Modeling Observer Metamerism through Monte Carlo Simulation (Poster)

Mark Fairchild
Rochester Institute of Technology

Follow this and additional works at: http://scholarworks.rit.edu/other

Recommended Citation

This Presentation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Presentations and other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Modeling Observer Metamerism through Monte Carlo Simulation

Abstract:
Metameric color matches depend on the observer’s color matching functions. Data were collected on observer variability in typical metameric matches. A Monte Carlo simulation, using a model of color matching functions and physiological data, was performed to derive a complete colorimetric system capable of predicting inter-observer variability in addition to mean color matches.

Monte Carlo Experiment:
- 10,000 Sets of Color Matching Functions Generated
- Mean and Covariance Functions Established
- Standard Error Propagation to CIELAB Covariance Matrices for Observed Metamers
- Predicted Covariance Dependent upon Metameric Properties

Monte Carlo Results:
- Gray Print: 10,000 Color Matching Functions
- Blue Transparency: 10,000 Color Matching Functions
- Gray Print: 3 Sets of 20 Color Matching Functions

Monte Carlo Model:

\[\bar{X}(\lambda) = 10^{-k_1} \cdot \text{d_L}(\lambda) \cdot 10^{-k_2} \cdot \text{d_M}(\lambda) \cdot [k_{3L}(\lambda) + k_{4M}(\lambda) + k_{5S}(\lambda)] \]

\[\bar{Y}(\lambda) = 10^{-k_1} \cdot \text{d_L}(\lambda) \cdot 10^{-k_2} \cdot \text{d_M}(\lambda) \cdot [k_{3L}(\lambda) + k_{4M}(\lambda) + k_{5S}(\lambda)] \]

\[\bar{Z}(\lambda) = 10^{-k_1} \cdot \text{d_L}(\lambda) \cdot 10^{-k_2} \cdot \text{d_M}(\lambda) \cdot [k_{3L}(\lambda) + k_{4M}(\lambda) + k_{5S}(\lambda)] \]

Inter-Observer Variability

Acknowledgements / References:

Funding: NSF-NYS/IUCRC & NYSSTF CAT CEIS
Visual Experiment: Rick Alfvin and Jason Gibson

Experimental Results:

CMI Model:

Visual Data Starting Point:

Conclusions:
- Observer Variability in Practical Color Matching is Significant
- Previously Published Techniques Underpredict Variability
- A Monte Carlo Model Produced Better Results
- Further Data and Model Refinement are Required