Monolayer doping (MLD) for ultra-shallow junction MOSFET fabrication

JENNA DORAN

ADVISORS: DR. SANTOSH KURINEC, DR. SCOTT WILLIAMS

ROCHESTER INSTITUTE OF TECHNOLOGY
Doping is key for increasingly small semiconductor devices

- Integrated Circuits
- Photovoltaics
- Nanowires/Non-planar Devices
Doping is key for increasingly small semiconductor devices

But current industry techniques have limitations

Integrated Circuits
Photovoltaics
Nanowires/Non-planar Devices
Ion Implantation
Spin on dopant
MLD provides ultra-shallow, high concentration doping

MLD Process Flow

- **Phosphorus**
- **Carbon**
- **Oxygen**
- **Hydrogen**

![MLD Process Flow Diagram](image)

X: Diethyl vinylphosphonate

Vinyl group

- **Phosphorus**
- **Carbon**
- **Oxygen**
- **Hydrogen**

4/17/2018
Goal: Create MOSFETs with MLD doped source/drain

1. Develop a process to fabricate MOSFETs with MLD doped source/drain
2. Design MLD process chamber and characterize results
3. Fabricate and characterize devices
Process flow designed for MOSFETs with MLD doped S/D

1. Start with p-Si
2. Pattern field oxide
3. MLD n+ diffusion
4. Etch active area
5. NiSi anneal
6. Deposit Ni
7. Contact cuts
8. Deposit gate oxide
9. Etch Ni
10. Deposit Al
11. Pattern Al
Mask levels designed to fit processing constraints

• λ-based design rules
 - λ = 10 μm
 - Gate length was not controlled by λ, set to 0.5, 1, 2, 5, 10 μm

• Transistors with variable widths, inverter circuits, and resistors included in designs
MLD process chamber designed to be low-cost and functional
Patterned wafers doped via MLD are uniform and follow bulk trend

<table>
<thead>
<tr>
<th></th>
<th>Piece, R_S (Ω/\square)</th>
<th>6” wafer, R_S (Ω/\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single MLD</td>
<td>1058.8</td>
<td>2189.0</td>
</tr>
<tr>
<td>Double MLD</td>
<td>769.6</td>
<td>1646.1</td>
</tr>
</tbody>
</table>

Sheet Resistance vs. Position, After MLD Steps

Average R_S decrease = 542.9 Ω/\square
Decrease in $\sigma = 115.3$ Ω/\square
Transfer characteristic shows field effect behavior

\[I_D \text{ vs. } V_G, \ L = 10\mu m \]

- Subthreshold swing: \(~150mV/\text{dec}\)
- On/Off ratio: \(~10^6\)

\[V_T = -0.3 \text{ V} \]
GIDL confirms dopant diffusion to gate edge and beyond

I_D vs. V_G, $L = 10\mu$m

Gate-induced drain leakage

V_{DD}

inversion

$V_G < 0$

accumulation

$V_D = 5V$

$W = 110\mu$m

$W = 150\mu$m

depletion edge

GIDL

n+ drain
Current scales linearly with increasing W
Output characteristics reveal significant series resistance

Family of Curves, $L = 5\mu m$ $W = 110\mu m$

- $V_G = 2.0V$
- $V_G = 1.5V$
- $V_G = 1.0V$
- $V_G = 0.5V$
- $V_G = 0.0V$
- $V_G = -0.5V$
- $V_G = -1.0V$

V_D vs V_D (mA) V_D (V)
Conclusions and future work

- MOSFETs with source/drain doped via MLD successfully fabricated and characterized
 - Devices demonstrated field effect behavior
 - Chamber design for MLD process was successfully tested
 - Proved that MLD can be patterned using SiO$_2$

- Future work:
 - Determine cause of high series resistance and revise process to minimize issue
 - Use a less isotropic etch for FOX or redesign masks to improve device yield
 - Use a better quality gate oxide – possibly hi-k
Acknowledgements/Thank you!

• Advisors: Dr. Santosh Kurinec and Dr. Scott Williams

• MLD Team: Megan Detwiler, Scott Humski, Lilian Neim

• Former Students on this Project: Astha Tapriya, Brian Novak, Casey Gonta

• Senior Design Advisors and Students

• SMFL Staff
References

Images:

Reference Papers: