Fabrication of Sub-300nm Fins by Self-Aligned Double Patterning at RIT

Kelly Weiskittel, Advisor: Dr. Dale Ewbank
Rochester Institute of Technology, Department of Electrical and Microelectronic Engineering, Rochester, NY 14623

Project Objectives

Goal: Fabricate sub-300nm silicon fins at RIT’s SFML by self-aligned double patterning (SADP).

Motivation:
- Patterning advancements necessary to uphold Moore’s Law
- SADP → FinFETS
- RIT currently only has a planar CMOS process

Theory

- SADP allows for the lithography pattern to be transferred to a mandrel, which in turn will be used as an etch mask.
- Smaller features may be realized without the implementation of more expensive lithography equipment.

Process Flow [1]

1. RCA Clean
2. SOC Hardmask
3. Deposition
4. Oxide Mandrel Deposition
5. BARC Deposition
6. Photolithography
7. Etch BARC
8. Trim Etch for Mandrel
9. Mandrel Etch
10. Solvent Strip
11. Silicon Nitride Deposition
12. Silicon Nitride Spacer Etch
13. Strip Oxide Mandrel Etch
14. Etch SOC
15. Etch Silicon Fins

Laboratory Results

- Lithography:
 - Qualified AZ Mir 701 PR for use with process
 - Thinned resist 2:1, 701 PR:PGMEA for 300nm coat
 - FEM performed → Conventional illumination, NA = 0.48, Sigma = 0.625 → dose = 148 mJ/cm²
 - Determined spin speeds and times for SOC, BARC, and PR depositions
 - Deposition rates determined:
 - Nitride = ~64 Å/s with 20 min. deposition in LPCVD
 - Oxide = ~88 Å/s in Applied Materials P5000 TEOS chamber
 - Produced the following standard deviations in film uniformity:
 - SOC: 1.56%
 - Oxide: 3.45%
 - BARC: 0.47%
 - Photoresist: 1.27%
 - Nitride: 1.49%
 - Etch rates determined:
 - Oxide: ~32 Å/s
 - BARC: ~8 Å/s
 - Nitride: ~3 Å/s

- Conclusions
 - Hard mask layer needed on top of oxide mandrel layer
 - In addition, oxide mandrel etch may not be anisotropic enough, resulting in undesirable removal of silicon nitride spacers
 - Further testing and development necessary
 - Undergraduate course – implementation of fin fabrication in labs

- Future Work:
 - Development of RIE/hardmask plasma etch process improvements
 - Develop complete implementation of P5000 tool cluster
 - Undergraduate course – implementation of fin fabrication in labs
 - PhD candidate – development of finFET process

References:

Acknowledgements

- Dr. Pearson
- Dr. Ewbank
- Christopher O’Connell
- RIT SFML Staff
- Matthew Hartensveld
- Paul Gregorius
- Dr. Fuller
- Stephanie Bolster
- RIT Microelectronic Engineering Undergraduate Class of 2019