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reflectance is compared with a spectral library to perform detection and identification

of surface contaminants. The spectral library typically contains signatures of surface

materials, explosives, precursors, confusers, other background materials, etc.

Figure 1.1: Notional depiction of standoff trace chemical identification via an active
spectroscopic instrument. The reference signature library is pertinent to the system’s
ability to detect chemicals of interest. (From [7].)

Recent efforts within the government and intelligence communities [8, 9, 1, 10] have

advanced the state-of-the-art in active infrared (IR) spectroscopy for trace chemical

detection and classification. For example, the IARPA SILMARILS (Intelligence Advanced

Research Projects Activity, Standoff ILluminator for Measuring Absorbance and Reflectance

Infrared Light Signatures) program funded the development of an active MIR sensor capable

2



of measuring the fastest hypercubes in the world with high accuracy [11, 12]. The sensor

uses a quantum cascade laser (QCL) as the illumination source, delivering a high signal-

to-noise ratio while remaining photon-efficient. Similarly, much work has been dedicated

to developing and optimizing robust chemical detection and classification algorithms for

associating measured reflectance with target and background signatures in a system’s

spectral library [13, 14, 15, 16]. Even the most advanced algorithmic approaches, however,

rely on accurate, comprehensive spectral libraries.

At trace levels, chemical spectra have high variability due to even small changes in

measurement angle, surface geometry or properties, temperature and humidity, chemical

morphology, etc. [1]. Because it is often not possible to measure all combinations of

chemicals, chemical presentation (i.e., deposition method), and substrates, it is important

to be able to generate spectral libraries using appropriate models. Physics-based signature

models are most commonly used but typically do not capture all the expected variability

due to the physical complexities involved. Machine learning methods have demonstrated

the ability to predict spectra based on a training data set, but these methods are limited

by the amount of representative training data available for each physical phenomenon to

be captured [10]. Over the last few years, data science has gained popularity in a number

of applications for its ability to understand relationships between statistical and physical

phenomena and pure data. The research in this thesis explores innovative techniques

for developing more accurate and comprehensive spectral libraries using physics-based

approaches as well as new data-driven machine learning approaches with a focus on the

chemical classification problem.
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Chapter 2

Research Overview and Scope

Physics-based signature models have been extensively studied in active spectroscopy[10].

However, developing a physics-based signature model for trace chemical classification

applications is challenging due to the phenomenological complexities. Representative

models must account for multiple types of scattering with dependencies on the chemical,

surface, and geometric properties, including particle size and distribution, surface roughness

and dielectric properties, illumination angle, etc. [17, 18]. Proven physics-based models

include the Mie scattering for particle reflectance [19, 20, 21] and transfer matrix for liquid

reflectance [22, 23, 24, 25, 26]. In most applications, however, it is more common for trace

chemicals to be in residue form. This thesis focuses on classifying trace chemical residues

on surfaces. Therefore, we first present a new physics-based signature model for trace

chemical residue reflectance called sparse transfer matrix (STM).

Though we show that STM outperforms the Mie scattering and transfer matrix models

in fitting to real data, we still find mismatches between the STM model and real data. We

next explore techniques for enhancing the STM simulations such that they better fit to the

measured data. For this task, we use domain adaptation, a sub-field of machine learning.
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Domain adaptation refers to the class of approaches for learning the mapping between

two domains [27, 28, 29, 30, 31, 32, 33]. One application of domain adaptation is data

translation, where the goal is to map data from a source domain to a target domain. Most of

the research in this area focuses on two-dimensional (2D) images (e.g. translating day-time

photographs to night-time photographs) [34, 35, 36] rather than one-dimensional (1D)

signals like chemical reflectance signatures. This thesis presents the first 1D conditional

generative adversarial network (GAN) for data translation and applies it to the spectral

library generated by the STM model, translating the library from the simulated to the

measured data domain. The result is a more accurate spectral library.

In recent years, the fusion of task-driven data science models with theoretical principles

of physics has produced models that are more accurate than those which derive solely from

physics [37, 38, 39]. For example, the physics-guided neural network (PGNN) defined in

[40] achieves an average reduction in model error of 46% relative to physical models when

predicting lake temperatures. The research in this thesis applies the PGNN model concepts

for predicting chemical reflectance signatures for training a chemical classifier. The end

goal of this research is to present a method for producing a library of more realistic spectral

signatures capable of achieving high classification accuracy in real active spectroscopic

data.

2.1 Research Objectives

The objectives of this thesis are:

1. to present a new physics-based signature model to address the specific phenomenology

of trace chemical residues on surfaces,

2. to adapt state-of-the-art methods in machine learning and data science for accurate
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and robust modeling of trace chemical residue signatures, and

3. to demonstrate improved performance in trace chemical classification problems using

high-fidelity spectral libraries produced by the above methods.

2.2 Contributions to Knowledge

Spectroscopists have dedicated decades of effort to understanding and modeling trace

chemical phenomenology [41, 42]. In the last decade or so, experts from a range of fields

have repeatedly demonstrated the success of machine learning and data science in various

applications [43]. These latter approaches, however, have only been applied to the chemical

classification problem in a very limited manner [9]. The research in this thesis applies

advanced machine learning and data science approaches to the particularly challenging

problem of modeling trace chemical reflectance. Specific contributions to knowledge include:

1. the presentation and validation of a modification to a well-known signature model

for modeling non-uniform film effects,

2. the first 1D conditional GAN which extracts spectral features rather than spatial

features as in traditional image-based GAN approaches, and

3. a theory-guided data science model for learning a higher-fidelity signature model.

2.3 Thesis Layout

This thesis is structured as follows. Chapter 3 describes previous research in relevant

areas for trace chemical sensing, detection and classification, and spectral modeling. This

begins with a brief overview of spectroscopy sensor considerations and how to extract

sample reflectance in active spectroscopy sensor data. Next is a short summary of the
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various methods often used for detection and / or classification in hyperspectral data

including example algorithms. This chapter concludes with a discussion on some of the

phenomenological considerations and corresponding signature models that have resulted

from previous work. Chapter 4 describes and provides examples of the specific morphology

we consider throughout this thesis and presents a modified signature model for better

capturing the physics of this morphology. The model, sparse transfer matrix (STM), is

compared with the previously published models described in Chapter 3. The next few

chapters move away from the more traditional physics-based models and incorporate

aspects from the machine learning field. The STM model defined in Chapter 4 provides

the basis for comparison with the machine learning approaches. First, Chapter 5 presents

the first 1D conditional GAN for translating data from the simulated data domain to the

measured data domain which results in more accurate “simulated” signatures. Chapter 6

gives some background information on the area of theory-guided data science and applies

some of its concepts to the chemical modeling problem. In particular, we discuss the

physics-guided neural network (PGNN) published by Karpatne et al. [40]. We compare

the physics-based STM, 1D conditional GAN, and PGNN outputs in Chapter 7. Finally,

the thesis contributions and results are summarized in Chapter 8. Chapter 9 outlines

some ideas for extending this work and / or applying some of the techniques and concepts

presented to other applications.
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Chapter 3

Previous Work

This chapter provides a brief overview of research work related to this thesis.

3.1 Spectroscopy

Spectral information has been used to determine material composition for many years.

Some of the simplest tools for studying objects’ spectra are dispersive spectrometers. A

dispersive spectrometer measures the spectrum of a source by separating the incoming

radiation into its different spectral components using a prism or diffraction grating to bend

the light as a function of wavelength. The sensor is made of one detector element that is

moved to view the spectral components individually or an array of detector elements to

view all the components at once as shown in Figure 3.1 [44].

A diffraction grating derives the spectrum by:

1

λ
(sinφi + sinφd) =

m

dg
,m = 1,±1,±2, ... (3.1)

where λ is wavelength, φi and φd are the incident and diffracted maxima angles of the
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light, respectively, m is the order of diffraction, and dg is the distance between the grating

grooves. Constructive interference for a given wavelength occurs at integer values of m,

while destructive interference occurs at half-integer values of m.

Figure 3.1: A dispersive spectrometer uses a diffraction grating (or prism) to separate
different wavelengths of light inside the sensor.

The value of φd depends on wavelength, such that the diffraction grating separates

the input beam into its intensity contributions as a function of wavelength, as shown in

Figure 3.1. Both the prism and diffraction grating-based dispersive spectrometers require

thin entrance slits that are wide enough to let the observed wavelength pass through but

narrow enough to maintain a reasonable spectral resolution.

Optical throughput, sometimes called etendue, describes the space through which light

may enter an optical system. Throughput is defined by:

GE = AaFOV, (3.2)
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where Aa is the area of the system aperture and FOV is the system field-of-view:

FOV =
1

4(f/#)2 − 1
≈ 1

4(f/#)2
, (3.3)

where f/# is the instrument F-number and the approximation is only valid for larger

F-numbers. A larger system aperture or FOV will provide a greater optical throughput,

allowing more light energy to enter the system. A high optical throughput is desirable

because it increases the system sensitivity, therefore increasing the signal-to-noise ratio

(SNR). In many optical systems, there is a trade-off between the optical throughput

and the system resolution. For example, the dispersive spectrometer requires a rather

narrow entrance slit to achieve a usable spectral resolution, but this creates a low optical

throughput, decreasing system sensitivity and overall SNR.

Another class of spectrometers is the Fourier transform spectrometer (FTS). The FTS

is a type of interferometer, a tool used to extract information about a radiant energy source

through interference of electromagnetic waves. The FTS measures a horizontal row of the

interference pattern it creates from an input light beam. This measurement is the Fourier

transform (FT) of the source spectrum. An FTS designed for infrared measurements is

often called an FTIR (Fourier transform infrared) spectrometer. A common FTIR design

is the Michelson interferometer, shown in Figure 3.2, which splits the beam and creates an

interference pattern by combining a reflected reference beam with a reflected modulated

beam. Both the dispersive spectrometer and the FTS can be used to measure a source

spectrum. The FTS, however, has notably high optical throughput due to its circular

aperture (as opposed to the linear slits used in normal diffraction grating systems) [45],

which also increases the SNR.
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Figure 3.2: The FTIR creates an interference pattern - the Fourier tranform of the
measurement as a function of wavelength. In the standard Michelson interferometer design,
a moving mirror is used to modulate the measured wavelength over the collection period.

3.2 Active Spectroscopy

As shown in Figures 1.1 and 3.1 - 3.3, an active spectrometer uses a light source to

measure the reflectance of an area of interest. The active illumination provides higher SNR

than that which can be achieved with passive spectrometers. Active spectrometers usually

take on one of two forms: a broadband source with a spectrally resolving receiver (e.g. the

dispersive spectrometer or FTS shown in Figures 3.1-3.2), or a tunable, narrowband source

with a broadband receiver (shown in Figure 3.3). The latter is much more photon-efficient

and also has even higher throughput than the FTS. A typical narrowband source is a

quantum cascade laser (QCL) [11, 46, 3]. Since the emitted laser power is known, we can

determine the reflectance of the sample using the ratio of the received and total transmitted
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power.

Figure 3.3: A QCL-based spectrometer illuminates the surface with narrowband energy
and omits the need for spectrally-resolving components in the sensor design.

The reflected power measured for a sample will depend on a number of factors including

the sample bidirectional reflectance distribution function (BRDF), which describes an

object’s reflectance as a function of the incoming and outgoing directions. Here, the sample

BRDF is defined as the ratio of received and transmitted power:

BRDFsample(λ) =
Preceived(λ)

Ptransmitted(λ) Ω
, (3.4)

where Ω is the measurement solid angle (the amount of FOV covered by a pixel in this

case) with units in steradians (sr). In active spectroscopy applications, we consider the

power received within a pixel. Goyal et al. define the transmitted power as:

Ptransmitted(λ) = Ilaser(λ) GSD2 τ(λ), (3.5)
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