,1,3] = 1; 
schedule[4,1,4] = 1; 
schedule[4,1,5] = 1; 
 
Modified Constraints for Stage 6: 
 
forall (t in Time) 
      sum (j in Job) 
         schedule[j,1,t] <= 1; 
 
 

All jobs were assigned to only one cell. Therefore, all schedule variables for jobs 

scheduled in Cell 1 are transformed into constraints and add to the model for the next 

stage. Job 2, which could not be scheduled entirely within Cell 2, was able to be 

scheduled appropriately within Cell1. Cell 3 is the last cell remaining to be scheduled and 

thus will be scheduled next. The “one job at a time” constraint is applied for Cell 3. In 

problems of larger size with more cells, it is not necessary to iteratively schedule the last 

20% of the cells. Skip ahead to the final step in this case. The current state of the 

schedule, after Stage 5 and before Stage 6, is shown in Table 3.9. 
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1 2 3 4 5
Cell 1 Job2 Job2 Job4 Job4 Job4
Cell 2 Job3 Job3 Job3
Cell 3

TIME

 

Table 3.9: State of Schedule after Stage 5 

 
Variable Results for Stage 6: (scheduling Cell 3)  
 
cellLoad[1] = 5.0000 
cellLoad[2] = 3.0000 
cellLoad[3] = 3.0000 
 
assignment[1,1] = 1.0000 
assignment[2,1] = 1.0000 
assignment[3,2] = 1.0000 
assignment[4,1] = 1.0000 
assignment[5,3] = 1.0000 
 
schedule[2,1,1] = 1 
schedule[2,1,2] = 1 
 
schedule[4,1,3] = 1 
schedule[4,1,4] = 1 
schedule[4,1,5] = 1 
 
schedule[3,2,2] = 1 
schedule[3,2,3] = 1 
schedule[3,2,4] = 1 
 
schedule[5,3,1] = 1 
schedule[5,3,2] = 1 
schedule[5,3,3] = 1 
 
New Constraints for Stage 7: 
 
schedule[5,3,1] = 1; 
schedule[5,3,2] = 1; 
schedule[5,3,3] = 1; 
 
Modified Constraints for Stage 7: 
 
forall (j in Job) 
   if flexibility[j] > 0.25 & completionTime[j] = 1 then 
      sum (c in Cell, t in Time) 
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         schedule[j,c,t]=completionTime[j] 
//       schedule[j,c,t]=0 
   else  
      sum (c in Cell, t in Time) 
         schedule[j,c,t]=completionTime[j] 
   endif; 
 
//   assignment[1,1] = 1; 
//   assignment[2,2] = 0; 
//   assignment[2,1] = 1; 
//   assignment[3,2] = 1; 
//   assignment[4,1] = 1; 
//   assignment[5,3] = 1; 
 
Modified Variables for Stage 7: 
 
var int+ assignment[Job,Cell] in 0..1; 
 
 
 Once again all the jobs are assigned to only one cell and so the job(s) scheduled in 

Cell 3 now become permanently scheduled through use of the schedule variable 

constraints. Cell 3 was the last cell to be scheduled, which means the heuristic moves to 

the final phase of scheduling the “flexible” jobs and any remaining jobs not yet 

scheduled. Therefore, the constraint is changed back to ensure that all jobs are scheduled. 

All of the assignment variable constraints are eliminated for two reasons. First, all of the 

inflexible jobs have already been scheduled and secondly, some “flexible” jobs will 

likely have to move to a different cell to find a feasible time window. Finally, the 

assignment variable is changed back to integer form. The model is run for the last time. 

The current state of the schedule, after Stage 6 and before Stage 7, is shown in Table 

3.10. 
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1 2 3 4 5
Cell 1 Job2 Job2 Job4 Job4 Job4
Cell 2 Job3 Job3 Job3
Cell 3 Job5 Job5 Job5

TIME

 

Table 3.10: State of Schedule after Stage 6 

 
Variable Results for Stage 7: (scheduling remaining jobs and “flexible” jobs)  
 
cellLoad[1] = 5.0000 
cellLoad[2] = 4.0000 
cellLoad[3] = 3.0000 
 
assignment[1,2] = 1 
assignment[2,1] = 1 
assignment[3,2] = 1 
assignment[4,1] = 1 
assignment[5,3] = 1 
 
schedule[2,1,1] = 1 
schedule[2,1,2] = 1 
 
schedule[4,1,3] = 1 
schedule[4,1,4] = 1 
schedule[4,1,5] = 1 
 
schedule[1,2,1] = 1 
 
schedule[3,2,2] = 1 
schedule[3,2,3] = 1 
schedule[3,2,4] = 1 
 
 
 A feasible solution is achieved through the use of the heuristic. Due to the 

simplicity of the problem, it is clear that the solution is in fact optimal. The objective 

value is equivalent to 20. Table 3.11 shows how the jobs would be scheduled according 

to the heuristic. 
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1 2 3 4 5
Cell 1 Job2 Job2 Job4 Job4 Job4
Cell 2 Job1 Job3 Job3 Job3
Cell 3 Job5 Job5 Job5

TIME

 

Table 3.11: Heuristic Feasible Solution Schedule 

 

3.5.4 Summary 

 The ultimate heuristic takes advantage of several techniques to arrive at a near 

optimal solution in a practical amount of solving time. The separation of the assignment 

process and schedule process allows the overall schedule to be broken down into two 

logical phases. Once the jobs are assigned to cells, the iterative scheduling phase is able 

to begin. Postponing the scheduling of “flexible” jobs and scheduling the greatest load 

cells first, limit the number of cell-days that must be scheduled at one time, while 

allowing ample space for the movement of jobs to different cells or time periods, before 

locking other jobs into specific positions. This vastly improves the feasibility chances of 

the final heuristic solution, especially on larger problems.  

To further improve the solving time of the problem using the heuristic, a time 

limit could be placed on each stage. At times, the solver gets stuck in one stage for an 

extended period of time with a very slight opportunity for improvement. A time limit 

would stop the solver and proceed with the best feasible solution. Likely, the overall 

solution will not be as good, but if timing is an important factor, this could be a direction 

to consider.  

To additionally aid to the efficiency of the heuristic, it is beneficial to assign 

different costs to each feasible cell for a particular job. For example, if it is equally cost 

effective to produce Job 1 in Cell 1 and Cell2, the cost input parameter would be the 
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same. However, what happens during the solving process is the solver cannot decide 

which cell to assign/schedule the job in. Based on the way the heuristic is set up and the 

current stage, it will assign/schedule the job in both cells, delaying a solution and/or 

increasing the likelihood of infeasibility. Therefore, it is recommended to provide a trivial 

difference between the costs for each feasible cell for a particular job.  

 For small problems, the ultimate heuristic is likely not the best bet for aiding in 

the solving process. Due to the fact that there are several jobs with only one or two 

feasible cells, the ability to move jobs is already limited. When jobs are being cemented 

into place before others, infeasibility can creep into the problem before the iterative 

scheduling process finishes. Therefore, for problems of less magnitude, as examined in 

the small problem section, heuristic strategy #1 is likely the better direction to head in 

because no jobs are prematurely locked into a specific position. It will take longer to 

solve the problem, but feasibility will not likely be an issue.  

 
 
 

 

 

 

 

 

 

 

69  



4 Results and Analysis  

4.1 Small Problem Testing 

 Of the 30 small problems that were tested, only 16 problems could be solved 

optimally within an hour. One hour was used as the measuring point for the sensible 

purpose that a job schedule must be realized within a practical timeframe to be of 

usefulness. An additional eight problems were able to render a feasible solution within 

the one-hour window. The remaining problems went unsolved and thus the bound will be 

used as the baseline value. The bound is not the optimal solution, but instead it is the best 

possible solution. No solution can be better than the bound. Nevertheless, it is very likely 

that the bound and the true optimal solution differ by some immeasurable amount. Each 

of the 30 problems was also solved using the ultimate heuristic methods. Table 4.1 shows 

the solution results for this set of problems. 

For the first test, the heuristic solution is compared to the best possible solution. 

In this case, it is either the optimal solution or the bound. If a problem has an optimal 

solution, it is used. Otherwise, the bound is used. Each of the 30 problems is used within 

this test. A one sample t-test is used to provide the analysis instead of a paired t-test, due 

to the fact that the heuristic solution is impacted by the true value of the optimal solution. 

For example, Problem A has an optimal solution of 100 and a heuristic solution of 105, 

while Problem B has an optimal solution of 200 and a heuristic solution of 205. Both 

heuristic solutions differ from their respective optimal solutions by 5, but problem B 

actually has the better heuristic solution because the deviation is less from a percentage 

standpoint. Problem A deviates by 5%, while problem B only deviates by 2.5%. 
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Therefore the test value will be as shown in 4.1. The results of the one-sample t-test are 

shown in Figure 4.1 along with the boxplot in Figure 4.2. 

 

Trial Cells
Time 

Periods Jobs
Optimal 
Solution

Feasible 
Solution Bound

Best 
Possible 
Solution

Heuristic 
Solution

1 5 40 57 363 358 358 360
2 5 40 57 442 442 442
3 5 20 29 200 200 202
4 5 20 29 243 243 243
5 5 30 43 259 259 263
6 5 30 43 315 315 317
7 5 20 29 243 243 245
8 10 20 57 271 271 275
9 5 40 57 482 470 470 473

10 5 40 57 404 404 412
11 5 30 43 261 261 264
12 5 30 43 249 249 249
13 5 40 57 416 416 422
14 5 20 29 224 220 220 222
15 5 40 57 390 390 391
16 10 20 57 392 378 378 385
17 5 20 29 196 196 202
18 5 30 43 272 272 280
19 10 20 57 328 316 316 321
20 5 30 43 279 279 279
21 5 20 29 229 227 227 229
22 5 20 29 238 236 236 257
23 5 30 43 425 424 424 425
24 10 20 57 299 299 315
25 10 20 57 311 311 321
26 5 20 29 272 272 272
27 5 20 29 207 207 214
28 5 40 57 382 382 385
29 5 30 43 263 263 264
30 5 30 43 338 338 343  

Table 4.1: Small Problem Solution Results 

 

  

Heuristic Solution – Best Possible Solution      (4.1) 
         Best Possible Solution 
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One-Sample T-Test: Deviation from Best Possible Solution 
 
Test of µ = 0 vs not = 0 
 
 
Variable               N      Mean     StDev   SE Mean     T P 
Deviation from Best   30  0.015485  0.018658  0.003406  4.55   0.000 
 
95% Confidence Interval 
(0.008518, 0.022452)  
 
 
 
   

Figure 4.1: One-Sample T-Test for Deviation from Best Possible Solution 
 
 

 

Deviation from Best Possible Solution
0.090.080.070.060.050.040.030.020.010.00

_
X

Ho

Small Problem Boxplot of Deviation from Best Possible Solution
(with Ho and 95% t-confidence interval for the mean)

 
 

Figure 4.2: Small Problem Boxplot of Deviation from Best Possible Solution 
 
     
 

 For the second test, only the problems that had an optimal solution were analyzed. 

The heuristic solution is compared to the optimal solution. The test value for the 16 

problems is as shown in 4.2. The results of the one-sample t-test are displayed in Figure 

4.3. 
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Heuristic Solution – Optimal Solution    (4.2) 
                Optimal Solution 
 
 

 

  
One-Sample T-Test: Deviation from Optimal Solution 
 
Test of µ = 0 vs not = 0 
 
 
Variable                 N      Mean     StDev   SE Mean     T   P 
Deviation from Optimal  16  0.011559  0.011197  0.002799  4.13   0.001 
 
95% Confidence Interval 
(0.005592, 0.017525) 

 

Figure 4.3: One-Sample T-Test for Deviation from Optimal Solution 

 

 The final test for this set looks only at problems that found a real solution. 

Problems with an optimal solution or a feasible solution are used within the test. The 

heuristic solution is compared to the optimal solution or feasible solution for each 

problem. The test value is as shown in 4.3. The results of the one-sample t-test are 

displayed in Figure 4.4.  

 

Heuristic Solution – Real Solution     (4.3) 
        Real Solution 
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One-Sample T-Test: Deviation from Real Solution (Optimal or Feasible) 
 
Test of µ = 0 vs not = 0 
 
 
Variable              N      Mean     StDev   SE Mean     T       P 
Deviation from Real  24  0.007905  0.021020  0.004291  1.84   0.078 
 
95% Confidence Interval 
(-0.000971, 0.016781) 

 

Figure 4.4: One-Sample T-Test for Deviation from Real Solution 

 

 Based upon the first test, there is a significant deviation between the heuristic 

solution and the best possible solution. However, as the 95% confidence interval shows, 

the deviation is not great. On average, the deviation is only 1.5%, with a 95% confidence 

upper limit of 2.2%. The boxplot in Figure 4.2 shows that the majority of the problems 

deviate by less than 2%, while a few problems with greater deviations are slightly 

skewing the results. As the problems without an optimal solution are faded out, the 

numbers improve. The second test shows that when an optimal solution was found, there 

is still a slight deviation from the optimal solution with the heuristic solution. Again, 

however, the difference is minimal, with an approximate mean of 1.1%. In the third test 

as problems with feasible solutions are added, the deviation decreases once again. In fact, 

more often than not, the heuristic solution is lower than the feasible solution. When the 

best real solution is compared to the heuristic solution, with 95% confidence, there is not 

a significant deviation between the heuristic solution and the real solution.  

 Though the heuristic solution may be slightly greater than the optimal solution, 

the solving time that it takes to achieve the heuristic solution is substantially less than the 

respective time for the optimal solution. Table 4.2 shows the computation time for each 
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heuristic solution, as well as the computation time for the optimal solutions, where 

applicable.  

 

Trial
Optimal Solution 

Solving Time (sec)
Heuristic Solution 

Solving Time (sec)
1 9
2 248 12
3 50 2
4 7 2
5 695 12
6 21 8
7 13 1
8 63 7
9 1

10 21
11 111 6
12 7
13 1591 11
14 2
15 110 49
16 14
17 94 2
18 59 7
19 12
20 1473 6
21 2
22 2
23 26
24 14
25 11
26 79 2
27 18 1
28 798 8
29 14
30 10

6

 

Table 4.2: Small Problem Solving Time Results 

 

 The following paired t-test in Figure 4.5 shows the significance of the difference 

in solving time for the heuristic solution in comparison with the solving time for the 

optimal solution. The 95% confidence interval shows that the true mean difference in 
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solving time is anywhere between approximately one minute and 10 minutes. Keep in 

mind, that the results are based upon small problems. As the problems get larger, the 

difference in solving time will becomes very difficult to measure, because the time to 

solve optimally is so long.  

 

Paired T-Test and Confidence Interval:  

Optimal Solution Solving Time vs. Heuristic Solution Solving Time 
 
Paired T for Optimal Solution Solving Time - Heuristic Solution Solving Time 
 
                   N     Mean    StDev  SE Mean 
Optimal Solution  16  339.375  522.173  130.543 
Heuristic Soluti  16    8.500   11.460    2.865 
Difference        16  330.875  521.602  130.401 
 
 
95% Confidence Interval for mean difference: (52.933, 608.817) 
T-Test of mean difference = 0 (vs not = 0): T-Value = 2.54  P-Value = 0.023 
 
 

Figure 4.5: Paired T-Test for Optimal Solving Time vs. Heuristic Solving Time 
 

4.2 Medium Problem Testing 

 Fifteen problems were analyzed in the medium size class. However, only two 

problems could even find a feasible solution, while none of the problems were able to 

achieve an optimal solution even after running overnight or for several hours. Therefore, 

from here on out, each heuristic solution will be compared against the respective bound 

for the problem, with the test value being as shown in 4.4. 

 

Heuristic Solution – Bound      (4.4) 
         Bound 
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Obviously, the deviation from the bound will be greater than or equal to the deviation 

from the true optimal. Since the optimal solution is extremely difficult to solve for, the 

bound will provide a conservative baseline to gauge the efficiency of the heuristic. The 

results of the medium problems are shown in Table 4.3. The results of the one-sample t-

test are displayed in Figure 4.6. 

 

Trial Cells
Time 

Periods Jobs
Feasible 
Solution Bound

Heuristic 
Solution

Heuristic Solving 
Time (sec)

1 5 50 71 502 508 62
2 5 50 71 503 516 51
3 15 20 85 309 312 24
4 15 20 85 307 325 84
5 15 20 85 258 263 32
6 15 20 85 307 308 36
7 10 30 85 426 426 50
8 10 30 85 560 561 53
9 5 50 71 459 469 75

10 10 30 85 473 473 38
11 15 20 85 298 308 45
12 5 50 71 567 573 33
13 10 30 85 444 442 442 37
14 10 30 85 396 405 51
15 5 50 71 500 498 502 27  

Table 4.3: Medium Problem Solution Results 

 

One-Sample T-Test: Deviation from Bound  
 
Test of µ = 0 vs not = 0 
 
 
Variable               N      Mean     StDev   SE Mean     T      P 
Deviation from Bound  15  0.015150  0.015998  0.004131  3.67  0.003 
 
95% Confidence Interval             
(0.006291, 0.024009) 
 

 
Figure 4.6: One-Sample T-Test for Deviation from Bound 
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 Once again the t-test shows that when using 95% confidence, there is a significant 

deviation of the heuristic solution from the bound. However, the deviation is obviously 

very minimal, with the mean hovering around 1.5%. The heuristic solution’s deviation 

from the true optimal solution is undoubtedly even lower. As Table 4.3 shows, the time to 

solve heuristically is less than two minutes for each trial. Combining the slight deviation 

with the minimal solving time, leads one to believe that the heuristic provides an efficient 

procedure to solve problems of this size. The boxplot in Figure 4.7 shows that one 

problem has a deviation of approximately 6%, but most of the remaining problems have a 

deviation of less than 3%.  
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Medium Problem Boxplot of Deviation from Bound
(with Ho and 95% t-confidence interval for the mean)

 
 

Figure 4.7: Medium Problem Boxplot of Deviation from Bound 
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4.3 Large Problem Testing 

 Large problems are past the solving breakpoint, making them impossible to even 

solve feasibly in any sort of reasonable timeframe. Thereby, once more the heuristic 

solutions will be compared against the bound for the respective problems. Table 4.4 

displays the test results for the large problems. The results of the one-sample t-test are 

shown in Figure 4.8. 

 

Trial Cells
Time 

Periods Jobs Bound
Heuristic 
Solution

Heuristic Solving 
Time (min:sec)

1 10 50 142 711 714 4:50
2 10 50 142 651 663 1:40
3 10 50 142 702 706 2:01
4 10 40 114 553 558 2:00
5 10 40 114 565 569 1:53
6 10 40 114 613 614 2:34
7 15 30 128 605 615 10:47
8 15 30 128 510 510 5:21
9 10 40 114 524 538 2:31

10 10 40 114 516 527 1:02
11 10 50 142 716 725 2:08
12 10 40 114 647 674 4:17
13 15 30 128 510 514 4:59
14 10 50 142 679 700 4:07
15 15 30 128 528 528 7:29  

Table 4.4: Large Problem Solution Results 

 

One-Sample T-Test: Deviation from Bound  
 
Test of µ = 0 vs not = 0 
 
 
Variable               N      Mean     StDev   SE Mean      T      P 
Deviation from Bound  15  0.013583  0.012295  0.003175   4.28  0.001 
               
95% Confidence Interval             
(0.006774, 0.020392) 

 
Figure 4.8: One-Sample T-Test: Deviation from Bound 
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 The t-test shows a significant deviation for the heuristic solution from the bound. 

Yet, the deviation is very slight, with a mean deviation of 1.4% and a 95% confidence 

upper limit mean of just over 2.0%. Taking into account the certainty that the heuristic 

solution deviation is less from the optimal solution, the heuristic provides a proficient 

method to arrive at a good feasible solution for large problems. The solving time using 

the heuristic is typically no more than 10 minutes. The boxplot in Figure 4.9 displays the 

spread of the deviation for all of the test problems.  
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Large Problem Boxplot of Deviation from Bound
(with Ho and 95% t-confidence interval for the mean)

 

Figure 4.9: Large Problem Boxplot of Deviation from Bound 

 

4.4 Extra Large Problem Testing 

 The extra large problems are the most difficult problem that were tested and will 

provide a good gauge as to how efficient the heuristic is for problems similar to real-life 
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applications and true industry scenarios. Yet again, extra large problems are a far cry 

from being solved optimally, so the bound is used as the comparison standard. Table 4.5 

displays the solution and timing results for the extra large problems. The results of the 

one-sample t-test are displayed in Figure 4.10. 

 

Trial Cells
Time 

Periods Jobs Bound
Heuristic 
Solution

Heuristic Solving 
Time (min:sec)

1 15 50 213 855 867 5:59
2 15 50 213 819 854 8:09
3 15 40 170 768 796 6:31
4 15 50 213 898 906 11:21
5 15 50 213 834 849 9:47
6 15 50 213 899 906 8:41
7 15 40 170 773 780 8:06
8 15 40 170 695 706 8:15
9 15 40 170 728 737 11:50

10 15 40 170 709 710 8:40  

Table 4.5: Extra Large Problem Solution Results 

 

One-Sample T-Test: Deviation from Bound 
 
Test of µ = 0 vs not = 0 
 
 
Variable               N      Mean     StDev   SE Mean     T      P 
Deviation from Bound  10  0.016659  0.013034  0.004122  4.04  0.003 
 
95% CI             
(0.007335, 0.025983)   

 
Figure 4.10: One-Sample T-Test for Deviation from Bound 

 

 Though the problems are getting much larger, the deviation from the bound does 

not seem to be rising at the same rate. Again, there is a statistical significant deviation, 

but it very minimal, averaging only 1.7% for the largest size problem set. The 95% 

confidence upper limit has the mean deviation at only 2.6%. The extra large problems are 
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consistently able to be solved with the aid of the heuristic in less than 12 minutes. The 

boxplot in Figure 4.11 illustrates the reliability of the heuristic in providing a good 

feasible solution.  
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Extra Large Problem Boxplot of Deviation from Bound
(with Ho and 95% t-confidence interval for the mean)

 

Figure 4.11: Extra Large Problem Boxplot of Deviation from Bound 

 

4.5 Overall Problem Testing 

 Since the mean deviation does not change much between the size of problems, all 

of the data can be combined together to provide a more powerful test. The following t-

test uses all 70 data points from each of the different problem size classes. For the small 

problems, in which an optimal solution was found, the optimal solution is used as the 

comparison standard. For all other problems, the bound is using as the measuring point. 
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Therefore, the formula for the test value will be the same as 4.4. The results of the one-

sample t-test are displayed in Figure 4.12. 

 
 
 
One-Sample T-Test: Deviation from Best Possible  
 
Test of µ = 0 vs not = 0 
 
 
Variable              N      Mean     StDev   SE Mean     T      P 
Deviation from Best  70  0.015173  0.015874  0.001897  8.00  0.000 
 
95% Confidence Interval   
(0.011388, 0.018958)             

 

Figure 4.12: One Sample T-Test for Deviation from Best Possible Solution 

 

 As expected, the combined results do not differ greatly from the problem size 

separated results. The mean deviation for the heuristic solution from the best possible 

solution is approximately 1.5% and has a 95% confidence interval between 1.1% and 

1.9%.  
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5 Conclusions and Future Work 

 The ultimate heuristic created in this thesis offers a framework for substantial 

future work and the possibility of making the heuristic dynamic and even more efficient. 

The flexibility rating is an interesting concept that could be examined substantially more 

in depth. Questions arise such as, “What is the best way to determine the flexibility of a 

job?” and “At what breakpoint should a job be considered ‘flexible’?”. Postponing the 

scheduling of more or less “flexible” jobs could dramatically impact the efficiency and/or 

feasibility of the heuristic. The cell load is also another technique that could be pondered 

further. Is it best to always schedule the greatest load cell next or would another order 

provide better, more efficient results? Furthermore, there may be a better way to calculate 

the cell load. Currently, the cell load is equivalent to the time units to be scheduled in the 

cell. Perhaps the cell load should also take into account the specific jobs assigned to each 

cell and at what times, based on early start dates and due dates, each job could feasibly be 

scheduled. The cell with the greatest load is not always the most difficult to schedule.  

This thesis has investigated heuristic methods to aid in the solution process of 

cellular job scheduling problems. Several heuristic procedures were proposed to help 

provide a near optimal solution in acceptable computation time, concluding with an 

ultimate heuristic that can be applied to several different size problems. The ultimate 

heuristic applies several techniques to the mathematical model to improve the solving 

process, while not deviating far from the true optimal solution. Techniques such as 

relaxing integrality on variables and relaxing constraints at timely positions within the 

solving process were vital to the overall efficiency of the heuristic. Incorporating a new 

input parameter known as flexibility and also considering current cell load during the 
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iterative scheduling procedure was critical in maintaining feasibility throughout the 

solving process. Undoubtedly, as the results show, the ultimate heuristic provides a 

quality solution to a wide variety of difficult job scheduling problems within a tractable 

amount of solving time.  
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APPENDIX A: Optimization Programming Language Model 

 

Notation: 

int nbJob = ...; 
range Job 1..nbJob; 
 
int nbCell = ...; 
range Cell 1..nbCell; 
 
int nbTime = ...; 
range Time 1..nbTime; 
 
Input Parameters: 
 
float+ feasible[Job,Cell]=...; 
float+ completionTime[Job]=...; 
float+ earlyStart[Job]=...; 
float+ dueDate[Job]=...; 
float+ cost[Job,Cell]=...; 
 
Decision Variables: 
 
var int+ assignment[Job,Cell] in 0..1; 
var int+ schedule[Job,Cell,Time] in 0..1; 
var float+ start[Job] in 1..nbTime; 
var float+ finish[Job] in 1..nbTime; 
 
Objective Function: 
 
minimize 
   sum(j in Job, c in Cell) 
      (assignment[j,c] * cost[j,c] * completionTime[j]) 
 
Constraints: 
 
subject to { 
 
//one cell only    
   forall (j in Job) 
      sum (c in Cell)  
         assignment[j,c] = 1; 
    
 

91  



 
//cell feasibility    
   forall (j in Job, c in Cell) 
      assignment[j,c]<=feasible[j,c]; 
 
//schedule only if assigned    
   forall (j in Job, c in Cell) 
      sum (t in Time) 
         schedule[j,c,t] <= nbTime * assignment[j,c]; 
 
//one job at a time    
   forall (c in Cell, t in Time) 
      sum (j in Job) 
         schedule[j,c,t] <= 1; 
 
//schedule time = completion time    
   forall (j in Job) 
      sum (c in Cell, t in Time) 
         schedule[j,c,t]=completionTime[j];      
 
//starting time    
   forall (j in Job, c in Cell, t in Time) 
         t*schedule[j,c,t]+nbTime*(1-schedule[j,c,t]) >= start[j];  
 
//finishing time    
   forall (j in Job, c in Cell, t in Time) 
      finish[j]>=t*schedule[j,c,t]; 
 
//early start    
   forall (j in Job) 
      start[j]>=earlyStart[j]; 
 
//due date    
   forall (j in Job, t in Time) 
      sum (c in Cell) 
         t*schedule[j,c,t]<=dueDate[j]; 
 
//sequential    
   forall (j in Job) 
      finish[j]-start[j]=completionTime[j]-1; 
 
};   
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APPENDIX B: Glossary of OPL Terms 

 

Notation: 

Job – job notation; represented by (j) 

Cell – cell notation; represented by (c) 

Time – time notation; represented by (t) 

int –integer value 

nbJob – total number of jobs 

nbCell – total number of cells 

nbTime – total number of time periods 

range Job 1..nbJob – creates array of jobs from 1 to the total number of jobs 

range Cell 1..nbCell – creates array of cells from 1 to the total number of cells 

range Time 1..nbTime – creates array of time periods from 1 to the total number of time periods 

 

Input Parameters: 

float+ – continuous parameter value 

feasible[Job,Cell] – normalized feasibility parameter represented by job and cell 

completitionTime[Job] – completion time parameter represented by job 

earlyStart[Job] – early start date parameter represented by job 

dueDate[Job] – due date parameter represented by job 

cost[Job,Cell] – cost parameter represented by job and cell 
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Decision Variables:  

var int+ – integer variable value 

var float+ – float variable value 

assignment[Job,Cell] in 0..1 – forces the assignment variable to be in the range of 0-1 

schedule[Job,Cell,Time] in 0..1 – forces the schedule variable to be in the range of 0-1 

start [Job] in 1..nbTime – forces the start variable to be in the range of 1-max time 

finish[Job] in 1..nbTime – forces the finish variable to be in the range of 1-max time 

 

Objective Function: 

minimize – calls for minimization of the objective function 

sum (j in Job, c in Cell) – sum operation over all jobs and all cells 

 

Constraints: 

subject to {  } – calls for constraints of the problem 

forall (j in Job) – perform operation for all jobs 

forall (c in Cell) – perform operation for all cells 

forall (t in Time) – perform operation for all times 

sum (j in Job) – sum operation over all jobs 

sum (c in Cell) – sum operation over all cells 

sum (t in Time) – sum operation over all times 
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