Transfer Process with 2-Dimensional Transitional Metal Dichalcogenides Materials

Advisors: Dr. Sean Rommel, Dr. Ivan Puchades, Dr. Santosh Kurinec

William Huang
Outline

• Transitional Metal Dichalcogenides (TMD)
• Project Objective
• Vienna Ab-initio Simulation Package
• Experimental Procedures
• Process
• Raman Spectroscopy Results
• Conclusion
• Future Work
• Acknowledgments
Transitional Metal Dichalcogenides (TMD)

• Currently in research stage

• Flexible and printable that has a great potential replacing organic semiconductors and graphene

 • Graphene – poor semiconductor device material

Objective

• To expand RIT’s knowledge on non-traditional 2D materials
• Tape transfer monolayer MoS$_2$ material from a substrate containing bulk MoS$_2$ to a blank substrate
• Able to differentiate different layers of MoS$_2$ with Raman Spectrometer
• Electrically test and characterize behavior of mono and bulk MoS$_2$ material
• To obtain a working method to extract band-gap from electrical testing
Vienna Ab-initio Simulation Package

• One of the software that uses Density Function Theory (DFT) to compute quantum problem for materials

• K-points in Brillouin zone
 • Affects with the accuracy of simulation

Vienna Ab-initio Simulation Package
MoS\textsubscript{2} Monolayer

MoS\textsubscript{2} Monolayer
van der Waal DFT
12x12x1, 400 eV cutoff

Energy (eV)

M \quad \Gamma \quad K
MoS$_2$ Bilayer

van der Waal DFT
12x12x1, 400 eV cutoff
MoS$_2$ Bandgap Comparison

MoS$_2$ Monolayer
van der Waal DFT
12x12x1, 400 eV cutoff

MoS$_2$ Bilayer
van der Waal DFT
12x12x1, 400 eV cutoff
Experimental Procedures

• A various sizes of mask designs that will be able to fit tape transferred materials
 • Smaller grid size may cause transfer materials laying on the grid pattern causing the material to warp due to the step height of silicon for level 0 marking

• An efficient way to determine mono and bulk layer material under microscope for Raman Spectrometer inspection

• Observe the different behavior properties between mono and bulk layer material after being fabricated into resistors
Process Flow

- Grow 3000Å Oxide on second substrate

1. Substrate 1
 - MoS₂
 - Kapton Tape

2. Substrate 2
 - MoS₂
 - Tape
 - MoS₂
 - Kapton Tape

3. Substrate 2
 - Oxide

4. Substrate 2
 - Tape
 - Oxide

5. Substrate 2
 - MoS₂
 - Aluminum Oxide

6. Substrate 2
 - MoS₂
 - Aluminum Oxide

7. Substrate 2
 - Oxide
Tape Transfer Process
Raman Spectrometer

• Provide molecular vibrations and crystal structures
• Laser wavelength used for Raman Spectroscopy is 633nm
• Each material has its own unique fingerprint pattern that serves as its identification
Visual Inspection
Raman Spectroscopy – Raman Inspection Setup

40.38µm

55.92µm
Raman Spectroscopy – Raman Inspection Setup

12.22µm

20.38µm

12.22µm
Raman Spectroscopy – Sample Data Collection
Raman Spectroscopy – Sample Data Collection
Conclusion

• The tape transfer result were proved to be promising. Achieving for a bi-layer transfer is possible and a mono-layer exfoliation is also feasible but with restriction on the inspection tool, a mono-layer transfer can only be assumed by visual inspection.

• Simulation result agrees with theoretical understanding on the material

• Expecting high peaks for Raman Spectroscopy results ranging between 383 and 404 cm\(^{-1}\) for monolayer MoS\(_2\)

• Expecting bandgap result to be between 1.2eV to 1.9eV depends on how many atomic layers
Future Work

• A method that can confirm the mono-layer MoS2 transfer
• To build a mono layer MoS$_2$ device at RIT
 • Conduct electrical testing for its material and electrical properties to confirm and further improve simulation results
Acknowledgement

A special thanks and appreciation to the entire RIT SMFL staff members, Dr. Sean Rommel, Dr. Ivan Puchades, Dr. Parsian Mohseni, Dr. Santosh Kurinec, Dr. Rob Pearson, Dr. Dale Ewbank, Ray Shan from Materials Design and the entire class of 2019 classmates for assisting me on tools and help needed to conduct my research.