KATE GLEASON College of ENGINEERING

Investigation of ALD Dielectrics in Silicon and Non-Silicon Capacitors, Enri Marini, Advisors: Dr. Ewbank, Dr. Pearson, Dr. Rommel Rochester Institute of Technology, Department of Electrical and Microelectronic Engineering, Rochester NY 14623

Results (con't)

	Hand- calculated Capacitance	Ideal ϵ_r (no units)	Experimental Capacitance	Experimental ϵ_r (no units)
15nm oxide with Area = 0.001cm ²	531 pF	9.00	489 pF ± 58 pF	8.64 ± 3.23
20nm oxide with Area = 0.001cm ²	395 pF	9.00	367 pF ± 34 pF	8.45 ± 2.56
15nm oxide with Area = 0.002cm²	1063 pF	9.00	1001 pF ± 105 pF	8.84 ± 3.04
20nm oxide with Area = 0.002cm ²	797 pF	9.00	767 pF ± 48 pF	8.83 ± 2.15

Hand calculations and experimental observations of capacitance and relative permittivity of Silicon substrate MOS capacitors with Aluminum as the gate metal

$$C = \frac{\epsilon_r \epsilon_0 A}{t_{ox}} \to \epsilon_r = \frac{C t_{ox}}{A \epsilon_0}$$

MOS capacitance was modeled using parallel-plate capacitor system. Once the experimental capacitance was measured, the relative permittivity can be back-calculated.

V. Summary

Conclusions

-Atomic layer deposition of high dielectric constant material has been characterized in capacitors for future use in field effect devices.

Future Work

-Test different gate metals and dielectric materials for CV test

References

-Ye, P.D., et al. "GaAs MOSFET with Oxide Gate Dielectric Grown by ALD." IEEE Electron Device Letters 24.4 (2003): 209-211 - Lin, Jianqiang, Tae-Woo Kim, and Dimitri A. Antoniadis. "A Self-Aligned InGaAs Quantum-Well MOSFET Fabricated through Lift-offfree front-end process." Applied Physics 5.6 (2012)

Acknowledgements

SMFL Staff (special thanks to Patricia!)

