ENHANCED BORON ACTIVATION IN XENON FLASH LAMP ANNEALED POLYSILICON THROUGH PRE-AMORPHIZATION

Adam Rosenfeld
Advisor: Dr. Karl Hirschman
Overview of Thin Film Transistors (TFTs)

- Individual pixels of LCD and OLED displays are controlled by a TFT backplane
- Controls voltage applied to liquid crystal or current to OLED
- Majority of TFTs in production are made from amorphous silicon (aSi:H)
- Devices are limited to NMOS only and have electron mobility less than 1cm²/Vs

Expanded view of a LCD display[1]
TFT Overview Continued

- Next generation displays require TFTs made from higher mobility materials.
- CMOS TFTs allow for incorporation of external control circuitry to be incorporated onto display.
- Devices fabricated using flash lamp annealed polysilicon (FLAPS) have CMOS compatibility, high mobility, scalability, and are compatible with existing manufacturing.

![Carrier mobility requirements for different display configurations][1]

[1]: Carrier mobility requirements for different display configurations[2]
Overview of Flash Lamp Annealing (FLA)

- The sample, amorphous Si on glass, is heated and exposed to a pulse from broad-spectrum Xe flashbulbs.
- Si film absorbs light, rapidly heating and melting.
- Glass substrate doesn’t absorb light, staying below the thermal limit.
- Si recrystallizes resulting in a polycrystalline film.
- Flash lamp system is scalable allowing larger displays to be fabricated.

Illustration of FLA setup[3]
Previous Work at RIT

- FLAPS TFT have been fabricated with the source/drain implant prior to FLA, being activated during
 - Large devices worked but had significantly reduced effective channel length due to dopant diffusion during the Si melt

- Devices were subsequently fabricated with the implant occurring after FLA
 - Devices worked but the performance suffered due to low dopant activation in the source/drain
 - This was especially bad in PMOS devices

Best-case linear & log scale CMOS transfer characteristics from FLAPS TFTs with Lmask = 32 μm and W = 100 μm. [4]
Problem Statement

- Boron ions have difficulty creating Si displacements, which assist in activation, due to the small atomic mass and film limitations.

- Diffusion processes are limited by the thermal limitation of the glass.
 - This is why PMOS devices have activation problems.

Boron activation vs temperature[5]
Activation Through Pre-Amorphisation

- Previous work with crystalline silicon shows that the addition of fluorine ions through implant increases the boron activation at low temperatures [6].
- Implant results translated well to thin film crystalline Si.
- The fluorine ions are hypothesized to amorphize the Si resulting in higher activation during the anneal.
- For this study fluorine implant doses of 1×10^{15} cm$^{-2}$ and 5×10^{15} cm$^{-2}$ at 75 keV were chosen.

Addition of fluorine in crystalline Si [6]
Device Fabrication

- Devices were fabricated using a previously developed FLAPS TFT process
 - Patterned a-Si mesas
 - 100nm SiO₂ capping layer
- Samples were preheated to 500°C on an enclosed hotplate
- They were flashed at 505V for 250µs resulting in an exposure energy of 5.1 J/cm², measured by bolometer
- As part of the source/drain implant, fluorine was implanted before the boron
Fluorine Amorphization in Source/Drain

- SRIM simulation was performed to verify implantation settings
- Peak of the fluorine implant is below the silicon
- SRIM displacement profile suggests complete amorphization at fluorine dose 10^{15} cm$^{-2}$
- May offer boron activation enhancement as demonstrated in thin film crystalline Si
Impact of Fluorine on Sheet Resistance

- Sheet resistance was measured using van der Pauw test structures
- The sheet resistance increases as fluorine dose increases
- Source/drain mesa regions and van der Pauw structures are not perfectly analogous due to the directionality and area dependence of FLAPS
- What about TFTs?

![Sheet Resistance by van der Pauw Measurements](image)
TFT Results

<table>
<thead>
<tr>
<th></th>
<th>No Fluorine</th>
<th>$\Phi_F - 10^{15} \text{ cm}^{-2}$</th>
<th>$\Phi_F - 5 \times 10^{15} \text{ cm}^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_T (linear)</td>
<td>-3.5 V</td>
<td>-4 V</td>
<td>-2.4 V</td>
</tr>
<tr>
<td>ΔV_T</td>
<td>0 V</td>
<td>0.3 V</td>
<td>2 V</td>
</tr>
<tr>
<td>μ_{lin}</td>
<td>24 cm2/Vs</td>
<td>13 cm2/Vs</td>
<td>28 cm2/Vs</td>
</tr>
<tr>
<td>μ_{sat}</td>
<td>140 cm2/Vs</td>
<td>70 cm2/Vs</td>
<td>220 cm2/Vs</td>
</tr>
<tr>
<td>I_{Dmax}</td>
<td>131 μA</td>
<td>58 μA</td>
<td>280 μA</td>
</tr>
</tbody>
</table>
Fluorine related subthreshold degradation

- Presence of fluorine entering the channel may be the source of subthreshold degradation
- SRIM simulation confirms this possibility
 - Tail of fluorine implant made it through the blocking oxide
Location Dependence

- Device characteristics change consistently depending on location on wafer
- Most likely cause is variation in crystallinity due to non-uniform exposure condition
- Direct comparison between treatments difficult
Conclusion

- Increased current of devices with higher $^{19}\text{F}^+$ dose indicates lower series resistance
 - Formal separation of series and channel resistance is not possible due to inconsistencies in device operation
- High dose devices have less off-state gate control, high leakage and DIBL-like behavior
- Interpretation of the impact of fluorine on boron activation is compromised due to the likelihood of fluorine entering the channel
- Non-uniformity in the exposure window complicates direct device comparisons and statistical analysis
 - Improved system control needed to mitigate this issue
- Study is ongoing:
 - $^{19}\text{F}^+$ experiment replication with thicker blocking oxide
 - Additional investigation on $^{28}\text{Si}^+$ pre-amorphization
Acknowledgements

- Dr. Karl Hirschman
- Glenn Packard
- Corning Inc.
- Dr. Rob Manley
- Team FLAPS
- Patricia Meller
- SMFL Staff
- AM Print Center
- Dr. Rob Pearson
- Dr. Dale Ewbank
References

1) https://www.flatpanelshd.com/focus.php?subaction=showfull&id=1474618766