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On the Approximability of Dodgson and Young Elections

Ioannis Caragiannis∗ Jason A. Covey† Michal Feldman‡ Christopher M. Homan§

Christos Kaklamanis¶ Nikos Karanikolas‖ Ariel D. Procaccia∗∗ Jeffrey S. Rosenschein††

Abstract
The voting rules proposed by Dodgson and Young are both
designed to find the alternative closest to being a Condorcet
winner, according to two different notions of proximity; the
score of a given alternative is known to be hard to compute
under either rule.

In this paper, we put forward two algorithms for ap-
proximating the Dodgson score: an LP-based randomized
rounding algorithm and a deterministic greedy algorithm,
both of which yield an O(log m) approximation ratio, where
m is the number of alternatives; we observe that this result
is asymptotically optimal, and further prove that our greedy
algorithm is optimal up to a factor of 2, unless problems in
NP have quasi-polynomial time algorithms. Although the
greedy algorithm is computationally superior, we argue that
the randomized rounding algorithm has an advantage from
a social choice point of view.

Further, we demonstrate that computing any reasonable
approximation of the ranking produced by Dodgson’s rule
is NP-hard. This result provides a complexity-theoretic
explanation of sharp discrepancies that have been observed
in the Social Choice Theory literature when comparing
Dodgson elections with simpler voting rules.

Finally, we show that the problem of calculating the
Young score is NP-hard to approximate by any factor. This
leads to an inapproximability result for the Young ranking.
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1 Introduction

The discipline of voting theory deals with the follow-
ing setting: a group of n agents each ranks a set of
m alternatives; one alternative is to be elected. The
big question is: which alternative best reflects the so-
cial good? The French philosopher and mathematician
Marie Jean Antoine Nicolas de Caritat, marquis de Con-
dorcet, suggested the following intuitive criterion: the
winner should be an alternative that beats every other
alternative in a pairwise election, i.e., an alternative that
a majority of the agents prefers over any other alter-
native. Sadly, it is fairly easy to see that the prefer-
ences of the majority may be cyclic, hence a Condorcet
winner does not necessarily exist. This unfortunate
phenomenon is known as the Condorcet paradox (see
Black [5]).

In order to circumvent this result, several re-
searchers have proposed to choose an alternative that
is “as close as possible” to a Condorcet winner. Differ-
ent notions of proximity can be considered, and yield
different voting rules. One such notion was suggested
in 1876 by Charles Dodgson, better known by his pen
name Lewis Caroll, author of “Alice’s Adventures in
Wonderland”. The Dodgson score [5] of an alternative,
with respect to a given set of agents’ preferences, is the
minimum number of exchanges between adjacent alter-
natives in the agents’ rankings one has to introduce in
order to make the given alternative a Condorcet winner.
A Dodgson winner is any alternative with a minimum
Dodgson score.

Young [35] raised a second option: measuring the
distance by agents. Specifically, the Young score of an
alternative is the size of the largest subset of agents such
that, if only these ballots are taken into account, the
given alternative becomes a Condorcet winner. A Young
winner is any alternative with the maximum Young
score. Alternatively, one can perceive a Young winner
as the alternative that becomes a Condorcet winner by
removing the least number of agents.

Though these two voting rules sound appealing
and straightforward, they are notoriously complicated
to resolve. As early as 1989, Bartholdi, Tovey and
Trick [2] showed that computing the Dodgson score is
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NP-complete, and that pinpointing a Dodgson winner
is NP-hard. This important paper was one of the
first to introduce complexity-theoretic considerations to
social choice theory. Hemaspaandra et al. [14] refined
the abovementioned result by showing that the Dodgson
winner problem is complete for Θp

2, the class of problems
that can be solved by O(log n) queries to an NP set.
Subsequently, Rothe et al. [31] proved that the Young
winner problem is also complete for Θp

2.
The abovementioned complexity results give rise to

the agenda of approximately calculating an alternative’s
score, under the Dodgson and Young schemes. This
is clearly an interesting computational problem, as an
application area of algorithmic techniques.

However, from the point of view of social choice
theory, it is not immediately apparent that an ap-
proximation of a voting rule is satisfactory, since an
“incorrect” alternative—in our case, one that is not
closest to a Condorcet winner—might be elected.
Nevertheless, we argue that the use of such an ap-
proximation is strongly motivated. Indeed, at least in
the case of the Dodgson and Young rules, the winner
is an “approximation” in the first place, in instances
where no Condorcet winner exists. Moreover, the
approximation algorithm is equivalent to a new voting
rule, which is guaranteed to elect an alternative that
is not far from being a Condorcet winner. In other
words, a perfectly sensible definition of a “socially
good” winner, given the circumstances, is simply the
alternative chosen by the approximation algorithm.
Note that the approximation algorithm can be designed
to satisfy the Condorcet criterion, i.e., always elect a
Condorcet winner if one exists. This is always true
for an approximation of the Dodgson score, as the
Dodgson score of a Condorcet winner is zero. Moreover,
approximation algorithms can be designed to satisfy
other, less trivial, social choice desiderata, and hence
may ultimately be considered socially sensible voting
rules.

Related work. The agenda of approximating voting
rules was recently pursued by Ailon et al. [1], Copper-
smith et al. [9], and Kenyon-Mathieu and Schudy [17].
These works deal, directly or indirectly, with the Ke-
meny rank aggregation rule, which chooses a ranking
of the alternatives instead of a single winning alterna-
tive. The Kemeny rule picks the ranking that has the
maximum number of agreements with the agents’ in-
dividual rankings regarding the correct order of pairs
of alternatives. Ailon et al. improve the trivial 2-
approximation algorithm to an involved, randomized
algorithm that gives an 11/7-approximation; Kenyon-
Mathieu and Schudy further improve the approxima-

tion, and obtain a PTAS.
Two recent works have directly put forward algo-

rithms for the Dodgson winner problem [15, 23]. Both
papers independently build upon the same basic idea:
if the number of agents is significantly larger than the
number of alternatives, and one looks at a uniform dis-
tribution over the preferences of the agents, with high
probability one obtains an instance on which it is triv-
ial to compute the Dodgson score of a given alterna-
tive. This directly gives rise to an algorithm that can
usually compute the Dodgson score (under the assump-
tion on the number of agents and alternatives). How-
ever, this is not an approximation algorithm in the usual
sense, since the algorithm a priori gives up on certain in-
stances, whereas an approximation algorithm is judged
by its worst-case guarantees. In addition, this algorithm
would be useless if the number of alternatives is not
small compared with the number of agents.1

Betzler et al. [4] have investigated the parame-
terized computational complexity of the Dodgson and
Young rules. The authors have devised a fixed param-
eter algorithm for exact computation of the Dodgson
score, where the fixed parameter is the “edit distance,”
i.e., the number of exchanges. Specifically, if k is an
upper bound on the Dodgson score of a given alterna-
tive, n is the number of agents, and m the number of
alternatives, the algorithm runs in time O(2k ·nk+nm).
Notice that in general it may hold that k = Ω(nm). In
contrast, computing the Young score is W [2]-complete;
this implies that there is no algorithm that computes the
Young score exactly, and whose running time is polyno-
mial in nm and only exponential in k, where the param-
eter k is the number of remaining votes. These results
complement ours nicely, as we shall also demonstrate
that computing the Dodgson score is in a sense easier
than computing the Young score, albeit in the context
of approximation.

Putting computational complexity aside, several
works by social choice theorists have considered compar-
ing the ranking produced by Dodgson, i.e., the order-
ing of the alternatives by nondecreasing Dodgson score,
with elections based on simpler voting rules. Such com-
parisons have always revealed sharp discrepancies. For
example, the Dodgson winner can appear in any posi-
tion in the Kemeny ranking [28] and in the ranking of
any positional scoring rule [29] (e.g., Borda or Plural-
ity), Dodgson rankings can be exactly the opposite of
Borda [20] and Copeland rankings [18], while the winner

1This would normally not happen in political elections, but
can certainly be the case in many other settings. For instance,
consider a group of agents trying to reach an agreement on a joint

plan, when multiple alternative plans are available. Specifically,
think of a group of investors deciding which company to invest in.

1059 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



of Kemeny of Slater elections can appear in any position
of the Dodgson ranking [19].

More distantly related to our work is research that
is concerned with exactly resolving hard-to-compute
voting rules by heuristic methods. Typical examples
include works regarding the Kemeny rule [8] and
the Slater rule [7]. Another more remotely related
field of research is concerned with finding approx-
imate, efficient representations of voting rules, by
eliciting as little information as possible; this line of re-
search employs techniques from learning theory [25, 26].

Our results. In the context of approximating the
Dodgson score, we devise an O(logm) randomized ap-
proximation algorithm, where m is the number of al-
ternatives. Our algorithm is based on solving the lin-
ear program proposed by Bartholdi et al. [2] and us-
ing randomized rounding. We then propose a second,
deterministic and greedy, algorithm for the Dodgson
score, with the same asymptotic approximation ratio.
Although the latter algorithm is computationally supe-
rior in every way, we show that the former has the ad-
vantage of satisfying a flavor of monotonicity, which is a
desirable property from a social choice point of view. We
further observe that it follows from the work of McCabe-
Dansted [22] that the Dodgson score cannot be approx-
imated within sublogarithmic factors by polynomial-
time algorithms unless P = NP. We prove a more
explicit inapproximability result of (1/2−ε) lnm, under
the assumption that problems in NP do not have al-
gorithms running in quasi-polynomial time; this implies
that the approximation ratio achieved by our greedy al-
gorithm is optimal up to a factor of 2.

Some of the results mentioned above [28, 29, 18, 19,
20] establish that there are sharp discrepancies between
the Dodgson ranking and the rankings produced by
other rank aggregation rules. Some of these rules (e.g.,
Borda and Copeland) are polynomial-time computable,
so the corresponding results can be viewed as negative
results regarding the approximability of the Dodgson
ranking by polynomial-time algorithms. We show that
the problem of distinguishing between whether a given
alternative is the unique Dodgson winner or in the
last O(

√
m) positions in any Dodgson ranking is NP-

hard. This theorem provides a complexity-theoretic
explanation for some of the observed discrepancies, but
in fact is much wider in scope as it applies to any
efficiently computable rank aggregation rule.

The problem of calculating the Young score seems
at first glance simple compared with the Dodgson score
(we discuss in Section 4 why this seems so). Therefore,
we found the following result quite surprising: it is
NP-hard to approximate the Young score within any

factor. Specifically, we show that it is NP-hard to
distinguish between the case where the Young score
of a given alternative is 0, and the case where the
score is greater than 0. As a corollary we obtain an
inapproximability result for the Young ranking.

Structure of the paper. In Section 2, we introduce
some notations and definitions. In Section 3, we present
our upper and lower bounds for approximating Dodgson
elections. In Section 4, we prove that the Young score
and ranking are inapproximable.

2 Preliminaries

Let N = {1, . . . , n} be a set of agents, and let A
be the set of alternatives. We denote |A| = m, and
denote the alternatives themselves by letters, such as
a ∈ A. Indices referring to agents appear in superscript.
Each agent i ∈ N holds a binary relation Ri over A
that satisfies irreflexivity, asymmetry, transitivity and
totality. Informally, Ri is a ranking of the alternatives.
Let L = L(A) be the set of all rankings over A; we have
that each Ri ∈ L. We denote RN = 〈R1, . . . , Rn〉 ∈ LN ,
and refer to this vector as a preference profile. We
may also use Qi to denote the preferences of agent i, in
cases where we want to distinguish between two different
rankings Ri and Qi. For sets of alternatives B1, B2 ⊆ A,
we write B1R

iB2 if for all a ∈ B1 and b ∈ B2, aRib.
Let a, b ∈ A. Denote {i ∈ N : aRib} as P (a, b). We

say that a beats b in a pairwise election if |P (a, b)| >
n/2, that is, a is preferred to b by the majority of agents.
A Condorcet winner is an alternative that beats every
other alternative in a pairwise election.

The Dodgson score of a given alternative a∗, with
respect to a given preference profile RN , is the least
number of exchanges between adjacent alternatives in
RN needed to make a∗ a Condorcet winner. For
instance, let N = {1, 2, 3}, A = {a, b, c}, and let RN

be given by:

R1 R2 R3

a b a
b a c
c c b

In this example, the Dodgson score of a is 0 (a is a
Condorcet winner), the score of b is 1, and the score of
c is 3. Bartholdi et al. [2] have shown that computing
the Dodgson score is an NP-complete problem.

The Young score of a∗ with respect to RN is the
size of the largest subset of agents for whom a∗ is a
Condorcet winner. This is the definition given by Young
himself [35], and used in subsequent works [31]. If for
every nonempty subset of agents a∗ is not a Condorcet
winner, its Young score is 0. In the above example, the

1060 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



Young score of a is 3, the score of b is 1, and the score
of c is 0.

Notice that, equivalently, a Young winner is an
alternative such that one has to remove the least number
of agents in order to make it a Condorcet winner.
However, these two definitions are not equivalent in
the context of approximation; we employ the former
(original, prevalent) definition, but touch on the latter
as well.

As the Young winner problem is known to be
intractable [31], the Young score problem must also
be hard; otherwise, we would be able to calculate the
scores of all the alternatives efficiently, and identify the
alternatives with maximum score.

3 Approximability of Dodgson

We begin by presenting our approximation algorithms
for the Dodgson score. Let us first introduce some
common notations.

Let a∗ ∈ A be a distinguished alternative, whose
Dodgson score we wish to compute. Define the deficit
of a∗ with respect to a ∈ A, simply denoted def(a) when
the identity of a∗ is clear, as the number of additional
agents that must rank a∗ above a in order for a∗ to
beat a in a pairwise election. For instance, if 4 agents
prefer a to a∗ and only one agent prefers a∗ to a,
then def(a) = 2. If a∗ beats a in a pairwise election
(namely a∗ is preferred by the majority of agents) then
def(a) = 0. We say that alternatives a ∈ A with
def(a) > 0 are alive. Alternatives that are not alive,
i.e., def(a) = 0, are dead.

3.1 A Randomized Rounding algorithm.
Bartholdi et al. [2] provide an integer linear pro-
gramming (ILP) formulation for the Dodgson score.
The number of constraints and variables in their
program depends solely on the number of alternatives.
Therefore, if the number of alternatives is constant,
the program is solvable in polynomial time using the
algorithm of Lenstra [21]. However, if the number of
alternatives is not constant, the LP is of gargantuan
size.2

Fortunately, it is easy to modify the abovemen-
tioned ILP to obtain a program of polynomial size. As
before, let a∗ ∈ A be the alternative whose score we
wish to compute. Let the variables of the program be
xij ∈ {0, 1} for all i ∈ N and j ∈ {0, . . . ,m−1}; xij = 1 if
and only if a∗ is moved upward, or pushed, by j positions
in the ranking of agent i. Define constants eija ∈ {0, 1},

2Note that there is also an efficient solution if the number of

agents n is constant; indeed, brute force search requires checking
O(mn) possibilities.

for all i ∈ N , j ∈ {0, . . . ,m − 1}, and a ∈ A \ {a∗},
which depend on the given preference profile; eija = 1
iff pushing a∗ by j positions in the ranking of agent i
makes a∗ gain an additional vote against a (note that
eija = 0 for all j if a∗Ria). The ILP that computes the
Dodgson score of a∗ is given by:

minimize
∑
i,j

j · xij

s.t. ∀i ∈ N,
∑
j

xij = 1(3.1)

∀a ∈ A \ {a∗},
∑
i,j

xije
i
ja ≥ def(a)

∀i ∈ N, ∀j ∈ {0, . . . ,m− 1}, xij ∈ {0, 1}

This ILP can be relaxed by requiring merely that
0 ≤ xij ≤ 1 for all i and j. The resulting linear program
(LP) can be solved efficiently.

We are now ready to present our randomized
rounding algorithm.

Randomized Rounding Algorithm
Input: An alternative a∗ whose Dodgson score we wish
to estimate, and a preference profile RN ∈ LN .
Output: An approximation of the Dodgson score of a∗.
The algorithm:

1. Solve the relaxed LP given by (3.1) to obtain a
solution ~x.

2. For k = 1, . . . , α · logm (where α > 0 is a constant
to be chosen later)

• For all i ∈ N , randomly and indepen-
dently (from other agents and other itera-
tions) choose a value Xi

k, such that Xi
k = j

with probability xij .

3. For all i ∈ N , set Xi
max = maxkXi

k.

4. Let X ′ be the solution which moves a∗ upward
in the ranking of i by Xi

max positions; return
cost(X ′) =

∑
i∈N X

i
max.

We remark that if a∗ is a Condorcet winner from
the outset, clearly the algorithm will calculate a score
of 0 (with probability 1). Therefore, if we defined a new
(randomized) voting rule, which elects the alternative
with minimal score according to the algorithm, this
voting rule would satisfy the Condorcet criterion.

Theorem 3.1. For any input a∗ and RN with m al-
ternatives, the randomized rounding algorithm returns
a 4α · logm-approximation of the Dodgson score of a∗

with probability at least 1/2.
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The proof of the theorem is quite similar to the
analysis of the randomized rounding algorithm for Set
Cover [34, pp. 120-122], with one prominent additional
argument, namely the application of Lemma 3.1.

Proof. Fix some iteration k of the algorithm’s for loop.
Let Xi = Xi

k, i ∈ N , be independent discrete random
variables such that Xi = j with probability xij . Con-
sider the sequence of exchanges induced by the vari-
ables Xi, i.e., each agent i ∈ N moves a∗ upward by j
places with probability xij . As a result of the constraint
∀i ∈ N,

∑
j x

i
j = 1, these are legal random variables.

Moreover, let X be the chosen sequence of exchanges,
and denote the optimal fractional solution of the LP by
OPTf =

∑
i,j j · xij ; it holds that

(3.2) E[cost(X )] = E

[∑
i∈N

Xi

]
= OPTf .

Now, fix some alternative a 6= a∗. We wish to
bound the probability that a∗ does not beat a after the
exchanges given by X are made in RN .

Let Y i, i ∈ N , be independent Bernoulli trials, such
that Y i = 1 iff aRia∗, and a∗ is moved above a in the
preferences of agent i. In other words, Y i = 1 if agent
i becomes an additional agent that ranks a∗ above a as
a result of the exchanges. We want to provide an upper
bound on Pr[

∑
i∈N Y

i < def(a)]. Denote

pi =
∑

j: ei
ja=1

xij .

Notice that Y i = 1 with probability pi, so E[
∑
i Y

i] =∑
i p
i. Moreover, by the constraint ∀a ∈ A \

{a∗},
∑
i,j x

i
je
i
ja ≥ def(a), we have that

∑
i p
i ≥ def(a).

We now employ a deceivingly intuitive but nontrivial
result:

Lemma 3.1. (Jogdeo and Samuels [16]) Let
Y 1, . . . , Y n be independent heterogeneous Bernoulli
trials. Suppose that E[

∑
i Y

i] is an integer. Then

Pr

[∑
i

Y i < E

[∑
i

Y i

]]
< 1/2 .

Since def(a) is an integer, and E[
∑
i Y

i] =
∑
i p
i ≥

def(a), it follows from the lemma that:

Pr[a not beaten in X ] = Pr

[∑
i

Y i < def(a)

]
< 1/2 .

At this point, we choose the value of the constant
α to be such that 2α logm ≥ 4m. Note that if m ≥

4, we can choose α ≤ 2. As in the algorithm, set
Xi
max = maxkXi

k. Denote by X ′ the induced sequence
of exchanges. It holds that a is not beaten in a pairwise
election under X ′ only if a is not beaten under the
exchanges obtained in each one of the α·logm individual
iterations. Therefore,

Pr[a not beaten in X ′] <
(

1
2

)α·logm
≤ 1

4m
.

By the union bound we get:3

(3.3)

Pr[a∗ is not a Condorcet winner in X ′] ≤ m · 1
4m

= 1/4

Xi
1, · · · , Xi

α logm are i.i.d. random variables; it holds
that

Xi
max = max

k
Xi
k ≤

∑
k

Xi
k ,

and thus

(3.4) E
[
Xi
max

]
≤ E

[∑
k

Xi
k

]
= α · logm · E[Xi

1] .

Therefore, by the linearity of expectation,

E[cost(X ′)] = E

[∑
i

Xi
max

]

≤ α · logm · E

[∑
i

Xi
1

]
= α · logm · E[cost(X )]
= α · logm ·OPTf
≤ α · logm ·OPT ,

where OPT is the Dodgson score of a∗, i.e., the optimal
integral solution to the ILP (3.1).

By Markov’s inequality we have that

(3.5) Pr[cost(X ′) > OPT · 4α · logm] ≤ 1/4 .

We now apply the union bound once again on (3.3)
and (3.5), and obtain that with probability at least 1/2,
a∗ is a Condorcet winner under X ′ and, at the same
time, cost(X ′) ≤ OPT · 4 ·α · logm. This completes the
proof of Theorem 3.1. �

Note that it is possible to verify in polynomial time
whether the output of the algorithm is, at the same
time, a valid solution (i.e., a∗ is a Condorcet winner) and
a 4α · logm-approximation (by comparing with OPTf ).
Therefore, it is possible to repeat the algorithm from
scratch to improve the probability of success.

3Strictly speaking, we can use m− 1 instead of m.
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3.2 A Deterministic Combinatorial Algorithm.
In this section, we present a deterministic, combinato-
rial, greedy algorithm for approximating the Dodgson
score of a given alternative. Consider, once again, a
special alternative a∗, and recall that a live alternative
is one with a positive deficit. In each step, the algorithm
selects the most cost-effective push of alternative a∗ in
the preference of some agent. The cost-effectiveness of
pushing a∗ in the preference of an agent i ∈ N is the
ratio between the total number of positions a∗ is moved
upwards in the preference of i compared with the original
profile RN , and the number of currently live alternatives
that a∗ overtakes as a result of this push. For example,
if for some agent the algorithm raises a∗ by one position
where the alternative over which a∗ is raised is dead, and
later by a second position that causes a∗ to overtake a
live alternative, then the cost-effectiveness of the push
is two and not one, since a∗ ends up being two positions
higher than its original position and only overtakes one
live alternative.

After selecting the most cost-effective push, the
algorithm decreases def(a) by one for each live alter-
native a that a∗ overtakes. Alternatives a ∈ A with
def(a) = 0 become dead. The algorithm terminates
when no live alternatives remain. The input and output
of the algorithm are as before.

Greedy Algorithm:

1. Let A′ be the set of live alternatives, namely those
alternatives a ∈ A with def(a) > 0.

2. While A′ 6= ∅:

• Perform the most cost-effective push, namely
push a∗ in the preferences of agent i ∈ N in a
way that minimizes the ratio between the total
number of positions moved upwards in the
preferences of i and the number of currently
live alternatives overtaken by a∗.
• Recalculate A′.

3. Return the number of exchanges performed.

By the definition of the algorithm, it is clear that
it produces a profile where a∗ is a Condorcet winner.
It is important to notice that, as is the case with
the randomized rounding algorithm, if a∗ is initially
a Condorcet winner then the algorithm calculates a
Dodgson score of zero, so as a voting rule the algorithm
satisfies the Condorcet criterion.

Theorem 3.2. For any input a∗ and RN with m
alternatives, the greedy algorithm returns an Hm−1-
approximation of the Dodgson score of a∗, where Hk

is the k-th harmonic number.

We may view the problem of approximating the
Dodgson score as the following covering problem with
different covering requirements and constraints. The
ground set is the set of live alternatives. For each live
alternative a ∈ A \ {a∗}, its deficit def(a) is in fact its
covering requirement, i.e., the number of different sets
it has to belong to in the final cover. For each agent
i ∈ N that ranks a∗ in place ri, we have a subcollection
Si consisting of the sets Sik for k = 1, . . . , ri − 1, where
the set Sik contains the (initially) live alternatives that
appear in positions ri − k to ri − 1 in the preference
of agent i. The set Sik has cost k. Now, the covering
problem to be solved is the following. We wish to select
at most one set from each of the different subcollections
so that each alternative a ∈ A \ {a∗} appears in at
least def(a) sets and the total cost of the selected sets
is minimized. The optimal cost is the Dodgson score of
a∗ and, hence, the cost of any approximate cover that
satisfies the covering requirements and the constraints
is an upper bound on the Dodgson score.

In terms of this covering problem, the greedy algo-
rithm mentioned above can be thought of as working as
follows. In each step, it selects the most cost-effective
set where the cost-effectiveness of a set is defined as
the ratio between the cost of the set and the number of
live alternatives it covers that have not been previously
covered by sets belonging to the same subcollection.
For these live alternatives, the algorithm decreases their
covering requirements at the end of the step. The algo-
rithm terminates when all alternatives have died (i.e.,
their covering requirement has become zero). The out-
put of the algorithm consists of the maximum-cost sets
that were picked from each subcollection.

The proof of Theorem 3.2, given in the full version
of the paper [6], uses the dual fitting technique. We
remark that the foregoing covering problem that we use
(and its analysis) is closely related to the Constrained
Set Multicover problem considered in Rajagopalan and
Vazirani [27] (see also [34, pp. 112–116]), with the
additional constraint that at most one set has to be
selected from each subcollection.

3.3 Interlude: On the Desirability of Approx-
imation Algorithms as Voting Rules. In Section
1 we stated that an approximation algorithm for the
Dodgson score should be considered as a new voting
rule. This implies that our approximation algorithms
should be compared according to two conceptually dif-
ferent, but not orthogonal, dimensions: their algorith-
mic properties and their social choice properties. Our
greedy algorithm is clearly superior to the randomized
rounding algorithm in terms of algorithmic properties:
the former is combinatorial whereas the latter is LP-
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based; the former is deterministic whereas the latter is
randomized. In the sequel we suggest, however, that the
latter has some desirable properties from a social choice
point of view. It is important to note at this point
that randomized voting rules are considered legitimate
in the social choice literature (see, e.g., [13, 10]), hence
our randomized rounding algorithm may be considered
a valid voting rule.

In most algorithmic mechanism design settings [24],
such as combinatorial auctions or scheduling, one usu-
ally seeks approximation algorithms that are truth-
ful, i.e., the agents cannot benefit by lying. However,
the well-known Gibbard-Satterthwaite Theorem [12, 32]
precludes voting rules that are both truthful and reason-
able, in a sense. Therefore, other desiderata are looked
for in voting rules.

We have been careful to emphasize that both the
randomized rounding algorithm and the greedy algo-
rithm satisfy the Condorcet property. Let us now
consider the monotonicity property, one of the ma-
jor desiderata on the basis of which voting rules are
compared. Many different notions of monotonicity can
be found in the literature; for our purposes, a (score-
based) voting rule is weakly monotonic if and only if
pushing an alternative in the preferences of the agents
cannot worsen the score of the alternative, that is, in-
crease it when a lower score is desirable (as in Dodg-
son), or decrease it when a higher score is desirable.
All prominent score-based voting rules (positional scor-
ing rules, Copeland, Maximin) are weakly monotonic; it
is straightforward to see that the Dodgson and Young
rules are weakly monotonic as well.

We first claim that our randomized rounding algo-
rithm, or, more accurately, a slight variant thereof, is
weakly monotonic. Indeed, consider the variant of the
algorithm where X ′ is the solution that moves a∗ up-
ward in the ranking of i by

∑
kX

i
k positions rather than

maxkXi
k; the cost of this solution is

cost(X ′) =
∑
k

∑
i∈N

Xi
k .

It is easy to verify (see (3.4)) that the exact same
worst-case approximation bound holds for this variant
as well (although in practice its approximation ratio
would usually be significantly worse).

Now, consider a situation where a∗ is moved up-
wards in the preferences of the agents. It is obvious that
this decreases the value of OPTf . In addition, for every
k, we have E

[∑
iX

i
k

]
= OPTf . Therefore, by the lin-

earity of expectation, the expected cost of the solution
produced by the algorithm E

[∑
k

∑
i∈N X

i
k

]
decreases

as well.
In contrast, let us now consider the greedy algo-

rithm. We design a preference profile and a push of
a∗ that demonstrate that the algorithm is not weakly
monotonic. Agents 1 through 6 vote according to the
profile RN given in Figure 1(a). The positions marked
by “.” are placeholders for the rest of the alterna-
tives, in some arbitrary order. Let A′ = {a1, . . . , a4},
A′′ = {b1, . . . , b17}. Notice that def(a) = 1 for all
a ∈ A′, def(b) = 0 for all b ∈ A′′. The optimal se-
quence of exchanges moves a∗ all the way to the top of
the preferences of agent 2, with a cost of seven. The
greedy algorithm, given this preference profile, indeed
chooses this sequence.

On the other hand, consider the profile
(R1, R2, Q3, Q4, Q5, Q6) given in Figure 1(b) (where
the position of a∗ was improved by two positions in the
preferences of agents 3 through 6). First notice that
the deficits have not changed compared to the profile
RN . The greedy algorithm would in fact push a∗ to the
top of the preferences of agents 6, 5, 4, and 3 (in this
order), with a total cost of ten. Note that the optimal
solution still has a cost of seven.

The following stronger notion of monotonicity is
often considered in the literature: pushing a winning
alternative in the preferences of the agents cannot harm
it, that is, cannot make it lose the election. We say
that a voting rule that satisfies this property is strongly
monotonic.4 Interestingly, Dodgson itself is not strongly
monotonic [33], a fact that is considered by many to
be a serious flaw. However, this does not preclude
the existence of an approximation algorithm for the
Dodgson score that is strongly monotonic as a voting
rule. An intriguing open question is the existence of
such algorithms with a good approximation ratio.

Additionally, there are other prominent social
choice properties that are often considered, e.g., homo-
geneity : a voting rule is said to be homogeneous if dupli-
cating the electorate does not change the outcome of the
election. We leave the comparison of our two algorithms
on the basis of additional social choice desiderata, as
well as more general questions regarding the design of
socially desirable approximation algorithms, for future
work.

3.4 Lower Bounds. McCabe-Dansted [22] gives a
polynomial-time reduction from the Minimum Domi-
nating Set problem to the Dodgson score problem with
the following property: given a graph G with k vertices,
the reduction creates a preference profile with n = Θ(k)
agents and m = Θ(k4) alternatives, such that the size
of the minimum dominating set of G is bk−2scD(a∗)c,
where scD(a∗) is the Dodgson score of a distinguished

4This is often simply referred to as monotonic in the literature
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R1 R2 R3 R4 R5 R6

a4 a4

a3 a3 a4

a2 a2 b4 a3

a1 a1 b5 b9 a2

. b1 b6 b10 b13 a1

. b2 b7 b11 b14 b16

. b3 b8 b12 b15 b17

. a∗ a∗ a∗ a∗ a∗

. . . . . .
a∗ . . . . .

(a) Original Profile.

R1 R2 Q3 Q4 Q5 Q6

a4 a4

a3 a3 a4

a2 a2 b4 a3

a1 a1 b5 b9 a2

. b1 b6 b10 b13 a1

. b2 a∗ a∗ a∗ a∗

. b3 b7 b11 b14 b16

. a∗ b8 b12 b15 b17

. . . . . .
a∗ . . . . .

(b) Improvement of a∗.

Figure 1: The greedy algorithm is not weakly monotonic: an example.

alternative a∗ ∈ A. Since the Minimum Dominating
Set problem is known to be NP-hard to approximate
to within logarithmic factors [30], this implies that the
Dodgson score problem is also hard to approximate to
a factor of Ω(logm). Due to the relation of Minimum
Dominating Set to Minimum Set Cover, using an inap-
proximability result due to Feige [11], the explicit in-
approximability bound can become

(
1
4 − ε

)
lnm under

the assumption that problems in NP do not have quasi-
polynomial-time algorithms.5 This means that our al-
gorithms are asymptotically optimal.

In the following, we present an alternative and more
natural reduction directly from Minimum Set Cover
that allows us to obtain a better explicit inapproxima-
bility bound. This bound implies that our greedy al-
gorithm is optimal up to a factor of 2. The proof of
the following theorem is given in the full version of the
paper [6].

Theorem 3.3. There exists β > 0 such that it is
NP-hard to approximate the Dodgson score of a given
alternative in an election with m alternatives to within
a factor of β lnm. Furthermore, for any ε > 0, there is
no polynomial-time

(
1
2 − ε

)
lnm-approximation for the

Dodgson score of a given alternative unless problems in
NP of input size k have algorithms running in time
kO(log log k).

A related question is the approximability of the
Dodgson ranking, that is, the ranking of alternatives
given by ordering them by nondecreasing Dodgson
score. To the best of our knowledge, no rank ag-
gregation function, which maps preferences profiles to
rankings of the alternatives, is known to provably pro-
duce rankings that are close to the Dodgson rank-

5Both inapproximability bounds have not been explicitly ob-
served by McCabe-Dansted.

ing [28, 29, 18, 19, 20] (see the survey of related work
in Section 1).

Our next result establishes that efficient approxi-
mation algorithms are unlikely to exist unless P = NP,
by proving that the problem of distinguishing between
whether a given alternative is the unique Dodgson win-
ner or in the last O(

√
m) positions is NP-hard.

Theorem 3.4. Given a preference profile with m alter-
natives and an alternative a∗, it is NP-hard to decide
whether a∗ is a Dodgson winner or has rank at least
m− 6

√
m in any Dodgson ranking.

Our proof, given in the full version of the paper [6],
uses a reduction from Minimum Vertex Cover in 3-
regular graphs and exploits a very weak statement
concerning its inapproximability (marginally stronger
than its NP-hardness) that follows from the work of
Berman and Karpinski [3]. The approach is similar
to the proof of Theorem 3.3, albeit considerably more
involved. This result provides a complexity-theoretic
explanation for the sharp discrepancies observed in
the Social Choice Theory literature when comparing
Dodgson elections with simpler, efficiently computable,
voting rules.

4 Approximability of Young

Recall that the Young score of a given alternative a∗ ∈ A
is the size of the largest subset of agents for which a∗ is
a Condorcet winner.

It is straightforward to obtain a simple ILP for the
Young score problem. As before, let a∗ ∈ A be the
alternative whose Young score we wish to compute. Let
the variables of the program be xi ∈ {0, 1} for all i ∈ N ;
xi = 1 iff agent i is included in the subset of agents for
a∗. Define constants eia ∈ {−1, 1} for all i ∈ N and
a ∈ A \ {a∗}, which depend on the given preference
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profile; eia = 1 iff agent i ranks a∗ higher than a. The
ILP that computes the Young score of a∗ is given by:

maximize
∑
i∈N

xi

subject to ∀a ∈ A \ {a∗},
∑
i∈N

xieia ≥ 1(4.6)

∀i ∈ N, xi ∈ {0, 1}

The ILP (4.6) for the Young score is seemingly sim-
pler than the one for the Dodgson score, given as (3.1).
This might seem to indicate that the problem can be
easily approximated by similar techniques. Therefore,
the following result is quite surprising.

Theorem 4.1. It is NP-hard to approximate the
Young score by any factor.

This result becomes more self-evident when we
notice that the Young score has the rare property of
being nonmonotonic as an optimization problem, in the
following sense: given a subset of agents that make a∗

a Condorcet winner, it is not necessarily the case that
a smaller subset of the agents would satisfy the same
property. This stands in contrast to many approximable
optimization problems, in which a solution which is
worse than a valid solution is also a valid solution.
Consider the Set Cover problem, for instance: if one
adds more subsets to a valid cover, one obtains a valid
cover. The same goes for the Dodgson score problem: if
a sequence of exchanges makes a∗ a Condorcet winner,
introducing more exchanges (that push a∗ upwards) on
top of the existing ones would not undo this fact.

In order to prove the inapproximability of the
Young score, we define the following problem.

NonEmptySubset
Instance: An alternative a∗, and a preference profile
RN ∈ LN .
Question: Is there a nonempty subset of agents
C ⊆ N , C 6= ∅, for which a∗ is a Condorcet winner?

To prove Theorem 4.1, it is sufficient to prove that
NonEmptySubset is NP-hard. Indeed, this implies that
it is NP-hard to distinguish whether the Young score
of a given alternative is zero or greater than zero, which
directly entails that the score cannot be approximated.

Lemma 4.1. NonEmptySubset is NP-complete.

The proof of the lemma appears in the full version
of the paper [6]. A short discussion is in order.
Theorem 4.1 states that the Young score cannot be

efficiently approximated to any factor. The proof shows
that, in fact, it is impossible to efficiently distinguish
between a zero and a nonzero score. However, the
proof actually shows more: it constructs a family of
instances, where it is hard to distinguish between a
score of zero and almost 2m/3. Now, if one looks at
an alternative formulation of the Young score problem
where all the scores are scaled by an additive constant,
it is no longer true that it is hard to approximate the
score to any factor; however, the proof still shows that
it is hard to approximate the Young score, even under
this alternative formulation, to a factor of Ω(m).

As noted in Section 2, one can imagine another al-
ternative formulation of the Young score. Indeed, one
might ask: given a preference profile, what is the small-
est number of agents that must be removed in order
to make a∗ a Condorcet winner? This minimization
problem, where the score is the number of agents that
are removed, is referred to as the Dual Young score by
Betzler et al. [4]. Of course, a Young winner according
to the primal formulation is always a winner according
to the dual formulation, and vice versa. Notice that it
is easy to obtain an εn-approximation under the dual
formulation for any constant ε > 0 by enumerating all
subsets of agents of size at least n − 1/ε and checking
whether a∗ is the Condorcet winner in the preferences
of these agents. However, we conjecture that the dual
Young score is hard to approximate significantly better;
we leave this issue for future work.

Finally, the strong inapproximability result for the
Young score intuitively implies that the Young ranking
cannot be approximated. The following corollary, whose
proof (given in the full version of the paper [6]) is a
straightforward variation on the proof of Lemma 4.1,
shows that this is indeed the case. It can be viewed as
an analog of Theorem 3.4 for Young.

Corollary 4.1. For any constant ε > 0, given a
preference profile with m alternatives and an alternative
a∗, it is NP-hard to decide whether a∗ has rank O(mε)
or is ranked in place m (that is, ranked last) in any
Young ranking.
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