








CHAPTER 8. EXPERIMENTS

(a) LI-PBM. (b) LTI-PBM. (c) HO-PBM.

(d) LI-APM. (e) LTI-APM. (f) HO-APM.

Figure 8.59: Cardiac deformation recovery. Human data. Case 2. Radial-circumferential
strains recovered with different physiological models at the end of systole (300 ms).

(a) LI-PBM. (b) LTI-PBM. (c) HO-PBM.

(d) LI-APM. (e) LTI-APM. (f) HO-APM.

Figure 8.60: Cardiac deformation recovery. Human data. Case 2. Longitudinal strains
recovered with different physiological models at the end of systole (300 ms).
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8.5. CARDIAC DEFORMATION RECOVERY WITH CARDIAC PHYSIOME MODEL

(a) LI-PBM. (b) LTI-PBM. (c) HO-PBM.

(d) LI-APM. (e) LTI-APM. (f) HO-APM.

Figure 8.61: Cardiac deformation recovery. Human data. Case 2. First principal strains
recovered with different physiological models at the end of systole (300 ms).
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Table 8.8: Cardiac deformation recovery. Human data. Case 2. Segment numbers at
different levels arranged according to the mean of the first principal strains of each segment
at the end of systole, in ascending order. The numbers of the infarcted segments (3, 4,
9, 10) are highlighted in red color. The sensitivities and specificities of each model for
identifying infarcted segments can be computed by choosing the cutoff segments at each
level.

Case 2 Basal Mid Apical
LI-PBM 3 5 6 1 2 4 9 10 12 11 7 8 16 15 14 13
LI-APM 3 5 2 6 1 4 9 10 12 11 8 7 15 14 16 13

LTI-PBM 3 5 1 2 6 4 9 10 12 11 8 7 15 16 14 13
LTI-APM 3 5 2 4 1 6 10 9 12 11 8 7 15 16 14 13
HO-PBM 3 5 2 1 4 6 10 9 11 12 8 7 14 15 16 13
HO-APM 4 3 5 1 6 2 10 9 7 11 12 8 14 15 16 13

Table 8.9: Cardiac deformation recovery. Human data. Case 2. Optimal sensitivities and
specificities for identifying infarcted segments at different levels, computed from Table
8.8. As there is no infarcted segment in the apical level, the corresponding sensitivities
and specificities are unavailable.

Case 2
Basal Mid

Sensitivity / Specificity Sensitivity / Specificity
LI-PBM 50% / 100% 100% / 100%
LI-APM 50% / 100% 100% / 100%

LTI-PBM 50% / 100% 100% / 100%
LTI-APM 50% / 100% 100% / 100%
HO-PBM 50% / 100% 100% / 100%
HO-APM 100% / 100% 100% / 100%
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8.6. CARDIAC MECHANICAL PARAMETER RECOVERY WITH CARDIAC PHYSIOME MODEL

8.6 Cardiac Mechanical Parameter Recovery with Car-

diac Physiome Model

The algorithm in Section 5.3.3 was tested. Different from the cardiac deformation recovery,

computational complexity reduction based on mode superposition could not be applied.

To reduce the computational complexity, the AHA nomenclature was used to partition the

left-ventricular myocardium into 17 segments [13](Figure 8.15). Assuming the nodes in

the same segment have the same parameters, instead of recovering the parameters of every

node, the parameters of the chosen segments, segment 1-16, were recovered. As a result,

the computational complexity can be largely reduced. Segment 17 was not tested as it

corresponds to the apex whose motion usually cannot be accurately provided by short-axis

cardiac images. The right-ventricular myocardium was also not considered as it is less

interested in clinical studies. In the experiments, the measurements were the nodal first

principal strains from the cardiac deformation recovery. The time instants used for the

statistics predictions and the corresponding measurements were chosen during systole. In

our approach that uses a cardiac cycle as one filtering time step, as the size of the dense

matrix Ly in Table 5.5 depends on the number of nodes multiplies the number of chosen

time instants, only a few time instants could be chosen.

8.6.1 Synthetic Data

Experimental Setup

The simulation of the pathological case in Section 8.3.2 was used as the simulated ground

truth, and the measurements were the nodal first principal strains recovered using the

HO-APM model in Section 8.5.1. Similar to all other experiments, infarcted regions
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were assumed to be unknown. In this primitive experiment, only the parameter aBM was

recovered. Be reminded that in the simulation of the pathological case, the normal tissues

had aBM = 0.88 kPa, and the infarcted tissues had aBM = 2.64 kPa. The infarcted regions

were segment 4, 5, 10, 11, 15, 16.

Results and Discussions

Figure 8.62 shows the evolutions of the parameters with respect to the number of filtering

steps. As not all recovered parameters could converge, the experiment stopped after 40

cardiac cycles. The segments with converged parameters (segment 1, 2, 3, 6, 14) are

normal, and all infarcted segments could not converge. This is because although the

parameters of the infarcted segments become larger and closer to the ground truth after

each filtering step, as the active contraction stresses used were normal, the predicted

strains were still different from the measurements. In consequence, y(t+∆t)− ŷ−(t+∆t)

in the correction step (Table 5.5) kept existing and thus the values of the corresponding

segment parameters kept increasing. Apart from these, Figure 8.62 also shows that some

normal segments, such as segment 12 and 13, had their estimated values increasing with

the filtering steps and became even stiffer than the infarcted segments. In fact, these

segments are the immediate neighbors of the infarcted segments, which might behave

similarly depending on the patterns of the neighboring infarcted segments. The recovered

parameters at the last filtering step are shown in Table 8.10 for reference.

205



8.6. CARDIAC MECHANICAL PARAMETER RECOVERY WITH CARDIAC PHYSIOME MODEL

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

Number of filtering steps

a
B
M

(k
P
a
)

45

10

11

15

16

3

6

9

12

13

14

1

2

7

8

Figure 8.62: Parameter recovery. Synthetic data. The estimated parameters of different
segments with respect to the number of filtering steps. Red and blue lines indicate the
infarcted segments and their immediate neighbors respectively.

Table 8.10: Parameter recovery. Synthetic data. Recovered aBM (kPa) of different seg-
ments, with segment numbers shown in parentheses. Infarcted segments are highlighted
in red color, and their immediate neighbors are highlighted in blue color.

(1) 0.80 (2) 1.01 (3) 1.14 (4) 1.57 (5) 1.53 (6) 0.96
(7) 1.54 (8) 1.41 (9) 1.49 (10) 2.11 (11) 1.81 (12) 1.74
(13) 2.34 (14) 1.06 (15) 2.18 (16) 3.40
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8.6.2 Human Data

Experimental Setup

The human case studied was case 2 mentioned in Section 8.5.2, and the measurements

were the nodal first principal stains recovered using the HO-APM model. Similar to

all other experiments, infarcted regions were assumed to be unknown. In this primitive

experiment, only the parameter aBM was recovered. The infarcted segments identified by

experts were segment 3, 4, 9, 10.

Results and Discussions

Figure 8.63 shows the evolutions of the parameters with respect to the number of filtering

steps. As not all recovered parameters could converge, the experiment stopped after 40

cardiac cycles. In this experiment, the results cannot reflect the infarction. The param-

eters of the infarcted segments, segment 3, 4, 9, have almost no change, and parameters

of many normal segments keep increasing through the filtering steps. The main reason

is shown in Figure 8.64. Comparing the corresponding locations between the recovered

strain map and the predicted strain map, the differences between some infarcted segments

are not obvious, but the differences between some normal segments are quite large. As the

filtering framework performs the correction based on the differences between the recovered

and predicted strains (y(t + ∆t) − ŷ−(t + ∆t)), when the differences cannot reveal the

infarcted regions, so as the recovered parameters. In consequence, to use the proposed

parameter recovery framework, it is important to have reasonably good predictions and

strain measurements.
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Figure 8.63: Parameter recovery. Human data. Case 2. The estimated parameters of
different segments with respect to the number of filtering steps. Red and blue lines
indicate the infarcted segments and their immediate neighbors respectively.

Figure 8.64: Parameter recovery. Human data. Case 2. Left: predicted first principal
strains at the end of systole. Right: first principal strains at the end of systole recovered
from patient’s cardiac images.
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SUMMARY

A framework for studying individualized cardiac mechanics through systematic coupling

between cardiac physiological models and medical images according to their respective

merits has been proposed. For a physiologically meaningful, clinically relevant, and com-

putationally feasible framework, five key issues have been addressed, including the cardiac

physiological model, the heart representation in the computational environment, the in-

formation extraction from cardiac images, the coupling between models and images, and

also the computational complexity.

For the cardiac physiological model, a cardiac physiome model describing the macro-

scopic physiological behaviors has been proposed. This model comprises an electric wave

propagation model, an electromechanical coupling model, and also a biomechanical model,

and these models are connected together through a cardiac system dynamics. The elec-

tric wave propagation model used is a FitzHugh-Nagumo-based model, which is capable

of reproducing realistic macroscopic propagations of action potentials. The electrome-
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chanical coupling model used is an ordinary differential equation which transforms the

action potential at a point into the corresponding active stress. The biomechanical model

adopted is a hyperelastic and orthotropic material model with seven parameters, which

was reported as the best model among five tested well-known constitutive laws in a com-

parative study. These three models are connected through the cardiac system dynamics

described by the total-Lagrangian formulation. Simulations show that physiologically

plausible behaviors can be described by the proposed cardiac physiome model.

For the heart representation, the meshfree method based on the moving least squares

approximation has been adopted. In this method, the heart is represented by a set of

nodes bounded by surfaces representing the heart boundaries, and values at any location

inside the heart geometry can be approximated using the nodal values. As no mesh is re-

quired, regional accuracy refinements are easier than FEM, and its intrinsic hp-adaptivity

also facilitates the incorporation of high-order polynomials. Experiments with analytical

solutions show that the meshfree method can achieve higher accuracy than linear FEM

with the same number of nodes, in the expense of longer computational time.

For the information extraction from cardiac images, a two-step framework for extract-

ing motion information from image sequences has been presented. The first step is a

free-from image registration algorithm for obtaining the spatial correspondences between

the current and the next image frames. With the B-spline free-form deformation as the

transformation function and the mutual information as the metric, robust results can be

obtained even with poor image quality. The second step is an algorithm which attaches

the surface nodes to the apparent heart boundaries in the next image for refining the

quality of the motion tracking. Experiments on human data show that this two-step

framework can lead to clinically relevant results.
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For the coupling between models and images, multiframe state-space filtering frame-

works have been proposed for different physiological models based on their mechanical

nonlinearities. A quasi-EKF framework has been proposed for the model with linear and

isotropic material model, and a UKF-based framework has been proposed for the model

with hyperelastic and orthotropic material model. With the measurements obtained from

motion tracking, the quasi-EKF framework can be applied to recover cardiac deformation

with the linear material model, and the UKF framework can be applied to recover both

cardiac deformation and material parameters of the nonlinear material models. Experi-

ments on both synthetic and clinical data show that the proposed frameworks can recover

subject-specific cardiac deformation and parameters from measurements.

For the computational complexity, a mode superposition framework has been used to

reduce the dimensions of the problem domain for the cardiac deformation recovery. By

solving the generalized eigenproblem of the cardiac system dynamics, a transformation

matrix can be obtained to project the system from its original space to another mathe-

matically equivalent space but with much fewer dimensions, so that the computational

complexity of the state-space filtering procedures can be largely reduced. Experiments

show that the complexity decreases with the decrease of the number of eigenvectors uti-

lized, and also show that only a relatively few number of eigenvectors are required for

good approximations.

There are potential improvements for this work. First of all, there are many param-

eters need to be set. For most parameters, especially those related to the physiological

models, can be adopted from the literature. Nevertheless, parameters such as those of the

state-space filtering have no previous examples to follow. Although we can still set these

parameters through trial and error, a systematic way is desired to improve the meaning-
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fulness and reliability of the parameters. Secondly, the computational time is too long for

the framework to be clinically applicable even with the proposed complexity reduction

algorithm applied. In consequence, further theoretical and computational solutions are

necessary to reduce the computational time. Thirdly, for the material parameter recovery,

experiments were only performed to recover one material parameter, and the results on

human data are not satisfactory. Therefore, improvements on the parameter recovery

framework, and also the experiments of recovering all material parameters are desired.
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APPENDIX

A

TRANSFORMATION LAWS FOR BASIS VECTORS AND

COMPONENTS

As vectors and tensors are independent of any coordinate system, they are invariant upon

a change of basis. Nevertheless, their components do depend on the coordinate system

introduced, which is arbitrary. The components change their values by a rotation of the

basis vectors, but are independent of any translation. To obtain the components of vectors

and tensors after a change of basis, transformation laws are set up [35]. In the following

discussions, only the rotation of the basis vectors is considered.

Considering two sets of mutually orthonormal basis vectors sharing a common origin.

They correspond to a new Cartesian coordinate system and an old Cartesian coordinate

system which are assumed to be right-handed and characterized by two sets of basis

vectors, {ẽi} and {ei}, respectively. The new coordinate system can be obtained from

the old one by rotating the basis vectors {ei} about their origin. The cosine of the angle
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A.1. VECTORIAL TRANSFORMATION LAW

between ei and ẽj is represented by:

Qij = cos θ(ei, ẽj) = ei · ẽj (A.1)

Note that the first index on Qij indicates the old components whereas the second index

holds for the new components. The tensor Q with components Qij is an orthogonal tensor,

i.e. QTQ = QQT = I. As only rotation of basis vectors is considered, the determinant

of the matrix notation of Q, det [Q], is equal to 1. Q rotates the basis vectors ei into ẽi,

and QT rotates ẽi back to ei, i.e.:

ẽi = Qei = Qjiej and ei = QTẽi = Qij ẽj (A.2)

With these relations, Qij can be used for the vector and tensor transformations.

A.1 Vectorial Transformation Law

The vectorial transformation law for the Cartesian components of a vector u is given as:

ũi = u · ẽi = Qji (u · ej) = Qjiuj or [ũ] = [Q]T [u] (A.3)

and we also have:

ui = Qijũj or [u] = [Q] [ũ] (A.4)

where ũi and ui are components of the same vector u under the new basis and the old

basis respectively. Note that [ũ] = [Q]T [u] and [u] = [Q] [ũ] are not identical to ũ = QTu
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and u = Qũ respectively, as [ũ] and [u] are column matrices characterizing components

of the same vector in different coordinate systems while ũ and u are different vectors.

A.2 Tensorial Transformation Law

The transformation laws for the Cartesian components of any second-order tensor A can

be given as:

Ãij = QkiQmjAkm or
[
Ã
]

= [Q]T [A] [Q] (A.5)

and we also have:

Aij = QikQjmÃkm or [A] = [Q]
[
Ã
]

[Q]T (A.6)

where Ãij and Aij are the rectangular Cartesian components of the same tensor A in the

new basis and the old basis respectively.

A.3 Stress and Strain Tensor Components Transfor-

mation

In the cases of biomechanical problems with anisotropic material properties, stress and

strain tensors are described under various coordinate systems. For example, using the

orthotropic constitutive law defined under a local fiber-sheet-normal coordinate system

(f, s, n), the strain tensor components in the global x-y-z coordinate system need to

be transformed into the local f -s-n coordinate system so that the local stress tensor
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components can be calculated. Furthermore, the computed local stress tensor components

need to be transformed to the global coordinate system so that they can be used by the

system dynamics.

Considering the symmetries possessed by the stress and strain tensors, the stress and

strain tensor components transformation is presented below. As the same transformation

can be applied to both tensors, only the stress tensor was used for illustration.

As the stress tenor is symmetric, it only has six independent components, and can be

represented in column matrices as:

[S]local = [Sff Sss Snn Sfs Sfn Ssn]T (A.7)

in the local coordinate system, and as:

[S]global = [Sxx Syy Szz Sxy Sxz Syz]
T (A.8)

in the global coordinate system. Then [S]global and [S]local can be related through:

[S]global = [T] [S]local and [S]local = [T]−1 [S]global (A.9)

with

[T] =


QfxQfx QsxQsx QnxQnx (QfxQsx+QsxQfx) (QfxQnx+QnxQfx) (QsxQnx+QnxQsx)

QfyQfy QsyQsy QnyQny (QfyQsy+QsyQfy) (QfyQny+QnyQfy) (QsyQny+QnyQsy)

QfzQfz QszQsz QnzQnz (QfzQsz+QszQfz) (QfzQnz+QnzQfz) (QszQnz+QnzQsz)

QfxQfy QsxQsy QnxQny (QfxQsy+QsxQfy) (QfxQny+QnxQfy) (QsxQny+QnxQsy)

QfxQfz QsxQsz QnxQnz (QfxQsz+QsxQfz) (QfxQnz+QnxQfz) (QsxQnz+QnxQsz)

QfyQfz QsyQsz QnyQnz (QfyQsz+QsyQfz) (QfyQnz+QnyQfz) (QsyQnz+QnyQsz)


This transformation can be applied between any two Cartesian coordinate systems. When

applying to transversely isotropic materials, we can use the azimuthal angle and the polar
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angle between the fiber vector and the global coordinate system to construct the respective

transformation matrices using [T], which can then be concatenated together to achieve

the transformation.

A.4 Elasticity Tensor Components Transformation

For anisotropic materials, the matrix of the elasticity tensor defined under the local coor-

dinate system, [C]local, needs to be transformed into the matrix in the global coordinate

system, [C]global, so that it can be embedded into the system dynamics. Using [T] defined

above, the transformation is given as [62]:

[C]global = [T] [C]local [R] [T]−1 [R]−1 (A.10)

where [R] is a diagonal matrix with components {1, 1, 1, 2, 2, 2}, which is used for the

transformation between shear strain components and engineering shear strain compo-

nents, as [T] and its matrix inverse do not work for engineering shear strain components.

The values of engineering shear strain components double those of the shear strain com-

ponents, and [C]global and [C]local must be used with engineering shear strain components

to obtain the stress tensor components.
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