Development of a LFLE Double Pattern Process for TE Mode Photonic Devices

Mycahya Eggleston

Advisor: Dr. Stephen Preble

May 9, 2017
Introduction and Motivation

Silicon Photonics Geometry, TE vs TM, Double Pattern vs Single Pattern
Silicon Photonics Geometry

Silicon waveguide thickness and width are chosen such that only a single TE and TM mode are confined.

At 1550 nm wavelength:
- Thickness – 220 nm
- Width – 500 nm

TE Mode vs TM Mode

Photonic devices take advantage of optical tunneling of the evanescent field to couple energy from one waveguide to another.

TM Mode contains a larger amplitude evanescent field allowing coupling over larger distances.

Double Pattern vs Single Pattern (Using i-line Lithography)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Minimum Feature Size Possible</th>
<th>Minimum Feature Separation Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Pattern</td>
<td>~250 nm</td>
<td>~100 nm</td>
</tr>
<tr>
<td>Single Pattern</td>
<td>~300 nm</td>
<td>~300 nm</td>
</tr>
</tbody>
</table>
Process Development

Proposed Litho-Freeze-Litho-Etch Process
Obtain SOI Wafer (2000 nm SiO$_2$) (220 nm a-Si)

RCA Clean

Apply BARC (65 nm)

Wafer Pre-processing – Cleaning, BARC Application
Coat, Pattern, and Develop OiR-620 Positive Photoresist Image

1. Apply Positive Resist (300 nm)
2. Expose Resist
3. Develop Positive Resist

Diagram:
- Positive Resist: a-Si, SiO2, Silicon
- Exposed Resist: a-Si, SiO2, Silicon
UV Cure of OiR-620 Positive Photoresist Image

- **UV Cure**

- **Flood Expose**
 - 250 nm Source
 - 140°C
 - 7 min

250nm UV Light Source

- a-Si
- SiO2
- Silicon
- Hotplate
Coat, Pattern, and Develop NLOF-2020 Negative Photoresist Image

1. Apply Negative Resist (600 nm)
2. Expose Resist
3. Develop Negative Resist
RIE Etch of BARC, ICP Etch of a-Si, Photoresist Strip
Final Device Profile – TE Mode Waveguide

- Silicon
- SiO₂
- 2000 nm
- a-Si
- 500 nm
- 220 nm
- ~200 nm
- 500 nm
Process Development

UV Cure DOE – Impact of Exposure Time and Temperature on UV Cure Process
Experimental Setup

• Study the effects of exposure time, exposure temperature, room temperature, and humidity on the area of cured photoresist remaining after processing of the second layer of photoresist
• Apply and develop OiR-620 photoresist without exposure
• UV cure the first layer
• Apply and develop NLOF-2020 photoresist without exposure
• Measure area of remaining OiR-620 photoresist
Design Matrix and Area of Cured Photoresist

<table>
<thead>
<tr>
<th>Exposure Time</th>
<th>130°C</th>
<th>135°C</th>
<th>140°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 minutes</td>
<td>46.94</td>
<td>2876.6</td>
<td>3093.4</td>
</tr>
<tr>
<td>7.5 minutes</td>
<td>131.40</td>
<td>2519.4</td>
<td>3119.0</td>
</tr>
<tr>
<td>8 minutes</td>
<td>90.38</td>
<td>2506.6</td>
<td>3139.5</td>
</tr>
<tr>
<td>8.5 minutes</td>
<td>1148.10</td>
<td>2633.7</td>
<td>3598.6</td>
</tr>
<tr>
<td>9 minutes</td>
<td>993.80</td>
<td>3026.1</td>
<td>3198.1</td>
</tr>
</tbody>
</table>
Method of Analysis

• Least Squares Regression

• Examined three predictor variables:
 1. Exposure Temperature (Continuous)
 2. Exposure Time (Continuous)
 3. Humidity (Continuous)

• Using one response variable
 1. Area of cured photoresist in cm²

• Regression Model:
 Area = -1832 + 0.59*Time + 15.76*Temp – 901.64*Humidity
Process Development
Engineering Design Mask
Design Mask Overview

Photonic Design Variations:
1. Ring Width
 - 500 nm
 - 520 nm
 - 540 nm

2. Waveguide Width
 - 500 nm
 - 515 nm
 - 530 nm

Photonic Design Variations:
1. Grating Duty Ratio (space:line)
 - 0.40
 - 0.50
 - 0.60

2. Waveguide to Ring Gap
 - 150 nm
 - 175 nm
 - 200 nm
 - 225 nm
 - 250 nm

Grating
Dutv Ratio 0.40 0.50 0.60

TE Mode
Experimental Results

Initial Lithography Results
Compound Photoresist Image
Affect of Pitch and Duty Ratio on Photoresist Image

<table>
<thead>
<tr>
<th>Duty Ratio (space:line)</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch (nm)</td>
<td>640</td>
<td>675</td>
<td>710</td>
</tr>
</tbody>
</table>
Affect of Pitch and Duty Ratio on Photoresist Image

<table>
<thead>
<tr>
<th>Duty Ratio (space:line)</th>
<th>Pitch (nm)</th>
<th>745</th>
<th>780</th>
<th>815</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results

Initial Etch Results
Ring Resonator – Post Etch SEM
Conclusions

Conclusions Drawn from Final Results
Conclusions

• Obtained successful results from experimental process:
 • Minimum obtained feature size ~150 nm
 • Minimum obtained feature separation - ~100 nm
• Developed a working UV cure process using readily obtained positive and negative tone resists
• Developed a working LFLE process that can be refined to fabricate working TE mode photonic devices
• Created a two layer engineering design mask adequate for future work
Future Work

Outline of Possible Future Work
Outline of Possible Future Work

• Lithography optimization for SOI wafer
 • Account for changes in stack reflectivity
 • Separate optimization for positive and negative layers

• Optical Proximity Correction (OPC) mask design
 • Corrections for bulging in ring to wave guides gap
 • Corrections for fine pitch grating couplers

• Etch Recipe Optimization for compound resist image
References

Works Referenced
Works Referenced