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3.3.1 Performance Based on the Size and Location of the In-
farct

We first summarize the performance of the presented framework in the pres-
ence of infarcts of varying sizes using three representative examples. Fig. 3.4(a)
shows an example of estimation on a small infarct (3.6%). The tree shows that
once a homogeneous healthy region is found in stage 1, the optimization keeps
the entire region at a very low resolution and refines only along the hetero-
geneous region that contains the infarct. It continues narrowing down the
infarct with higher resolution, generating a narrow yet deep tree. The final
result shown in stage 3 of Fig. 3.4(a) is achieved with only a dimension of 10
unknowns. In comparison, if a uniform resolution is used, a dimension of 128
would be needed to achieve an estimation at the same resolution. Fig. 3.4(b)
shows another example with a medium sized infarct (28.7%). Since the in-
farct spans a larger number of clusters, it is not until stage 2 before the tree
can be split along one major branch. In addition, because both normal and
infarcted tissues are large enough to be represented by low-resolution homo-
geneous clusters, an overall lower resolution solution is obtained with a wider
yet shallower tree. While the presented method converges at a dimension of
7, a uniform resolution would require a dimension of 16 for an estimation at
similar resolution. Finally, Fig. 3.4(c) shows an example with a larger sized
infarct (62.4%). A larger sized infarct can be represented by big clusters at
low resolution and has a boundary that needs to be represented by a larger
number of smaller clusters. Therefore, until stage 2 the large homogeneous
regions (both normal and infarcted) are split into major clusters. In the fol-
lowing stages, the border region is split into multiple branches increasing the
resolution along the border yielding a wider tree in the first a few steps and
narrow branches in later stages. In this case, while the presented method con-
verges at a dimension of 13, a uniform resolution estimation would require a
dimension of 64.

Additional examples of the estimated tissue excitability for different in-
farcts are provided in Fig. 3.5. Fig. 3.6 summarizes the accuracy in estimation
of the presented adaptive BOBYQA (magenta bar) and adaptive GPO (blue
bar) with respect to the size and location of the infarct. Specifically as shown
in Fig. 3.6, while both the presented methods are in general able to identify
infarcted tissues at various locations and of various sizes, the accuracy in the
presence of septal infarcts show a noticeable decrease. As shown in an ex-
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Figure 3.5: Synthetic experiments. Examples of tissue excitability estimated using:
1) uniform BOBYQA, 2) adaptive BOBYQA, and 3) adaptive GPO in the presence
of infarcts of varying sizes and locations (red: infarcted tissue, blue: healthy tissue).
Infarct locations and sizes (in percentage ventricles covered) from top to bottom:
anterior (3.17%), inferior (9.84%), and septal (24.31%).
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Figure 3.6: Synthetic experiments. Comparison of uniform BOBYQA, adaptive
BOBYQA, and adaptive GPO in terms of DC and RMSE based on 35 different
infarct cases of varying sizes and locations (bar: mean, line: standard deviation).

ample of septal infarct in Fig. 3.5(c), this drop in accuracy is associated with
the presence of false positives at the lateral ventricular walls. This implies
the existence of multiple parameter configurations that fit the measurement
data well. The challenge in dealing with septal infarcts is consistent with
that reported in literature [79]. Interestingly, in the presence of septal infarct,
adaptive GPO shows higher accuracy than the adaptive BOBYQA (Fig. 3.6).
This could be because adaptive GPO was able to avoid local minima owing to
the initialization with multiple points. The adaptive BOBYQA, however, in
general has higher efficiency, especially in the estimation of higher dimension
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Figure 3.7: Synthetic experiments. Comparison of the final dimensions of unknowns
obtained by using presented methods based on 35 infarct cases of various sizes (bar:
mean, line: standard deviation).

of unknowns. Because both presented methods show similar performance, in
the remaining sections of this paper, we consider performance analysis of the
presented framework using adaptive GPO only unless explicitly stated other-
wise.

3.3.2 Comparison with Optimization using Uniform Resolu-
tion

We compare the performance of the presented adaptive methods with the
state-of-the-art BOBYQA using 26 pre-defined segments (termed as uniform
BOBYQA for the remainder of this paper). We do not include comparison with
GPO using 26 pre-defined segments because it performs poorly for a dimension
higher than 20 both as reported in literature [70] and as observed in our
experiments. Experimental setup as described in Section 3.3 is used. Because
uniform BOBYQA is sensitive to initialization, each experiment case is run
twice using random initialization and the better result is picked for comparison.
The summary statistics of accuracy as shown in Fig. 3.6 demonstrates that
the presented adaptive methods are more robust to infarcts of various sizes
and locations. This improvement is statistically significant in both DC and
RMSE (paired-¢ tests on 35 synthetic experiments, p < 0.0025). In particular,
using uniform BOBYQA, it is difficult to estimate an infarct of size equal
to or less than a single segment. In comparison, the presented methods are
able to identify infarcts smaller than a single segment with a small number
of unknowns (10-14). Furthermore, as shown in Fig. 3.5, uniform BOBYQA
tends to show false-positives across multiple segments, failing to accurately
reveal the spatial distribution of the infarcted tissues.

The major computational cost in local parameter estimation comes from
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the repeated evaluation of the CPU-intensive simulation model. We com-
pare the computational cost of the presented adaptive methods and uniform
BOBYQA in terms of the computation time and the number of model evalua-
tions used. This is based on 35 synthetic experiments conducted on a computer
with Xeon E5 2.20GHZ processor and 128 GB RAM. In summary, uniform
BOBYQA takes on average 3.331+0.83hrs for convergence, while the presented
methods take on average 6.0743.02hrs for convergence. Because, in the pre-
sented methods, the tree varies with varying infarct sizes leading to a signifi-
cant difference in the number of model evaluations, we compare the number
of model evaluations into two categories. For smaller and larger infarcts, the
trees are deeper involving multiple coarse-to-fine optimizations and an aver-
age of 10-12 final dimensions of unknowns (Fig. 3.7). Such cases in general
require a larger number of model evaluations. Our experiments show that
the presented methods take at most twice as many model evaluations. How-
ever, it should be noted that uniform BOBYQA for such cases as shown in
Fig 3.5 and 3.6 suffer from limited accuracy in estimation. For average sized
infarcts, the trees are shallower and end up with an average of 7-8 unknown
dimensions (Fig. 3.7), resulting in a fewer number of coarse-to-fine optimiza-
tions of a smaller number of unknowns. Compared to uniform BOBYQA,
the presented methods require a similar number of model evaluations. In the
presented methods, the adaptive spatial resolution adjustment step also neces-
sitates model evaluations. Supposing that at a stage there are 2n leaf nodes,
a minimum of n model evaluations (when all nodes have sibling) and a maxi-
mum of 2n model evaluations (when no nodes have sibling) are needed. At the
current stage where the number of leaf nodes are typically < 20, the number
of model evaluations needed for spatial resolution adjustment is insignificant
in comparison to that needed for optimization (at a range thousands).

3.3.3 Identifiability Based on the Size of the Infarct

To investigate the limit of the presented method in terms of the smallest size of
the infarct that can be identified, we conduct a set of experiments by gradually
decreasing the size of an infarct until a size that cannot be identified is found.
For such a size of infarct, six different experiments are repeated. In summary,
an infarct of size > 3% can be estimated with good accuracy, ~ 2% can be
identified with lower accuracy, and ~ 1% cannot be identified. Fig. 3.8 shows



