Fabrication of Photonic LPCVD Silicon-Nitride Waveguides

ROBERT DALHEIM

ADVISORS: DR. PREBLE, DR. PEARSON, DR. EWBANK

Overview

- Project Goals
- Photonics Overview
- Photomask Design
- Process Flow
- Results
- Acknowledgements

Project Goals

- ❖ Fabricate TE mode Nitride Waveguides using the tools available in the RIT SMFL Cleanroom
 - Amorphous silicon waveguides have already been made
- Demonstrate loopback waveguides with ring resonators
- Qualify Nitride Waveguides against similar designs
- Lay the groundwork for research to come:
- ❖ Get test results showing similar transmission as Eigenmode Solution Simulation of 450nm thick and 1000nm wide

Photonics Overview

- Photonics is the study of transmission and detection of light
- ❖Instead of wires, we have waveguides
- ❖ Integrated photonic circuits uses photons and electricity to transmit data
- Integrated photonic circuits branch optical physics and microelectronics

Why Photonics is Needed

- *Electrical interconnects limited in voltage and frequency, driving power consumption up
- Hard to scale due to bandwidth being limited by size
- Photonics allows for high bandwidth and low power consumption
- ❖ Data transmission is much faster

Mask Design

Design Variations:

- Loopback Waveguide
 - Varied Grating Coupler Taper
 - Varied Grating Coupler Pitch
 - Varied Waveguide Length
- Ring Resonator Waveguide
 - Varied Grating Coupler Taper
 - Varied Grating Coupler Pitch
 - Varied Resonator Gap

6

Mask Design

Design Variations:

- Loopback Waveguide □
 - Varied Grating Coupler Taper
 - Varied Grating Coupler Pitch
 - Varied Waveguide Length □
- Ring Resonator Waveguide □
 - Varied Grating Coupler Taper
 - Varied Grating Coupler Pitch
 - Varied Resonator Gap □

1000nm Width Loopback Waveguides

Varied Grating Parameters:

Pitch: 700nm – 1500nm Taper: 100μm – 1000μm

Test Head Setup

[1] Sanjna Lakshminarayanamurthy, 2017

500nm Width Resonator Waveguides

Varied Grating Parameters:

Pitch: 700nm – 1500nm Taper: 100μm – 1000μm

Process Flow

Nitride Critical Dimensions of: 500nm, 1000nm, and 1500nm

Second TEOS SiO_2 (2000nm) Si_3N_4 (250nm, 500nm, or 750nm) $First TEOS SiO_2$ (2000nm) Si Substrate (675000nm)

- 1. RCA Clean
- 2. Oxide Deposition
- 3. Nitride Deposition
- 4. Waveguide Pattern
- 5. Etch
- 6. Cladding Deposition
- 7. Test

Focus Exposure Matrix

- New film stack being used requires different dose exposure
- ❖ New Photoresist being used in the lab: MiR 701
- ❖ Typical exposure dose: 275mJ/cm²
- FEM Exposure variation from 175mJ/cm² to 375mJ/cm²
 - ❖ Best exposure dose: 185mJ/cm²
 - ❖ Resolved 0.375µm lines and spaces

Photoresist Problems

- First photoresist exposure showed poor resolution
- Small photoresist lines not sticking to surface
- ❖ Used PRS2000 to chemically strip photoresist and attempted again
- Concluded: Nitride left surface rough
- Chemical strip and rinse did surface preparation that allowed good adhesion

Fabrication Results

Fabricated Loopback Waveguide with 1.5μm width, 1μm coupler pitch, and 400μm coupler taper

Close up of Grating Coupler showing $0.5\mu m$ line and space resolution

Fabrication Results

Fabricated Resonator Waveguide with 0.5μm width, 1μm coupler pitch, and 300μm coupler taper

Close up of resonator gap showing $0.3\mu m$ space between waveguide and ring

Simulation Results

- *Test Head Angle Variation to optimize transmission through Grating Coupler
- ❖ Varied from 20 degrees to 30 degrees with best result of 24 degrees

Simulation Results

- Grating Coupler Pitch Variation to optimize transmission
- ❖ Varied from 700nm to 1500nm with best result of 1300nm

What's Next

- **❖ Next Step:** *Physical testing of the fabricated waveguides*
- Improve process to get smaller features
- ❖ Project focused more on the fabrication than simulation and optimization
- Simulations for each waveguide to compare the "ideal" to actual
- ❖ More simulations to redesign mask and get better transmission and lower loss
- Create a tunable thermo-optic waveguides or CMOS photonic structures

Acknowledgements

- ❖ Dr. Preble, Dr. Pearson, and Dr. Ewbank for guidance and help whenever a roadblock was encountered.
- Matt Van Niekerk for helping with simulations.
- Dr. Puchades for help with process development.
- Stephanie Bolster, Tim Blier, Ky-El Sanchez for teaching me about the tools.
- ❖ Patricia Meller, Sean O'Brien, and John Nash for helping me get certified on tools.
- The SMFL Staff for their tool knowledge and assistance.
- ❖ Dr. Pearson and Dr. Kuniec for starting wafer substrates.
- ❖ Dr. Fuller for his LPCVD Nitride Recipes and the other recipes developed over the years.