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ABSTRACT

A graph with many vertices cannot be homogeneous
,
i . e . ,

for any pair of integers (i,j) all large graphs must contain

either a complete subgraph on i vertices or an independent

set of size j. The Ramsey number for (i,j) is the smallest

integer R such that all graphs with at least R vertices have

this property. For example, the (3,3) Ramsey number is 6;
if a graph has 6 or more vertices, then is must contain a

triangle or an independent set of size 3. The (4,4) Ramsey
number is 18, found in 1954 [GG] . The (5,5) Ramsey number

is still unknown; it is between 43 and 52.

This thesis deals with subgraphs slightly different

from the classical types. The subgraphs here are complete

graphs with one edge missing and induced subgraphs with

exactly one edge. The (4,6) and (4,7) Ramsey numbers for

these types of subgraphs is computed. The method used is an

exhaustive search, with many shortcuts employed to reduce

computation time.
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A. BACKGROUND

l. Notation.

In this thesis all graphs are undirected. A graph is

complete if every pair of vertices forms an edge. A graph

is n-colored if each edge is assigned one of n colors and a

subgraph is monochromatic if all edges in the subgraph have

the same color.

The Ramsey number R(G,H) is the smallest integer n such

that every 2 -coloring of the complete graph on n vertices

contains a monochromatic subgraph in the first color

isomorphic to G or a monochromatic subgraph in the second

color isomorphic to H. Equivalently, R(G,H) can be defined

as the smallest integer n such that for every graph F on n

vertices either F contains a subgraph isomorphic to G or the

complement of F contains a subgraph isomorphic to H. Both

forms of this definition will be used henceforth, with the

context making clear which form is appropriate for a

particular argument. Note that R(G,H) equals R(H,G) .

This thesis considers G and H of the form KB, the

complete graph on n vertices, or KB-e
,
the complete graph on

n vertices without one edge. The techniques used are

similar to those in [RK1], [RK2], [Ral], and [Ra2].

A graph F on n vertices is called a (G.H.n) -good graph

if there is no G in F and no H in the complement of F. A

graph F on n vertices is (G.H) -good if it is a (G,ff,n)-good

graph for some n. A graph is critical for R(G,H) if its

number of vertices is R(G,H) -1.

The following notation is used throughout:

x = vertex in graph G

S (x) = degree of x

Gx
= subgraph of G induced by all vertices adjacent to

x

Hx
= subgraph of G induced by all vertices different

from x and not adjacent to x.

The process of decomposing G into the triple (x,Gx,ffx)

is called preferring the vertex x in G (Figure 1) .



Figure 1. Preferring a vertex x.

2. History.

The theory of Ramsey numbers was begun in 1930 when

Frank Plumpton Ramsey, an English mathematician, published a

paper [Ram] entitled "On a Problem of Formal
Logic" in which

he proved:

Theorem 1. For every pair of integers i,j there exists

an integer R such that for all integers n greater than or

equal to R and all graphs F on n vertices, either F contains

a subgraph isomorphic to K{ or the complement of F contains

a subgraph isomorphic to Kr

It follows that for every n less than R, there is some

(K^Kj.n) -good graph. This result is the basis for finding

Ramsey numbers by exhaustive search methods.

Ramsey's theorem has been generalized in three

principal directions: using more than two colors, using

subgraphs other than complete graphs, and using hypergraphs.

There is only one known three-color Ramsey number: J? (3, 3, 3)
= 17 [GG] , i.e., each 3-color graph with 17 or more vertices

has at least one monochromatic triangle, and there is a 3-

color graph on 16 vertices with no monochromatic triangle.

A hypergraph on a set of vertices V is a collection of

subsets, called hyperedges , of V. For example, a 3-graph is

any collection of 3 -sets from a set V. The only known

Ramsey number for hypergraphs was found in 1991 by McKay and

Radziszowski [MR] . Here is their result.



Theorem 2. Every 2-coloring of the 3-sets of a set of

size at least 13 contains a monochromatic tetrahedron. In

the notation of Ramsey theory:

i? < i<T4 , i<T4 ; 3 ) 13

The existence of a 2-coloring of the 3-sets of a set of

size 12 with no monochromatic tetrahedron was shown in 1969

by Isbell [Is], so Theorem 2 establishes 13 as the Ramsey
number R(K4,K4;3) .

In 1935 P. Erdos and G. Szekeres published a paper [ES]
with ideas similar to Ramsey's in which two famous theorems

were established:

Theorem 3.

(a) For each integer n there exists an integer R such

that every collection of R points in the plane contains a

convex n-gon.

(b) Each sequence of length n2+l contains a monotone

subsequence of length n+1.

The Erdos-Szekeres paper was widely read and created much

interest in the theory and calculation of numbers related to

Ramsey numbers. Recent interest in this field caused

Graham, Rothschild, and Spencer to publish a second edition

of their book Ramsey Theory [GRS] .

B. CLASSICAL RAMSEY NUMBERS

1. Asymptotics.

The classical Ramsey numbers deal with G and H complete

graphs. One of the most useful tools used in Ramsey theory
comes from the analysis of the triple (x,Gx,ffx) , where x is

preferred in a (K^K^n) -good graph G. The following

arguments were presented by Greenwood and Gleason in 1955

[GG].



Theorem 4. If i and j are at least 3, then

Furthermore, if R{Ki.x,Kj) and R{Ki,Kj.x) are both even,

then strict inequality holds.

Proof. Let n = R(Ki_1,Kj) + Ri^.Kj.-,) ,
and assume G

is a (KirKirn) -good graph. Let x be preferred. Then Gx is

(*"i-i##j#o (x) -1) -good and Hx is (JC^,A^n-l-o (x) ) -good.

Therefore 5 (x) <R(K1.1,Kj) and n-l-6(x) <R(Ki,Kj.1) .

This implies that n-l < i^ic"^, JCj) -1 + R(KitK^) -1. ,

so that G cannot exist. Therefore the relation holds.

If R{Ki_x,Kj) and R(Ki,Kj_1) are both even, and

RiK^Kj) =R(Ki.1,Kj) + RiK^Kj.^) ,
then let n = i?(Ki,iCj) -1

and let G be a (2Cj,.Kj,n) -good graph. Since the number of

vertices in G is odd, there is a vertex x with even degree.

Preferring x decomposes the even number n-l into the sum of

S(x) and n-l-<5 (X) . This forces S (x) to be i?(2Ci.1,K7) -1 ,

which is odd, contradicting the choice of x.

The early work on Ramsey numbers concentrated on

estimating the asymptotic value of R(Kk,Kk) . If this

function is denoted by R then theorem 4 can be used to show

the following result.

Theorem 5.

R < C
4k k"1/2

for some constant C

A lower bound for R is established using the method of

finite probability spaces developed by Erdos [Er].



Theorem 6.

R > k
2k/2

[C + o(l)] for some constant C

Proof. The following notation is needed for the proof:

a = the number of 2 -sets in a n-set

Jb = the number of 2 -sets in a /c-set

c = the number of /c-sets in a n-set

d = the number of k-sets in a i?-set

Assume n is chosen so that 2c is less than 2b. Note

that the total number of ways to 2 -color Ka is
2'

and the

total number of ways to 2-color Kk is 2b. If both colors are

equally likely in a 2-coloring of Ka then the probability

that a given /c-set is monochromatic is 2(2~b).

Therefore the probability that some
k-

set is

monochromatic is at most 2c(2"b) . Since this probability is

less than 1, there exists a 2-coloring of Ka with no

monochromatic Kk. Therefore some (KklKkln) -good graph exists

and implying R is greater then n.

It follows that 2R is at least 2b. Applying Stirling's

formula to R yields the inequality stated in the theorem.

Theorems 5 and 6 combine to show

v/2 ^ liminf
R1/k

limsup
R1/k

<, 4

It is not yet known if lim
R1/k

exists.

2. Exact values.

The exact values of Ramsey numbers are easily found for

the following pairs of graphs:

Theorem 7.

(a) J?(K2fKj) = j for j > 1

(b) R(K3fK3) = 6

Proof. Since (K2,Kirn) -good graphs have no edges, n

must be less than j , implying the Ramsey number is at least

j . The graph with no edges and j vertices shows the Ramsey
number is at most j .



To show that R(K3fK3) is at most 6, consider a
2-

coloring of K6l and let v be any vertex. One may assume

that at least 3 edges incident with v are red. If v belongs

to a red triangle, the theorem is proved. Otherwise 3

vertices forming red edges with v comprise a green triangle.

To show that R(K3,K3) is greater than 5, color the edges of a

pentagon red and the diagonals green. This coloring has no

monochromatic triangle.

Figure 2. Unique critical graph for R(K3,K3) = 6,

Theorem 8.

(a) R(K3lK4)
= 9

(b) R(K3fK5)
= 14

Proof. Theorems 4 and 7 imply R(K3,K4) is at most 9.

The following graphs show R(K3lK4) is at least 9 and R(K3lK5)
is at least 14 . The latter graph has vertices Zx3 with two

vertices forming an edge if their difference is a cubic

residue mod (13) . Theorem 4 yields:

R(K3,K5) <. R(K2,K5) + RUCs.Kj

Since R(K2,KS) =5, it follows that R(K3,K5) = 14 and R{K3lK4)
= 9.



Figure 3 shows the three critical graphs for R(K3,K4) .

These graphs have a relationship which occurs fairly often

for Ramsey number critical graphs, viz., the smallest graph

is a subgraph of the others.

Figure 3. All critical graphs for R(K3,K4) = 9.

Figure 4. Unique critical graph for R(K3,KS) = 14,



Theorem 9. R(K4,K4) = 18

Proof. The relation R{K4,K4) <; R(K2,K4) + R(K4,K3)

shows that R(K4lK4) is at most 18 and the following graph

shows R(K4tK4) is at least 18. This graph has vertices Zxl
with two vertices forming an edge if their difference is a

quadratic residue mod (17) .

Figure 5. Unique critical graph for R(K4,K4) = 18.

Two more classical Ramsey numbers were found during the

1960's.

Theorem 10.

(a) R(K3,K6)
= 18 (1966) Kalbfleisch [Ka]

(b) R(K3,K7) = 23 (1968) Graver
,Yackel [GY]

Proof. The lower bound for these Ramsey numbers are

established by explicit graphs. The upper bounds require

many technical lemmas. The paper by Grayer and Yackel, for

example, is 51 pages long.



3. Recent Results.

No more classical Ramsey numbers were found during the

1970 's. Then computational methods were introduced in 1982

and more progress was made.

Theorem ll.

(a) R(K3IK9) = 36 (1982) Grinstead,Roberts [GR]
(b) i?(ir3,K8) = 28 (1991) McKay, Zhang [MZ]

Proof. The computer was used by Gr instead and Roberts

to find the minimum number of edges in certain {K3,K-,,n) -good
graphs and (K3,Kirn) -good graphs. McKay and Zhang used the

computer to show that no {K3lKil 28) -good graph exists by

examining the Hx graph which would result from preferring a

vertex x in such a graph.

C. RAMSEY NUMBERS OF THE FORM R(jq,JCj-e)

l. Early results.

The elementary facts about (KuK-e) Ramsey numbers are

summarized in the next theorem.

Theorem 12 .

(a) R(K2,Kre) = j for j > 1

(b) R(KitK2-e) = 2 for i > 1

(c) i?(Xi,X3-e)
= 2i-l for i > 1

Proof. Results (a) and (b) are immediate. To prove

(c) consider a 2-coloring of Ka. If this 2-coloring is

(KifK3-e,n) -good it must contain no red K{ and no adjacent

green edges. The largest such graph consists of 2i-2

vertices with i-1 vertex-disjoint green edges. Therefore

the Ramsey number is 2i-l.

The early research on this type of Ramsey number is

summarized in Theorem 13 .



Theorem 13.

(a) R{K4lK4-e) = 11 (1972)

(b) R(K3,K5-e) = 11 (1977)

(c) R(K3lK6-e) = 17 (1980)

(d) R(K5,K4-e) = 16 (1980)

(e) R{K3lKn-e) = 21 (1982)

Chvatal,Harary [CH]

Clancy [Cl]
Faudree

,
Rousseau

,

Schelp [FRS1]
Bolze,Harborth [BH]
Grenda

,
Harborth [GH]

Proof. The method of proof for each of these results

consists of the presentation of a critical graph to

establish a lower bound and a series of technical lemmas to

establish an upper bound. For each of these results, one of

the critical graphs will be presented.

Figure 6. One critical graph for R(K4,K4-e) = 11

10



Figure 7. One critical graph for R(K3,Ks-e) = 11

( This is the Petersen graph ) .

Figure 8. The unique critical graph for R{K3,K6-e) = 17

This graph is also critical for the Ramsey numbers

(3,3,3) [GG] and R(K4-e,K6-e) (see section F) .

11



Figure 9. One critical graph for R(K5,K4-e) = 16

Figure 10. The unique critical graph for i?(JC3,JC7-e) =21

12



2. Recent results.

In 1988 Exoo, Harborth, and Mengersen [EHM] proved the

following theorem.

Theorem 14 R(K4lK5-e) = 19

Proof. Their proof examines all critical colorings for

R(K4lK4-e) =11 and R(K3,Ks-e) = 11 in order to prove that

no 2-coloring of Kl9 can be missing a red K4 and a green

K5-e. One critical graph for R(K4,K5-e) is shown in Figure

11.

Figure 11. One critical graph for R{K4,Ks-e) = 19

In 1990 Radziszowski [Ral] proved the following

theorem.

Theorem 15.

(a) i?(JC3,X8-e)
= 25

(b) R(K3lK9-e) =31

13



Proof. The proof presents a general construction for

2-colorings of KD with no red triangles and no green K-e.

This construction yields critical colorings for R(K3,K6-e) ,

R{K3,Kn-e) , and R{K3,K%-e) . A separate construction yields

critical coloring for R(K3lK9-e) . Computer algorithms are

used to establish the upper bounds. The numbers which must

be calculated by computer are the lower bounds for the

number of edges in a (K3lK-e
,n)

-good graph.

3. Enumerating small graphs.

This section contains tables showing the number of

{K3,K-e,n) -good graphs, for j = 3,4,5, and 6, broken down by

the number of vertices, n, and number of edges, e. Also

minimal edge numbers are shown for j = 7 and 8 . These

results were recently obtained by Radziszowski [Ral] .

n=

e

0

1

2

3

4

1

1

Table 1. Classification of all (JC3,JC3-e) -good graphs.

n=

e

0

1

2

3

4

= 1

5

6

7

8

9

1

1

1

1

1 2

2

1

2

1 1

1

1

1

Table 2. classification of all (K3,K4-e) -good graphs.

14



n= 12 3456789 10

e

0 1111

1 111

2 12 2

3 2 3 1

4 14 4

5 2 7

6 1 7

7 4 8

8 2 12 2

9 1 8 5

10 1 14

11 1 12

12 1 10 1

13 4 1

14 2 3

15 1 1 1

16 1 1

17

18

19

20 1

Table 3. Classification of all (K3,K5-e) -good graphs,

The following table shows one feature of the family of

(iC3,fC7-e,n)-good graphs, viz., the minimal number of edges in

this family, as a function of n.

For values of n less than 7 the minimal number of edges

is 0.

n= 7 8 9 10 11 12 13 14 15 16 17 18 19 20

e= 2 3 4 5 8 11 15 19 24 30 37 43 54 60

tTable 4. Minimal number of edges, e,

over all (lC3,K7-e,n)-good graphs,

for n from 7 to 2 0

15



n= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e

0 11111

1 1111

2 12 2 2

3 2 3 4 1

4 14 7 5 1

5 2 9 11 1

6 1 7 19 10

7 4 20 25 1

8 2 18 51 10

_5
.

1 11 64 33

10 5 60 97 3

H 1 38 167 11

12 1 21 195 70

13 9 150 204

14 3 92 388 2

15 2 42 445 23

16 1 20 364 110

17 8 217 261

18 3 111 374 3

19 1 50 330 9

20 1 22 216 44

21 10 101 71

22 4 41 86

23 2 12 56

24 1 4 37 2

25 1 1 22 5

26 13 8

27 6 5

28 2 2

29 1

30 2

31 2

32

33

34

35 1

36

37

38

39

40
.

1

Table 5. Classification of all (K3,K6-e)-good graphs.

16



D. RAMSEY NUMBERS OF THE FORM i?(jq-e,Xj-e) , i 5 j 5

1. First results.

Theorem 16. R(K3-e,Kre) =

2j
- 3 for j * 3

Proof. Consider any two-coloring of Ka, for which the

red subgraph has no K3-e and the green subgraph has no

K-e. Then the red subgraph has maximum degree 1, and the

maximum number of red edges is j-2.

Theorem 17.

(a) R(K4-e,K4-e) = 10

(b) Furthermore, there is a unique (K4-e,K4-e, 9) -good
graph .

Proof. Theorem 4, which was originally proved for

complete subgraphs, can be proved also for subgraphs which

are complete with one edge missing. This version of theorem

4, together with theorem 16, gives an upper bound of 10 for

R(K4-e,K4-e) . The unique (K4-etK4-e, 9) -good graph is the line

graph of K33 (the line graph of a graph G has vertices the

edges of G and two vertices are adjacent if their

corresponding edges are adjacent in G) . To show this graph

is unique, let G be any (2C4-e,iC4-e,9)
-

good graph. Since the

Ramsey number R(K3lK3) is 6, one may assume there is red

triangle T in G. The remaining 6 vertices cannot contain a

green cycle of length m, where m is 3, 4, or 5, as the

following argument shows.

Assume there is a green cycle C on m vertices from the

remaining 6 vertices. Since G has no red K4-e
,
each vertex

of C belongs to at least 2m green edges incident with T. For

m equal to 3, 4, or 5, this implies one of the vertices in T

must belong to at least m-1 green edges incident with C,

forming a green
K4-

e, which is not allowed.

Let {u1,u2,u3} be the red triangle R. Since the

remaining 6 vertices do not have a green triangle, they must

contain a red triangle, {u4,u5lu6}. It is easy to see that

the final 3 vertices must also form a red triangle, and that

each of these 3 red triangles must have 3 red edges incident

with each of the other 2, forming the line graph on K33.

17



Table 6 shows all (K4-e,K4-e) -good graphs, classified by
the number of vertices, n, and the number of edges, e.

It was computed by Radziszowski in 1989 [Ra2].

n=

1234567
e

0 1 1 l

1 11

2 12

3 1 3

4 2 3

5 4

6_ 3 2

7 4

8 4

9 2

10 2

H 2

12

13

14

15

16

17

18

Table 6. Classification of all (K4-e,K4-e) -good graphs.

2. Properties of (X4-e,JC5-e,n) -good graphs.

Clancy [Cl] proved R(K4-e,K5-e) = 13 in 1977. The 14

critical graphs for R(K4-e,K5-e) were found by Faudree,

Rousseau, and Schelp [FRS2] in 1985. Table 7 shows the

number, NE, of edges and the size, SA, of the automorphism

group for each of these critical graphs.

NE= 24 24 25 25 26 26 26 27 27 27 28 28 29 30

SA= 48 16 8 8 4 16 16 12 12 4 4 16 8 48

Table 7. Critical graphs for R(K4-e,Ks-e) .

The family of (K4-e,K5-e, 12) -good graphs has the

interesting property that each graph in this family contains

one of the graphs with 24 edges as a subgraph.

18



Table 8 shows all (K4-e,Ks-e) -good graphs, classified by
the number of vertices, n, and the number of edges, e.

It was computed by Radziszowski in 1989 [Ra2].

n= 1 2 3 4 5 6 7 8 9 10 11 12

e

Oil 1 1

1 111

2 12 2

3 13 4 1

4 2 6 5

5 5 11 1

3 16 8

7 12 21 1

8 6 39 5

9 2 39 18 1

10 20 62 1

11 6 102 3

12 1 92 18

13 37 70

14 9 173

15 1 176 3

16 1 81 18

17 16 74

18 4 153

19 116

20 37 5

21 6 19

22 39

23 32

24 10 2

25 2 2

26 3

27 3

28 2

29 1

30 1

Table 8. Classification of all (JC4-e,JCs-e) -good graphs.

19



3. Recent Results.

Theorem 18. R(Ks-e,K5-e) =22

This was proven in 1989 by Clapham, Exoo, Harborth,
Mengersen, and Sheehan [CEH] using properties of certain

graphs on 11 vertices. it was proven independently by
Radziszowski [Ra2] using the enumeration of all (K5-e,K5-e)

-

good graphs on 2 0 and 21 vertices.

There is a unique graph which is critical for

R(Ks-e,Ks-e) . It is regular of degree 10. Its 105 edges are

partitioned into three sets of 35 edges in Figures 12 and

H

F V\^^

I <^

B

/ \

V
s

>>_

\y t

E

j

G

^V^\\ K

C

Figure 12. 35 edges from the unique critical graph for

R(Ks-e,Ks-e) = 22

20



E G

R Q y\ N

F 1 D H/1 \ K

O ^

C

U P \

:

M

B J

T L

Figure 13. 70 edges from the unique critical graph for

R(Ks-e,Ks-e) - 22

E. THE RAMSEY NUMBER R(K4-e,K6-e) is 17.

This section contains the main results of this thesis.

The lower bound of 17 for the Ramsey number R(K4,K6-e) was

already known, since R(K4,K6-e) R(K3,K6-e) = 17. That 17

is also an upper bound is proved by two different methods.

The first method is an exhaustive search by computer to

determine if there are any (K4-e,K6-e, 17) -good graphs. The

second method is a computer count of how many (K4-e,K5-e)
-

good graphs have certain properties related to the existence

of a (K4-e,K6-e, 17) -good graph. These two methods are

detailed below.

21



1. A lower bound for R(K4-e,K6-e) is 17

There are four (K4-e,K6-e, 16) -good graphs. The

smallest, with 40 edges (Fig. 8) , has been shown above to be

critical for R(K3,K6-e) . The other (K4-e,K6-e, 16) -good graphs

were previously known to Geoffrey Exoo [Ex]. There are 3 of

them, with number of edges equal to 48, 49, and 50, and

automorphism group sizes of 48, 24 and 48, respectively.
The graph with 48 edges (Fig. 12) , is regular of degree 6

and is a subgraph of the two larger graphs.

iff

K^>

^

Figure 14. Another critical graph for R{K4-e,K6-e) .

22



2. Search for all (JC4-e,X6-e,17) -good graphs.

The following notation is used in all of part F:

G =

(K4-e,X6-e,l7)-good graph

x =

any vertex in G

S =
support set

=

any subset of vertices of Hx satisfying:

(SI) no triangle in Hx has 2 vertices in S

(S2) S induces in Hx a subgraph with maximum

degree at most 1

(S3) no independent 4 -set in Hx is disjoint from S

OKN =

binary relation on the family of support sets

consisting of those pairs (S,T) such that:

(0KN1) no subgraph of Hx which is induced by 4

vertices and has only 1 edge is disjoint

from the union of S and T

(0KN2) no independent 4-set in Hx has 3 vertices

outside the union of S and T, and 1 vertex

in S - T or T - S.

Note that the vertices in Hx adjacent to a vertex y in

Gx form a support set, called the support set rooted at y.

Note further that every Gx is a (K3-e,K6-e, S (x) ) -good graph

and every Hx is a (K4-e,Ks-e, 16-<S (x) ) -good graph.

The exhaustive-search proof that no (K4-e ,K6-e , 17) -good

graph exists proceeds as follows. If such a G exists, and

some vertex x is preferred, then the Hx part of the

resulting triple (x,GxlHx) is a (K4-e ,K5-e , n) -good graph. The

computer program
"fillJ4J6"

examines all (K4-e ,K5-e,n) -good

graphs and shows that no such triple exists.

The counting proof also examines the decomposition of

G into (x,Gx,Hx) . Necessary properties of Hx are detailed

and the number of (K4-e ,K5-e
,r\)

-good graphs with these

properties are counted. The next two sections deal with the

counting proof.
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3. Properties of (JC4-e,Jt6-e)-good graphs.

Many of the results below rely on the properties of

support sets. Since Hx is a (K4-e,Ks-e, S (x) ) -good graph, no

support set can have more than 6 vertices. Since Gx is a

(K3~^,K6-e, 16-5 (x) ) -good graph, and has maximum degree at

most 1, Gx has at most 8 vertices. Moreover, if Gx has more

than 5 vertices, then at most 1 vertex does not belong to an

edge. It is clear that support sets rooted at adjacent

vertices of Gx are disjoint and support sets rooted at
non-

adjacent vertices of Gx are OKN-related.

An edge in Hx is called a support edge if its vertices

form a support set. The first proposition characterizes

support edges and shows that Hx has relatively few edges

which can occur as subsets of support sets.

Proposition 1. If an edge in Hx has both vertices in

the same support set, then it is a support edge.

Proof. Let {x,y} be an edge in Hx with x and y in a

support set S. It suffices to show that {x,y} is incident

with every independent 4 -set I in Hx. Assume neither x nor

y belongs to J. Since the complement of Hx has no Ks-e
,
both

x and y must be adjacent to at least 2 vertices in J. Since

{x,y} is not in a triangle, by (SI) ,
there must be exactly 2

vertices in I adjacent to x and the remaining 2 vertices in

I must be adjacent to y. One of the vertices of I must

belong to S, by (S3) . This causes 2 edges in S to be

incident, contradicting (S2) .

The second proposition relates to vertices in G of

degree 4 , 5
,
or 6 .

Proposition 2.

(a) If Hx has 12 vertices, then Hx has no support sets.

(b) If Hx has 11 vertices, then

(1) Hx has at most 4 support edges

(2) Hx has at most 3 support sets which are

pairwise OKN.

(c) If Hx has 10 vertices, then

(1) Hx has at most 9 support edges

(2) Hx has no pairwise OKN collection of 4 support

sets S,T,U,V satisfying:

(i) S and T have size at least 5

(ii) U and V have size at least 4

(iii) U and V contain at least 1 edge each.
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Proof. Four computer programs, described in Appendix

A, have been written to do the counting required to

establish this result. All 4 programs examine all graphs in
an input file consisting of all (K4-e

,
K5-e

, n) -good graphs for
a given n. The programs are: "counts", which counts all

support sets; "countE", which counts all support edges;
"hxOKN"

, which counts all pairwise OKN sequences of support

sets; and "OKN4E5", which counts those pairwise OKN

sequences of support sets satisfying the conditions in
(c)(2).

4. Main Results.

Theorem 19.

If G exists, then G has minimum degree at least 5.

Proof. The Ramsey number R(K4-e,K5-e) is 13, so each

Hx has size at most 12. Proposition 2(a) shows that no Hx
has size 12. Thus the maximum size of Hx is at most 11 and

the minimum degree in G is at least 5.

Theorem 20.

If G exists, then G has minimum degree at least 6.

Proof. Assume that some vertex x has degree 5. Then

Hx has 11 vertices. If x belongs to fewer than 2 triangles,
then Gx has an independent set of size 4 and Hx has 4

pairwise OKN support sets, which is not allowed by
Proposition 2(b)(2). Therefore each vertex of degree 5

belongs to exactly 2 triangles. The properties of Gx
mentioned above then imply that all vertices of G belong to

at least 2 triangles.

Now let y be a vertex of degree 5. Consider the 5

support sets in Hy rooted at the vertices adjacent to y.

These vertices must each belong to a triangle not containing

y, so the 5 support sets they generate must each contain one

or more edges. This causes Hy to have at least 5 support

edges, contradicting Proposition 2(b)(1). Thus no vertex in

G has degree 5.

Theorem 21.

If G exists, then G has minimum degree equal to 6.

Proof. If the minimum degree is greater than 6 then

the only degrees are 7 and 8, since no Gx has size greater

than 8. If every degree is 8, then every vertex belongs to

4 triangles, and in every Hx the 8 support sets break up

into 4 pairs of support sets, with each pair consisting of
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disjoint support sets containing 3 support edges each. This

requires 12 vertices in an Hx with 8 vertices and cannot

happen .

Therefore some vertex y has degree 7. Its Hy has 3

pairs of support sets with each pair consisting of disjoint

support sets having at least 5 vertices each. This requires

10 vertices in an Hy with 9 vertices, again impossible.

Thus the minimum degree is neither 8 nor 7.

Theorem 22. If G exists, then every vertex of G

belongs to at least three triangles.

Proof. The only vertices which can belong to fewer

than 3 triangles are the vertices of degree 6. Assume x is

such a vertex and y,z are the 2 vertices in Gx which do not

lie in any triangle with x. The support sets in Hx rooted at

y and z have size at least 5. Choose 2 non-adjacent

vertices u,v in Gx distinct from y and z. The 2 support

sets rooted at u and v each have size at least 4 and at

least 1 edge. The 4 support sets rooted at y,z,u,v satisfy

the conditions of Proposition 2(c)(2) and hence cannot

exist. Therefore all degree 6 vertices belong to 3

triangles, implying the theorem.

Theorem 23. The Ramsey number R(K4-e,K6-e) is 17.

Proof. It suffices to show G does not exist. Assume

that G does exist and that x is a vertex in G of degree 6.

Theorem 15 implies that the 6 support sets in Hx have at

least 2 edges each, requiring 12 support edges. Proposition

2(c)(1) shows this is impossible, since Hx has size 10.

Table 9 shows the classification of all (K4-e
,
K6-e

, n)
-

good graphs by the number of edges, e. The notation u is

used to denote an unknown number (not yet computed) .
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n= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

e

0 1 1 1 1 1

1 1 1 1 1

2 1 2 2 2

3 1 3 4 5 1

4 2 6 9 6 1

5 5 14 16 2

6 3 17 34 15 1

7 12 49 49 4

8 6 55 122 25 1

9 2 45 210 101 5

10 22 260 355 23 1

11 6 223 853 104 3

12 1 136 1399 529 12 1

13 49 1537 2066 49 1

14 12 1163 5567 u 4

15 2 582 9713 u 14

16 1 187 11072 u u

17 38 8261 u u

18 9 4020 u u

19 1 1238 u u

20 1 252 u u 2

21 41 u u 26

22 7 u u 447

23 2 u u u

24 1 u u u

25 1 47 u u

26 4 u u 40

27 1 u u 605

28 u u u

29 78 u u

30 7 u u 7

31 u u 24

32 u u 151

33 250 u 589

34 16 u 1645

35 u 3063

36 u 4105

37 831 4030

38 71 3100

39 7 1812

40 747 1

41 207 0

42 36 0

43 5 0

44 0

45 0

46 0

47 0

48 1

49 1

50 1

Table 4. classification of (JT4-e,2C6-e)-good graphs.
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F. THE RAMSEY NUMBER R(K4-e,K7-e) is 28.

1. Strongly regular graphs.

The following exposition of strongly regular graphs is

taken from Seidel [Se] . A vertex in a graph is a
between-

vertex if it is adjacent to at least two vertices. A graph

is strongly regular with parameters {k,l,m) if

(a) each vertex is adjacent to k vertices;

(b) each adjacent pair of vertices has 1

between-vertices ; and

(c) each non-adjacent pair of vertices has m

between-vertices .

There is a relationship between these three numbers and

the number of vertices, n:

(d) (n-k-l)m = k(k-l-l)

Examples of strongly regular graphs are the pentagon

(Fig. 2) with parameters (2,0,1) and the Petersen graph

(Fig. 7) with parameters (3,0,1).

Strongly regular graphs can be characterized by
properties of their adjacency matrices. If A is the

adjacency matrix of a strongly regular graph G, then the

square of A has k for its diagonal entries and either 1 or m

for each off-diagonal entry. If B is the adjacency matrix

of the complement of G, J is the identity matrix, and J is

the square matrix of all ones, then

(e) A + B + I = J

(f)
A2

= kl + IA + mB

(g)
A2

+ (m-l)A -

(k-m) I = mJ

It can be shown that the quadratic form in equation (f) has

real roots r,s. The four parameters (n,k,r,s) are used to

classify strongly regular graphs, because they determine m

and 1 as follows:

(h) m = k + rs

(i) 1 = r + s + m

Various combinations of the four parameters have been

completely analyzed. For example, there are only four

possibilities for strongly regular graphs if 1 = 0 and

m = 1:

{n,k,r,s)
= (5,2,l/2+V5/2,l/2-V5/2) <--> pentagon

{n,k,r,s)
= (10,3,1,-2) <--> Petersen graph

(n,/c,r,s)
= (50,7,2,-3) <--> Hoffman-Singleton graph

(n,k,r,s) = (3250,56,7,-8) <--> unknown
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There are only two strongly regular graphs with r = 1

and Krein parameter (2 ,2 ,2)=0(see Seidel [Se]). They are:

(n,k,r,s) = (27,10,1,-5) < > complement of Schlafli graph

(n,k,r,s) =

(275,112,2,-28) < > McLaughlin graph

2. The Schlafli graph.

The Schlafli graph has 27 vertices, 216 edges, and is

regular of degree 16. Its complement, CS
,
has 135 edges and

is regular of degree 10. Equations (h) and (i) show that

each edge in CS belongs to exactly one triangle and each

non-adjacent pair of vertices in CS have exactly 5
between-

vertices .

The graph CS can be constructed from the graph 5T,

consisting of five triangles with one vertex in common, and

the graph, [716, the unique {K3lK6-e, 16) -good graph (Fig. 8).

These graphs are shown in Figure 15.

Figure 15. The graphs 5T and C716.

716 contains 40 edges and each edge belongs to four 4-

cycles. Call two edges 4-opposite if they form opposite

sides of a 4-cycle. Then the 40 edges of [716 can be

partitioned into five sets of eight edges each, { elf e2, e

-4f -5/ -6/ 2?/

are { e

{ eif

edges

2/ e4/

*5/

e8 } , such that the edges 4-opposite with ex

e8 } and the edges 4-opposite with e2 are

Figure 16 shows one such set of eight

:3/

29



Figure 16. Eight edges from Z716.

The five triangles in 5T are connected to [716 by

connecting each of the five edges in 5T not containing the

vertex of degree 10 as follows: one end forms four triangles

with the edges 4-opposite from ex and the other end forms

four triangles with the edges 4-opposite from e2. This

process is repeated for all five triangles in 5T, resulting
in the graph CS .

Theorem 24. CS, the complement of the Schlafli graph,

is the unique (K4-e,K7-e, 27) -good graph.

Proof. If y is a vertex in a (K4-e,K7-e) -good graph, F,

and F is decomposed into (y,Gy,Hy) by preferring y, then Gy
is (X3-e,X7-e)-good and Hy is (K4-e,K6-e) -good. Therefore Gy
has at most 10 vertices and Hy has at most 16 vertices,

implying F has at most 27 vertices. Thus 28 is an upper

bound for the Ramsey number R(K4-e,K7-e) .

Note that CS has no K4-e subgraphs. In the Schlafli

graph each vertex belongs to 16 K6's. The largest

intersection between any two of these K6's is a K3, so there

are no K7-e subgraphs in the Schlafli graph and CS is (K4-

e ,K7-e) -good , establishing
28 as the Ramsey number R(K4-e,K7-

e) .

The computer program "fillJ4J6", modified to construct

(K4-e,K7-e)
- good graphs, was used to extend all four of the

(X4-e'x6-e,16)-good graphs to all possible {K4-e ,K7-e
,21) -good

graphs. Only the graph CS was produced, proving its

uniqueness as a critical graph for the Ramsey number R(K4-

e,K7-e) .
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3. Other (JC4-e,JC7-e)-good graphs.

Some (K4-e
,K7-e , n) -good graphs have been computed for n

less than 27. The following table shows the smallest number

of edges observed in a (K4-e , K7-e , n) -good graph, for 8 < n <

27. For n less than 15, the minimal graph has maximum

degree < 3. For n between 10 and 15, the minimal graph has

five connected components, n-10 triangles, and 15-n edges.

For n less than 10, the minimal graph has maximum degree < 2

(except for n =

7, where one vertex has degree 2). For n

less than 7, the minimal graph is independent.

n = number of vertices

e = upper bound for minimal number of edges

n

e

n

e

8 9 10 11 12 13 14 15 16 17

3 4 5 7 9 11 13 15 26 32

18 19 20 21 22 23 24 25 26 27

38 49 65 75 87 97 106 115 125 135

Figure 17. Smallest number of edges, e, found for a

(JC4-e,X7-e,n)-good graph.
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G. COMPUTATIONAL TECHNIQUES

l. Need for computer.

There are
2136

graphs with 17 vertices. If each one

could be tested for (K4-e,K6-e) -goodness in one second, it

would take
IO36

days to test them all.

The total number of (K3-e,K6-e) -good graphs is 15, since
these graphs have maximum degree 1 and at most 4 edges. The

total number of (K4-e,K5-e) -good graphs is 1,623, as seen in

Fig. 19. To build a (K4-e,K6-e, 17) -good graph from, say, a

(2C3-e,iC6-e,6)-good graph and a (K4-e,K5-e, 10) -good graph

entails choosing 6 subsets from each of 407 graphs on 10

vertices. This is 2,500,608 choices; at one second per

graph, it would take 29 days to find all

(K4-e,K6-e, 17) -good graphs having a vertex of degree 6.

To build a {K4-e,K7-e, 25) -good graph from, say, a

(K3-e,K7-e,9) -good graph and a (K4-e,K6-e, 15) -good graph

entails choosing 9 subsets from each of 19,521 graphs on 15

vertices. This is 5.7 million choices and would take 183

years. The algorithms outlined below permit these

constructions to be done in a matter of days.

2. Description of main algorithm.

The idea of the algorithm is to construct a (K4-e,K6-e,

m+n+1) -good graph F, from a vertex x, a (K3-e
,
K6-e

,m) -good

graph G, and a (K4-e,K5-e,n) -good graph H, so that the triple

(x,G,H) becomes the triple (x,GxlHx) which results from

preferring x in F.

There are five principal methods used to shorten

computation time:

(a) store each graph as a one-dimensional array formed

by converting its adjacency matrix into a string

of hexadecimal digits,

(b) represent subgraphs by 3 2-bit integers,

(c) store all support sets in one array,

(d) store the OKN relation between support sets,

(e) have the minimum degree of the constructed graph be

the degree of the preferred vertex.

The algorithm used in the program
"fillJ4J6" is:

0. read a (K4-e,K5-e) -good graph from a file.

1. compute all support sets
with size greater than S (x) -2

and store in array SU[].

2. compute the OKN relation and store it in array OK[][].

3. for each edge in G choose a disjoint pair of support

sets.
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4 . for each vertex in G not in an edge choose one support

set.

5. check all pairs of independent vertices in G to make

sure their support sets are OXW-related.

6. construct the edges from G to x and to the support

sets.

7. test if the resulting graph is (K4-e,K6-e) -good.

8. store the graph in a file if it is good.

After all graphs from the input file have been

processed, the output file is shortened by removing graphs

isomorphic to other graphs in the file.

2. Storage of OKN relation.

The OKN relation is a large sparse matrix, 320 by 320,

and is stored as a 320 by 10 matrix, using 32-bit words

consisting only of powers of 2. Each index in the array of

support sets is written in the form:

i = 32 (d-l) + r

where d and r is positive, and r is < 32. Suppose

j = 32(x-l) + y. Then support_set [i] is OXW-related to

support_set[j] if and only if

0KN[i][[x]
=

2y-1

and 0KN[j][[d]
= 2

3. Graph isomorphism algorithm.

The graph isomorphism algorithm is described in [RK1] .

The first test compares the degree sequences of two graphs.

The second test compares the "3 -independent
set"

sequences

of the two graphs (this sequence consists of the number of

3 -independent sets containing each vertex) . If these two

tests do not show the two graphs to be non- isomorphic, then

a full isomorphism algorithm is run.

4. Run times.

The longest run, using a 3B1 UNIX PC, took 117 hours.

This run processed all of the 1,623 (K4-e,K5-e) -good graphs

and computed all of the 19,521 (K4-e,K6-e, 15) -good graphs.
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H. COMPUTER PROGRAMS

The primary computer programs used in this thesis are

presented here in schematic form.

program:

arguments :

purpose:

code:

program :

arguments :

purpose:

code:

counts (H)
H =

R(K4-e,K5-e) -good graph

compute the number of support sets in H

1. call support ([7,H)
2 . return number of nonzero entries in U

countE (H)
H =

R(K4-e,K5-e) -good graph

compute the number of support edges in H

1. call support ([7, H)
2. for each edge in ff:

2a. if E belongs to some set in U

increment NUM

3. return NUM

program:

arguments :

purpose:

code:

program :

arguments :

purpose :

code:

OKN4E5(#)

H = R(K4-e
,K5-e)

-good graph

compute the maximum size of a family of support

sets in H satisfying:

(a) 2 sets have size 5

(b) all sets have size 4 or 5 and at least

1 edge

(c) all sets are pairwise OKN

1. call support (U ,H)
2. remove from U support sets of size less than

4 or greater than 5

3 . remove from U support sets without an edge

4. for each pair (S1,S2) from U with SI OKN S2

and size(Sl)
=

size(S2)
= 5:

4a. form the array C of all support

sets from U of size 4 which are OKN

with SI and S2

4b. define length(Sl,S2) =

maxOKN(C)

5. return the maximum value of length (SI, S2)

support (D,H)

U =

array to hold all support sets in H

H = R(K4-e,K5-e) -good graph

compute the family of support sets in H

1. build array A of all adjoining edges in H

2. build array T of all triangles in H

3. build array I of all independent 4-sets in H

4. for each set S of vertices of H:

if S contains no A[i] and S meets each

T[i] in fewer than 2 vertices and S meets

each J[i] in at least 1 vertex then adjoin

S to the array U

34



program: hxOKN(C)

arguments: C =

array of support sets

purpose: compute MAXOKN = the maximum number of support

sets in C which are pairwise OKN

code: 1. define MAXOKN = current value of the maximum

number of support sets in C which are

pairwise OKN

2. build array flag of O's of same length as C

3. call cluster (&MAXOKN, flag,C,l)
4. return MAXOKN

program : cluster (ptr, flag,C, index)
arguments: ptr = pointer to integer variable MAX

flag =

array of O's and l's showing families

of support sets which are pairwise OKN

C =

array of support sets

index = index in array C

purpose: recursively construct all families of support

sets which are pairwise OKN and record the

maximum size of such families

code: l. if index > length (C)
{ update MAX; return; }

2. if C[index] is OKN with all preceding
flagged support sets

{ C [ index] = 1;
call cluster (ptr, flag,C,index+1) ; }

3. C[ index] = 0

4. call cluster (ptr, flag, C,index+1)

program: fillJ4J6 (min,H)
arguments: min = integer

H = (K4-e,K5-e) -good graph

purpose: construct all (K4-e,K6-e) -good graphs with

preferred triple (y,Gy,Hy) using Gy with size

min, H as Hyl and minimum degree min

code: 1. call support (U ,H)
2 . for each number of edges in Gy and each

assignment of support sets from [7 to the

vertices of Gy:

2a. test if the support sets for adjacent

vertices are disjoint and the support

sets for independent vertices are OKN

2b. test if the resulting graph is

(K4-e,K6-e) -good with minimum degree

equal to min
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