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 Model ASE and sDA 

Interior 
Openings 
Ratio: 0.9 

  

Interior 
Openings 
Ratio: 0.8 

  

Interior 
Openings 
Ratio: 0.7 

  

Interior 
Openings 
Ratio: 0.6 

  

 
Table 4.3 Graphical representation of benchmark tests for Interior Openings Ratio from 0.9 to 0.6. 
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 Model ASE and sDA 

Interior 
Openings 
Ratio: 0.5 

  

Interior 
Openings 
Ratio: 0.4 

  

Interior 
Openings 
Ratio: 0.3 

  

Interior 
Openings 
Ratio: 0.2 

  

 
Table 4.4 Graphical representation of benchmark tests for Interior Openings Ratio from 0.5 to 0.2. 
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4.6. Third Simulation Analysis 

The thickness benchmark test showed that it failed to change the ASE and sDA results even 

when the openings are maximized to provide the thickness variable with the greatest extent of 

influence. The highest value thickness, which is 12 inches or 1 foot, does come close to passing 

the ASE test, so as mentioned before the limitation of this variable might be at fault. Nonetheless, 

Figure 4.33 Benchmark results for thickness. Top is 0.3 thickness; bottom is 1.0 thickness.  
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the thickness factor for this simulation is determined to be the least influential variable. Supporting 

and fine-tuning the openings reduction ratio and interior openings ratio of the façade seems to be 

the main role of thickness when it comes to satisfying the daylighting requirements.  

From the other two benchmark tests, there is a negative correlation for openings reduction 

ratio and a positive correlation for interior openings ratio when compared with daylighting results. 

In other words, smaller openings reduction ratio and larger interior openings ratio will generate 

bigger sDA and ASE results in terms of value. This interpretation is only true if they are the only 

variable within the daylighting tests. If both are variables, then they depend mostly on each other 

to increase or decrease the sDA and ASE results. This means even if the interior openings ratio is 

within its optimal range, a change in openings reduction ratio could still fail the sDA and ASE 

requirements. Both of these variables have a major impact on the sDA and ASE test results by 

having close to an equal amount of passing and failing results for both tests. By analyzing their 

graphs and tables, the middle portion seems to be the turning point of satisfying the sDA or ASE 

requirements for both openings reduction ratio and interior openings ratio. Moreover, the sDA and 

ASE results produced at the end of each graph and table are tremendously higher or lower than the 

baseline daylighting level. The difference between the highest and lowest sDA and ASE results 

for both of these variables is around 78% and 28% respectively, and this indicates that the range 

of results these two variables can produce is massive. By just changing this Voronoi façade’s 

openings reduction ratio and/or interior openings ratio, the interior space can go from having nearly 

no daylight to passing the highest possible LEED sDA requirements of 75% and might even cause 

overheating in some spaces. In short, the Voronoi opening’s size and angle have a very significant 

impact on the sDA and ASE test results, whereas the wall thickness has much less of one. 
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5. DISCUSSION 

5.1. Results Discussion 

The Voronoi façade model in the first simulation is optimized for its surface area to volume 

(SA/V) ratio while only required to pass the sDA test. This means that the passing façade does 

provide adequate daylighting level for the interior spaces, but it cannot prevent overheating and 

glare in some areas. The first simulation also has an extra layout variable in comparison to the 

second and third simulation, and this variable has 13 different façade styles that change the 

Voronoi pattern on the façade.  

For the first simulation, 313 out of 500 sDA tests passed and 81 out of 500 ASE tests passed, 

and none of the models generated passed both daylighting requirements. Voronoi style 5 and 6 

appeared the most for consistently producing adequate SA/V ratio façade, but Voronoi style 2 is 

the most consistent at producing the highest ratio. Even though more than 70% of the SA/V ratio 

falls between 8 and 10, the optimal range of SA/V ratio is between 10 and 11, which only accounts 

for 8% of the total results. The reason is because any façade with a SA/V ratio above 10 has passed 

the sDA test, while many façades with a SA/V ratio between 8 and 10 have failed the test. The 

better performing Voronoi style also seems to have more similar size openings that are evenly 

spread out, but this phenomenon will need additional research.  

For other first simulation variables, having a wall thickness within the range of 0.35 feet 

and 0.45 feet, which translates to between 4.2 inches and 5.4 inches, appears to have the best 

balance between surface area and volume. Any thickness above this range will have too much 

volume and any thickness below this range will have too little surface area. The optimal range of 

openings reduction ratio is between 0 and 0.05, which translates to a Voronoi hole reduction of 
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between 0% and 5%, and it seems to suggest that having close to no reduction at all will generate 

the best SA/V ratio. The rationality behind this finding might be because the increase in surface 

area within the Voronoi openings outweighs the decrease in frontal surface area when the façade 

has a bigger opening circle. The optimal range of interior openings ratio is between 0.6 and 0.7, 

which translates to reducing the interior opening by an additional 30% to 40% after the overall 

openings are reduced. This means that the surface area gained inside the Voronoi openings and on 

the interior face by being angled outward is greater than the surface area lost from other locations.  

Because none of the models generated in the first simulation passed both daylighting 

requirements, the second simulation is conducted specifically to find the optimal façade variables 

that can pass both sDA and ASE tests. To simplify the process, the second simulation only used 

Voronoi layout style 2 because this pattern generated the best SA/V ratio and is most consistent in 

having an SA/V ratio of over 10. The second simulation is also done manually, without the use of 

Galapagos, with randomly generated values to ensure a relatively even spread of values. 

For the second simulation, only 3 results out of 200 passed both the sDA and ASE tests 

together, which translates to a passing rate of 1.5%. Together with the first simulation results, it 

seems rather difficult for these Voronoi façade to satisfy the overall daylighting requirements 

without external support. Fortunately, this goal is not impossible to achieve, and the results do 

provide a relatively small range of values.  

 The optimal range of wall thickness produced by this simulation is between 0.75 and 0.90, 

which is around 9 inches to 10.8 inches. This result is disputable because the R2 value of its best 

fit lines is less than 0.1 for both sDA and ASE charts, which indicates little to no correlation 

between thickness and the daylighting test results. This speculation is further evaluated in the third 

simulation. The optimal range of SA/V ratio is between 5.5 and 6.5, and this result is significantly 
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smaller when compared with the first simulation’s optimal range of between 10 and 11. This means 

that when complying with the daylighting requirements, the Voronoi façade might have to give up 

a significant amount of its potential SA/V ratio, which correlates to TiO2 efficiency, in order to 

pass both sDA and ASE tests.  

The optimal range of openings reduction ratio is between 0 and 0.15, with 2 out of 3 passing 

results falling between 0 and 0.05. Together with the optimal range findings of the first simulation 

for the same variable, these results showed that having a smaller or no Voronoi openings reduction 

is better for both producing a greater SA/V ratio and passing both daylighting requirements. For 

the second simulation, the optimal range of interior openings ratio has similar implications as that 

of openings reduction ratio because its value is between 0.70 and 0.85, which is close to the 

minimum openings reduction ratio of 0.9 or 10%. This indicates that the original Voronoi style 2 

façade will have a much higher chance of innately passing both sDA and ASE by only slightly 

reducing the Voronoi openings in combination with reducing the interior openings by around 20%. 

By only looking at the passing results from the second simulation, another discovery was 

made in regard to the value difference between openings reduction ratio and interior openings ratio. 

The magnitude of difference between these two variables is between 0.69 and 0.73, which has an 

extremely small range of 0.04. The range of this difference is so small that it is almost like 

whenever the openings reduction ratio or the interior openings ratio changes, the other variable 

changes as well by the same magnitude in order to pass the sDA and ASE tests. This means that 

openings reduction ratio and interior openings ratio might be equally important and dependent on 

each other to produce a Voronoi style 2 façade that can pass both daylighting requirements.  

The third simulation, also labeled as benchmark tests, is a continuation of the second 

simulation that focuses on testing the thickness, openings reduction ratio, and the interior openings 
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ratio’s contribution to the overall sDA and ASE test results when they are independent of each 

other. The constant value is set at 0.65 for thickness, 0 for openings reduction ratio, and 0.90 for 

interior openings ratio to maximize the potential impact each of these variables has when they are 

the only determining factor. Both openings reduction ratio and interior openings ratio have a 

significant impact on satisfying daylighting requirements because the difference between their 

highest and lowest sDA and ASE results is around 78% and 28% respectively. This means that 

these two variables can independently make the daylighting level go from having no interior 

daylight at all to passing the highest possible LEED sDA requirements of 75%. Thickness, on the 

other hand, has much less of an impact because the result of its lowest and highest values does not 

change the status of its daylighting tests. The highest thickness value at 12 inches does come 

relatively close to passing both sDA and ASE tests, so the value limitation of this variable might 

be the issue. These findings from the third simulation indicate that when manipulating a Voronoi 

façade of similar design, the Voronoi openings and the openings angle should be considered first 

before the thickness when attempting to fulfill the daylighting requirements.   

5.2. Limitations 

All of these simulations done in this research have a couple limitations that should be taken 

into consideration. For instance, there is a model restriction imposed by Rhino because most 

variables for the Voronoi façade model have a limit on how far they can go on each end before the 

model starts to deform. As mentioned previously, the Voronoi openings will begin to distort when 

the openings reduction ratio goes above 0.60. This same problem occurs when the interior 

openings ratio goes above 0.90 and below 0.20. Even though these issues only occur at the extreme 

ends of these variables, it should still be acknowledged. The value range for thickness can be 
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increased to have a better understanding of its potential impact as the current range of between 

0.30 and 1.0 might be smaller than the desirable level.  

For the Voronoi pattern, this research only focused on Voronoi patterns with 20 generator 

points that generated 20 opening holes. Having more or less holes might increase the potential 

surface area to volume ratio and provide better daylighting results. For the second and third 

simulations, only Voronoi layout style 2 was investigated, and including more layouts might 

produce even more accurate or precise results. This façade design is also quite simple, and real 

designs that utilizes the Voronoi pattern are much more complicated. The number of tests and trials 

for the optimization process is also another limitation of this study that is affected by time. More 

trials will most likely produce a better optimal range of results, and 1000 and 200 trials might not 

be enough for four variables and three variables simulation tests respectively.  

 This study is also limited in that it does not provide the best architectural solution for 

problems such as air pollution. The research merely attempts to configure and optimize one 

possible architectural solution to help solve these problems. It also sets a precedent for others who 

are attempting to use similar design styles or techniques to optimize the façade digitally early on 

in the design process.  

 The biggest limitation of this study is that all simulation and optimization targets were not 

tested physically, and there might be many real world aspects that can interfere with the efficiency 

of the façade. This research is heavily dependent on digital computation and results, and that can 

cause problems in and after construction if not properly tested beforehand.  
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6. CONCLUSIONS AND FUTURE RESEARCH 

6.1. Conclusions 

 The use of titanium dioxide (TiO2) coated concrete to create building façades that can 

adsorb and remove air pollutants in the air is becoming more popular in the architectural world. 

This research focuses on Voronoi pattern façade and attempts to optimize it in terms of its 

efficiency for TiO2 coating application and its ability to provide a satisfactory amount of interior 

daylighting. The four initial variables being evaluated are the façade’s Voronoi layout, wall 

thickness, openings size, and angle of the openings. A total of three simulations were conducted, 

and each of them has their own goals and conditions. The first simulation is conducted with all 

four variables to optimize for the best surface area to volume ratio that only needs to pass the sDA 

requirements. The second simulation is conducted on only the Voronoi layout style 2 façade, which 

effectively removed the Voronoi layout variable, and the goal of this simulation is to optimize for 

the best SA/V ratio that needs to pass both the sDA and ASE requirements. Lastly, the third 

simulation is conducted as a benchmark test to further investigate the potential impact of wall 

thickness, openings reduction ratio, and interior openings ratio on the daylighting results when 

they are independent of each other.  

 When only focusing on fulfilling the sDA requirements, the range of optimal SA/V ratio is 

between 10 and 11. This indicates that any instance of this Voronoi façade that has a surface area 

10 to 11 times greater than its volume has a great efficiency of applying titanium dioxide coating 

while requiring less resources to construct. The range of optimal thickness is between 0.35 feet 

and 0.45 feet. The range of optimal openings reduction ratio is between 0 and 0.05. The range of 

optimal interior openings ratio is between 0.60 and 0.70. In short, when using a façade design 
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