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Abstract 

Friction and wear in tribological systems lead to monetary loss and environmental damage. A better 

understanding of factors that affect tribological behavior of a system will reduce losses and damages in 

a tribological system. Wetting and surface properties are important in solid-fluid interactions and hence 

should be considered in lubricant-surface tribological systems. Their effects on tribological behavior are 

not properly understood. This study analyzed the effect of wettability on tribological systems and 

checked whether inclusion of wettability in the analysis of friction can lead to a more unified approach. 

Wettability informs how a liquid will behave on a solid surface. Liquids with high wettability spread over 

the surface, and those with low wettability do not. Wettability depends on properties of not only the 

liquid but also the surface. The significance of wetting in tribological systems varies from system to 

system. 

 The relative importance of wetting in tribology varies with the lubrication regime under which a system 

operates. The lubrication regime is characterized by lambda (𝜆) parameter. Based on the value of 𝜆 

there are three lubrication regimes: boundary, mixed, and hydrodynamic. Researchers claim that 

wetting and surface properties are important in boundary lubrication regime and insignificant in mixed 

and hydrodynamic lubrication.  This research analyzed the effects of wetting in all the regimes to test 

this claim.  

There is disagreement among scholars on how to characterize wettability in tribological systems. Some 

claim that a formulation of spreading parameter that comprises polar and disperse components of 

surface energy and surface tension provides relevant insight. Others claim that the contact angle formed 

between liquid and surface is a better measure of wettability. Another group of scholars claim that a 

non-dimensionalized spreading parameter should be used to characterize wetting. This parameter can 

be calculated by contact angle.  

In this study, the non-dimensionalized parameter was used as it is easy to calculate. It considers non-

linear relation between contact angle and wetting behavior. The results based on this parameter 

converge with those based on polar and disperse components to surface tension and energy. This 

parameter was used along with 𝜆 to check whether different friction-coefficient versus 𝜆 curves for 

various lubricant surface systems can collapse into one friction coefficient versus 𝜆*|𝑆∗| curve. 

If various Stribeck curves for different systems can collapse into one curve, then the process of 
predicting friction and wear behavior would simplify, and thus the research in the field of tribology 
would accelerate. 
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1.0 PROBLEM INTRODUCTION 

Friction and wear cause monetary losses and environmental damage and reduce performance and life of 

machines. A comprehensive understanding of factors that affect the tribological performance of a 

system is necessary to reduce friction and wear [1]. Tribology is the study of friction and wear in 

interacting surfaces in relative motion. Hardness, surface roughness, elastic and plastic properties are 

important in tribological systems and have been extensively studied. Wetting and surface properties are 

important in solid-liquid interactions, but their effect on tribological behavior of system is not properly 

understood [2–6]. A comprehensive understanding of wetting and surface properties and their effect on 

tribological performance will boost research into new materials, lubricants, and lubrication practices. 

This study might help find methods to decrease the adverse effects of friction and wear. 

The specific film thickness (𝜆) or the lambda parameter defines the lubrication regime under which a 

tribological system operates. It is the ratio of theoretical fluid film thickness to root mean square value 

of the roughness of surfaces in contact. It informs about the intensity of asperity interaction between 

the surfaces in a tribological system and the governing lubrication mechanism [2,6,7]. There are three 

lubrication regimes based on value of 𝜆: boundary lubrication (BL) regime (𝜆 < 1), mixed lubrication 

(ML) regime(1 < 𝜆 < 3), and hydrodynamic lubrication (HL) (𝜆 > 3) regime. When 𝜆 < 1, the system 

operates in BL regime. In BL, friction is highest because asperities of both the surfaces are in contact 

(Fig.1). For 1 < 𝜆 < 3, the system operates in ML regime and a thin film of fluid exists between the 

surfaces. There is some contact between asperities and the contact pressure is shared in part by the 

fluid, resulting in moderate friction values. In HL,  𝜆 > 3 and a thick fluid film separates the surfaces. 

Friction is lowest in this regime but increases with increase in fluid film thickness [2,6,8].  

Lambda compares film thickness to surface roughness of the surfaces in contact. It can be calculated 

using minimum film thickness (ℎ𝑚) or central film thickness (ℎ𝑐). The results based on both ℎ𝑚 and ℎ𝑐 

are qualitatively similar, but quantitatively different. In this study, 𝜆 was calculated using ℎ𝑚.  

The significance of wetting in a tribological system varies with the lubrication regime under which a 

system operates. Scholars disagree on relative importance of wetting in different lubrication regimes. 

Bombard et al. claim that wetting is important in BL, but of little significance in ML and HL. In ML and HL 

viscosity plays a significant role [2]. Kalin et al. claim that wetting and surface energy relate with friction 

values in electrohydrodynamic (EHL). The interactions in EHL are governed by wetting and surface 

properties because only surface and lubricant interactions take place in EHL regime. The asperities on 

both the surfaces do not interact [4]. 

Wetting is a measure of how a liquid spreads over a surface. If a lubricant has high wettability, then it 

will spread over the surface. If it has low wettability it will not spread. It depends on properties of 

lubricants and surfaces in tribological systems [2–6]. Scholars disagree on how to characterize 

wettability in tribological applications. Kalin et al claim that a derived spreading parameter (𝑆𝑃) and not 

contact angle (𝜃) should be used to characterize wettability. The results based on 𝑆𝑃 converge well with 

wetting behavior and friction performance, and the results based on 𝜃 do not. 𝑆𝑃 considers polar and 

dispersive components of surface energy and surface tension. It is derived from Young’s equation and 
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OWRK model. They found that total surface energy and dispersive component of surface energy were 

similar for all surfaces, but the polar surface energy varied for all surfaces. Based on this result they 

concluded that polar component of surface energy has a significant role in wettability [3–8]. Bombard et 

al. claim that contact angle (𝜃) should be used to characterize wettability. Their study shows that results 

based on 𝜃 correlate well with wettability and friction behavior. The results based on 𝑆𝑃 did not 

converge well with wettability and tribological behavior [2,9,10]. As per Schertzer and Iglesias a non-

dimensionalized spreading parameter 𝑆∗ based on contact angle should be used to characterize 

wettability. The results based on 𝑆∗ converged well with wetting and tribological behavior [6]. 

The approaches to characterize wettability offered by Kalin et al. and Bombard et al. have shortcomings. 

𝑆𝑃  used by Kalin et al. to characterize wettability requires a lot of rigorous calculations and 

experimentation [2–6]. Contact angle (𝜃) used by Bombard et al. is easy to calculate but should not be 

used alone to describe wettability. Contact angle (𝜃) has a nonlinear relation with wetting. Wetting 

relates with cosine of contact angle [2,6]. 𝑆∗ proposed by Schertzer and Iglesias seems to be the best 

option. It can be calculated easily by measuring 𝜃 and it considers the nonlinear relation between 𝜃 and 

wetting behavior. The results based on 𝑆∗ have a linear relation with spreading parameter (𝑆𝑃∗) based 

on polar and disperse components of surface energy and surface tension. Rigorous calculations of polar 

and disperse components of surface tension and surface energy provide no additional benefit [6]. Non-

dimensionalized spreading parameter 𝑆∗ was used to characterize wettability in this study. 

Scherter and Iglesias proposed that different Stribeck curves for different surface lubricant pairs might 

collapse into a single friction coefficient versus 𝜆. |𝑆∗| curve. If this is true, tribological behavior of a wide 

range of surface lubricant pairs can be predicted by measuring wettability and other parameters that are 

generally measured. 

This thesis examined whether wettability and specific film thickness can be used to collapse different 

Stribeck curves of different surface lubricant systems. Schertzer and Iglesias did some preliminary 

analysis, but the data points were not enough to lead to a conclusion. Several experiments were 

conducted to collect more data points and check whether the different Stribeck curves could be 

collapsed into one single curve. This study also used data collected by Hong Guo on some steel 

specimens. This study was performed study by: 

• Calculating 𝜆, 𝜃, and friction coefficient 

o 𝜆 values will be calculated using ℎ𝑚  

• Calculating S* using 𝜃 

• Plotting friction coefficient versus 𝜆. |𝑆∗|  
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2.0 THE RESEARCH QUESTION 

 

The primary contribution of this work will be to check whether inclusion of wettability can collapse 

different Stribeck curves for different surface lubricant pairs into one friction coefficient versus  𝜆|𝑆∗| 

curve. If desired results are achieved, then it would simplify the research in the field of friction and save 

time and money. 

𝑆∗ seems to be a promising parameter to characterize wettability as it can be calculated by just the 

contact angle. It considers the non-linear relation between wetting and 𝜃. The results based on 𝑆∗ 

converge well with the results based on spreading parameters based on polar and dispersive 

components of surface energy and surface tension. This implies that there is no additional benefit in 

calculating polar components of surface energy and surface tension [2–7,11].  

This study analyzed whether different Stribeck curves for different tribological pairs collapse into one 

friction co-efficient versus 𝜆. |𝑆∗| curve. 

 

  

Primary Research Question: Can inclusion of wetting lead to a better understanding of friction 

behavior across a wide range of tribological systems? 
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  3.0 LITERATURE REVIEW 

Friction and wear are crucial to modern machinery that uses rolling and sliding surfaces. In US, improper 

attention on of effects of friction and wear amounts to a loss of 4% of gross national product. As per an 

estimate, approximately one-third of the global energy reserves are expended directly or indirectly on 

friction. If better tribological practices are employed, then an industrial nation can save an approximate 

1% of its gross national product [12]. A proper understanding of effects of all the factors that influence 

tribological performance is crucial to reduce friction and wear [13]. Expected savings from research in 

the field of tribology is estimated to be 50 times the research cost [12]. The effect of wetting and surface 

properties on tribological behavior of a system has not been fully understood [5,7,11]. A comprehensive 

understanding of effects of these factors will propel the research in the field of tribology. Such a 

research might lead to methods and materials to reduce friction and wear. 

The specific film thickness (𝜆) is used to identify the lubrication regime under which a tribological 

system operates. It provides a measure of intensity of asperity interactions in lubricated sliding 

[6,8,11,12]. It is defined as the ratio of theoretical film thickness (ℎ) to root mean square of roughness 

of the surfaces in contact and is described as [6,11,12,14]: 

 

𝜆 =
ℎ

√𝜎𝑎
2 + 𝜎𝑏

2

 

 

(1) 

where 𝜎𝑎 and 𝜎𝑏 are the roughness values of surfaces in contact. 

Based on values of 𝜆, tribological systems can be characterized in three regimes (Fig. 1) [6,8,11,12]: 

• Boundary lubrication (𝐵𝐿): 𝝀 < 𝟏 

o The asperities on both the surfaces are in contact with each other and the load is 

supported by these asperities. 

o The friction values are highest in this regime. 

• Mixed Lubrication:𝟏 < 𝝀 < 𝟑 

o Some contact exists between the asperities and a thin fluid film separates the surfaces. 

o The load is supported by asperities and the fluid film. 

o The friction values are moderate in this regime. 

• Hydrodynamic Lubrication:𝝀 > 𝟑 

o The asperities on both the surface do not touch each other and a thick film of fluid 

separates the two surfaces. 

o The load is supported by the fluid film and the friction values are lowest in this regime. 
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o The friction values in this regime increase with viscous effects. 

 

Boundary lubrication 

 

Mixed lubrication 

 

Hydrodynamic lubrication 

Figure 1: Different lubrication regimes under which a tribological system operates [12] 

Different definitions exist for 𝜆 depending on the type of theoretical film thickness employed for 

calculation [8,11,14–18]. Theoretical film thickness is calculated with the assumption that system 

operates in 𝐻𝐿 regime. This study employs a soft surface (PDMS) and a hard surface (steel) for the 

study. The surface roughness of the soft surface changes when a soft surface is used against a hard 

surface for tribological tests at high pressure. This change in surface roughness alters the value of 𝜆 [19]. 

In this study, it was assumed that the surface roughness of the soft surface remained constant. The 

change in surface roughness and 𝜆 were left for consideration in future studies. Theoretical film 

thickness in eq(1) can be calculated either by central film thickness (ℎ𝑐) or minimum film thickness 

(ℎ𝑚). Central film thickness (ℎ𝑐) is the thickness of the lubricant film at the center of contact when the 

system and minimum film thickness (ℎ𝑚) is the thickness of the fluid film at the rear or sides of contact 

[20]. 𝜆 values calculated using ℎ𝑐 are higher (not more than 2 orders) than the values calculated using 

ℎ𝑚 [11]. But the 𝜆 values obtained using ℎ𝑐 and ℎ𝑚 lead to similar tribological results. In this study, 

different values of 𝜆 were calculated based on minimum film thickness (ℎ𝑚) (Eq.(3)) [8,11,14–18,21–

24]. There is lot of data on 𝜆 based on ℎ𝑚 that could be used as reference for calculations in this study. 
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 ℎ𝑐 ≈ 3.3𝑅𝑥
0.80(𝑈𝜂)0.64𝑊−0.22𝐸′−0.42 (2) 

 ℎ𝑚 ≈ 2.8𝑅𝑥
0.77(𝑈𝜂)0.65𝑊−0.21𝐸′−0.44 (3) 

Where 𝑈 is the entrainment speed, 𝑊 is applied load, 𝐸′ is reduced elastic modulus, 𝐸1 & 𝐸2 are elastic 

modulus of the surfaces in contact, and 𝜂0, 𝜂40 & 𝜂100 are dynamic viscosities of the lubricant at 

operating temperature, 40°𝐶, and 100°𝐶 respectively. 

The importance of wetting in a tribological system varies with the lubrication regime in which a system 

operates. Scholars disagree on the regimes in which wetting plays and important role. Bombard et al. 

claim that wetting plays a crucial role in 𝐵𝐿 and has negligible role in 𝑀𝐿 and 𝐻𝐿. They claim that in 𝑀𝐿 

and 𝐻𝐿 viscosity plays an important role and wetting does not play a significant role as a large fluid film 

separates the surfaces[9]. Kalin et al. claim that that wetting plays a significant role in elasto-

hydrodynamic (𝐸𝐻𝐿) regime and does relate well with the friction results in 𝐵𝐿 and 𝑀𝐿 regimes. The 

solid surfaces do not interact in 𝐻𝐿 regime and barely in 𝑀𝐿 regime as a complete lubrication film is 

formed. Solid-liquid interactions become pronounced and hence wetting or surface properties play a 

significant role in 𝐸𝐻𝐿 and 𝑀𝐿 [4]. 

Bombard et al. claim that wetting plays a crucial role in 𝐵𝐿 but not in 𝑀𝐿 and 𝐻𝐿. Bombard et al. 

conducted their study on three surface pairs: Steel-Steel, POM-POM, and PDMS-PDMS. They used PAO, 

ionic liquids (𝐼𝐿𝑠), and 𝐼𝐿 based magnetorheological (𝑀𝑅) fluids. All the surface lubricant pairs for 

steel-steel and POM-POM surfaces operate in 𝐵𝐿 (𝜆 < 1), whereas all the PDMS-PDMS surfaces 

operate in 𝑀𝐿 and 𝐻𝐿 (2 < 𝜆 < 22). They found that friction does not relate well with viscosity of fluids 

in 𝐵𝐿 regime. They plotted a friction coefficient versus viscosity curve to analyze the effect of viscosity 

on friction. They found that even though viscosity values of  [𝐵𝑀𝐼𝑀+][𝑃𝐹6
−] and [𝐵𝑀𝐼𝑀+][𝐶𝐻3𝐶𝑂𝑂−] 

are similar, the friction coefficient of [𝐵𝑀𝐼𝑀+][𝐶𝐻3𝐶𝑂𝑂−] on steel-steel surface is higher than friction 

coefficient of [𝐵𝑀𝐼𝑀+][𝑃𝐹6
−] on same surface. They also found that friction coefficient values for 

[𝐵𝑀𝐼𝑀+][𝑃𝐹6
−] and 𝐶𝑌𝑃𝐻𝑂𝑆®𝐼𝐿 104 are similar, but the viscosity of 𝐶𝑌𝑃𝐻𝑂𝑆®𝐼𝐿 104 is higher than 

that of [𝐵𝑀𝐼𝑀+][𝑃𝐹6
−]. They then compared the friction value results at same 𝜆 value and found that 

the contribution of viscosity to friction minimized and friction seemed to depend on other surface 

properties. They concluded that viscosity does not play a significant role in 𝐵𝐿. There were still some 

outliers in the results based on 𝜆, so they analyzed the friction results based on wetting. They found that 

friction results aligned well with the wetting behavior. In PDMS-PDMS surfaces friction values remained 

almost equal for all lubricants at the same 𝜆 value. They concluded that in 𝐻𝐿 regime viscosity 

dominates the tribological behavior. They also concluded that wetting does not play a significant role in 

𝐻𝐿, as the friction coefficient values for all the lubricants were similar even when all lubricants had 

different wetting behavior [11]. 

Kalin et al. claim that wettability and surface properties correlate well with friction behavior in elasto-

hydrodynamic (𝐸𝐻𝐿) regime. Wettability does not relate well with friction behavior in 𝐵𝐿 and 𝑀𝐿 

regimes [4]. They used five DLC coatings: 2 doped and 3 non-doped, and two lubricants: PAO4 and 

PAO9.  The surfaces in 𝐸𝐻𝐿 are separated by a thick fluid film, and there is no contact between the 

surfaces in a tribological system. The tribological performance in 𝐸𝐻𝐿 varies with solid liquid 
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interactions. These interactions are characterized by wetting and surface properties. The asperities in 

𝐵𝐿 and 𝑀𝐿 are in contact with each other, and the tribological behavior is influenced by solid-solid 

interactions. Wetting and surface properties do not play a significant role in these interactions [3,4,7,8]. 

Wettability is a measure of how liquid spreads over a surface. A liquid with high wettability spreads over 

the surface and a lubricant with low wettability does not spread and retains its shape. Wettability 

depends on the properties of lubricants and surfaces in a tribological system [5,6,11,14]. Wettability is 

often characterized using contact angle (𝜃) or spreading parameter. Contact angle is the angle that 

lubricant interface makes with the surface at the three-phase contact line. Liquids with low wettability 

form high contact angle with the surface and liquids with high wettability form small contact angle with 

the surface. Spreading parameter (𝑆) (Eq.11) measures the difference between surface energy of a dry 

surface (𝛾𝑆𝑀) and surface energy of a fully wetted surface (𝛾𝑆𝐿 + 𝛾𝐿𝑀). It is a measure of difference 

between work of adhesion (𝑊𝐴) between surface and lubricant, and work of cohesion (𝑊𝐶) between 

lubricant molecules. There is a disagreement on how to characterize wettability. 

 𝑆 = 𝑊𝐴 − 𝑊𝐶 = 𝛾𝑆𝑀 − (𝛾𝑆𝐿 + 𝛾𝐿𝑀) (4) 

Researchers in tribology disagree on what parameter to use to characterize wettability. Kalin et al. 

believe wetting should be characterized using a derived spreading parameter (𝑆𝑃) (Eq.12). They 

compared wetting results based on 𝜃 and 𝑆𝑃 with actual performance. They found that 𝜃 formed by 

lubricants on DLC surfaces (except F-DLC) is lower than 𝜃 formed by lubricants on steel. This implies that 

DLCs have better wettability than steel. The results are contradictory to the behavior of DLCs, as they 

have a poor wetting behavior when compared to steel. Also, the results vary with the lubricant used. 

The value of 𝜃 formed by N-DLC with PAO4 is lower than 𝜃  formed by steel with the same lubricant, but 

N-DLC forms higher 𝜃 with PAO9 than steel does with PAO9. The results based on 𝜃 are not consistent 

for the two lubricants. But the results of 𝑆𝑃 align with wetting behavior of DLCs. The results based on 𝑆𝑃 

demonstrated that DLCs (except ta:C) have lower wettability with steel. The results are consistent for 

both the lubricants.  

𝑆𝑃 (Eq.11) is derived from 𝑆 (Eq.9) using Young’s equation [25] (Eq.5) and OWRK model (Eq.6) [26]. 𝑆𝑃 

considers polar (𝛾𝑆
𝑃) and dispersive (𝛾𝑆

𝐷) components of surface energy of the surface, and polar (𝛾𝐿
𝑃) 

and dispersive (𝛾𝐿
𝐷) components of surface tension of the lubricant. They found that the total surface 

energy and dispersive energy of the surface are similar, but the polar component of surface energy 

varies significantly from surface to surface. They concluded that the difference in total surface energy is 

due to polar component of surface energy. They also claimed that polar component of surface energy 

plays the most important role in wetting behavior of a tribological system 

 𝛾𝑆𝑀 − 𝛾𝑆𝐿 = 𝛾𝐿𝑀 cos 𝜃 (5) 

 𝛾𝐿(1 + 𝑐𝑜𝑠𝜃) = 2 (√𝛾𝑆
𝐷𝛾𝐿

𝐷 + √𝛾𝑆
𝑃𝛾𝐿

𝑃 ) (6) 

Substituting (5) into (4) 
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 𝑆 = 𝛾𝐿𝑀 cos 𝜃 − 𝛾𝐿𝑀 = 𝛾𝐿𝑀(𝑐𝑜𝑠𝜃 − 1) (7) 

Equation (7) can also be described as 

 𝑆 ≈ 𝛾𝐿𝑀(cos 𝜃 + 1) − 2𝛾𝐿𝑀 (8) 

Substituting OWRK model (6) in (8) yields spreading parameter (𝑆𝑃) proposed by Kalin et al. 

 𝑆𝑃 = 2 (√𝛾𝑆
𝐷𝛾𝐿

𝐷 + √𝛾𝑆
𝑃𝛾𝐿

𝑃 − 𝛾𝐿𝑀)  (9) 

Bombard et al. claim that contact angle (𝜃)  should be used to characterize wettability. They used 𝑆𝑃 

used by Kalin et al. and 𝜃 to characterize wettability. They compared the results based on 𝑆𝑃 and 𝜃 with 

wetting and friction behavior. They found that results based on 𝜃 converge better with wetting behavior 

and friction performance than results based on 𝑆𝑃 (Fig 3, 4a), 4b)). They found that friction values in 𝐵𝐿 

regime (steel-steel and POM-POM) correlated well with contact angle and not with 𝑆𝑃. It is easy to 

characterize wetting using 𝜃 and does not require a lot of rigorous calculations [11]. But, 𝜃 alone should 

not be used to characterize wetting because 𝜃 has a nonlinear relation with wetting. Wettability relates 

with cosine of 𝜃 [5,6,14]. 

Schertzer et al. proposed that a non-dimensionalized spreading parameter (𝑆∗) based on 𝜃 should be 

used to characterize wettability. They compared wettability results based on 𝜃, 𝑆, 𝑆𝑃, and some non-

dimensionalized spreading parameters. These non-dimensionalized spreading parameters were 

obtained by scaling 𝑆 and 𝑆𝑃 against surface tension and surface energy. They demonstrated that 𝑆 can 

be expressed as a function of 𝜃  using Young’s equation [27](Eq.7). Using Eq.7 and Eq.10 they 

incorporated 𝜃 in 𝑆 and expressed it as difference between work of adhesion and work of cohesion 

[6,27]: 

Work of adhesion is described as 

 𝑊𝐴 ≈ 𝛾𝐿𝑀(cos 𝜃 + 1) (10) 

Using Eq.10 in Eq. 8 

 𝑆 ≈ 𝑊𝐴 − 𝑊𝐶 ≈ 𝛾𝐿𝑀(𝑐𝑜𝑠𝜃 + 1) − 2𝛾𝐿𝑀 (11) 

They first compared the wettability results of 𝑆, θ, and 𝑆𝑃. They found that 𝑆 and 𝑆𝑃 correlate with 𝜃. 𝑆 

has a better correlation with 𝜃, as 𝑆 can be expressed as an explicit function of contact angle. The 

relation between 𝑆, 𝑆𝑃 and 𝜃 is nonlinear, suggesting 𝜃 alone should not be used to characterize 

wettability. But, the relation between 𝑆 and 𝑆𝑃 is linear. This means that wettability results based on 𝑆 

and 𝑆𝑃 are similar [6]. They then compared different non-dimensionalized spreading parameters. These 

parameters are constructed by scaling 𝑆 and 𝑆𝑃 against surface energy of the surface (𝛾𝑆) or surface 

tension between the liquid and the surrounding medium (𝛾𝐿𝑀). Based on Eq.9 and Eq. 11, these non-

dimensionalized spreading parameters are as follows [6]: 
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 𝑆∗ = 𝑆/𝛾𝐿𝑀 = (𝑐𝑜𝑠𝜃 − 1) (12) 

 𝑆𝑃∗ = 𝑆𝑃/𝛾𝐿𝑀 = 2 (√
𝛾𝑆

𝐷𝛾𝐿
𝐷

𝛾𝐿𝑀
2 + √

𝛾𝑆
𝑃𝛾𝐿

𝑃

𝛾𝐿𝑀
2 − 1) (13) 

 𝑆∗∗ = 𝑆/𝛾𝑆 = (𝛾𝐿𝑀/𝛾𝑆)(𝑐𝑜𝑠𝜃 − 1) (14) 

 𝑆𝑃∗∗ = 𝑆𝑃/𝛾𝑆 = 2 (√
𝛾𝑆

𝐷𝛾𝐿
𝐷

𝛾𝑆
2 + √

𝛾𝑆
𝑃𝛾𝐿

𝑃

𝛾𝑆
2 −

𝛾𝐿𝑀

𝛾𝑆
) (15) 

They found that all the non-dimensionalized spreading parameters from Eq.12 to Eq.13 have a nonlinear 

relation with 𝜃 [6]. They also found that non-dimensionalized parameters based on contact angle have a 

linear relation with those based on polar and dispersive components of surface tension and surface 

energy. 𝑆∗ related linearly with 𝑆𝑃∗ and 𝑆∗∗ related linearly with 𝑆𝑃∗∗. This implies that calculation of 

polar and disperse components of surface would not provide any additional benefit, as the parameters 

based on contact angle correlate with parameters based on polar and disperse components of surface 

tension and surface energy. So, they concluded that parameters based on contact angle should be used 

to characterize wetting as they require fewer inputs. Hence, they proposed that 𝑆∗ (Eq.16) should be 

used to characterize wetting as it can be calculated by measuring contact angle. 

The approaches offered by Kalin et al.(𝑆𝑃) and Bombard et al. (𝜃) have shortcomings. Measurement of 

𝑆𝑃 involves rigorous calculation (Eq.12), as polar and dispersive components of surface tension and 

surface energy must be calculated to calculate 𝑆𝑃. [3–7,11]. It is easy to characterize wetting using 𝜃 

and does not require a lot of rigorous calculations [11]. But, 𝜃 alone should not be used to characterize 

wetting because 𝜃 has a nonlinear relation with wetting. Wettability relates with cosine of 𝜃 [5,6,14]. 

The use of contact angle alone to characterize wetting can lead to inaccuracy. This is because depending 

on the relative strength of work of adhesion and work of cohesion the time required for a liquid to form 

a stable contact angle may vary [3–7]. 𝑆∗ proposed by Schertzer et al. provides a solution to these 

shortcomings. It is easy to calculate, as it only needs 𝜃 as input, and it takes into consideration the 

nonlinear relation between 𝜃  and wettability (Eq.16). 𝑆∗  also has a linear relation with non-

dimensionalized spreading parameter based on polar and dispersive components of surface tension and 

surface energy. This means that there is no additional benefit in calculating polar and disperse 

components of surface tension and surface energy. This study employed 𝑆∗ to characterize wettability. 

Schertzer et al. also characterized friction using 𝑆∗. They started by plotting friction coefficient against 𝜆. 

Friction coefficients are low when 𝜆 > 1. For 𝜆 < 1, friction coefficients are high when |𝑆∗| < 0.1 and 

moderate when 0.1 < |𝑆∗| < 1. There are several outliers in this plot. IL104 records moderate friction 

values on steel-steel surface even when value of |𝑆∗| is low, and PAO and IL104 records low friction 

values on PDMS-PDMS surface when |𝑆∗| is moderate. They then plotted 𝜆 versus |𝑆∗| plot to analyze 

the relation between 𝜆 and |𝑆∗| . They found that when speed is varied at constant load, |𝑆∗| does not 

change and the values on the plot fall into vertical groups. 𝜆 increases with speed for a given value of 
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|𝑆∗|. These observations imply that 𝜆 and  |𝑆∗| are independent variables. They then plotted friction 

coefficient versus 𝜆|𝑆∗| plot and based on the plot identified three regimes [6]: 

• When 𝜆|𝑆∗| > 0.5 

o Friction coefficients are generally low and consistent 

o Corresponds to 𝐻𝐿 regime 

• When 10−3 <  𝜆|𝑆∗| < 0.5 

o Friction coefficients increases moderately 

o Corresponds to 𝑀𝐿 regime 

o Moderate values of 𝜆 reduce friction values when |𝑆∗| is small 

o Moderate values of |𝑆∗|  reduce friction values when 𝜆 is small 

• When 𝜆|𝑆∗| < 10−3 

o Frictions increases drastically 

o Values of both 𝜆 and  |𝑆∗| are small 

Based on the results, Schertzer et al. proposed that friction behavior of tribological systems can be 

predicted by calculating 𝜆 and  |𝑆∗|. They also suggested that different Stribeck curves for different 

surface lubricant pairs might collapse if a non-dimensionalized spreading parameter is also considered 

along with 𝜆. 

 This study checked whether different Stribeck curves for different lubricants could be collapsed into one 

friction coefficient versus 𝜆|𝑆∗|. Schertzer et al. had done some preliminary meta-analysis with data 

from [5,11,28]. In this study, experiments and calculations were performed with PDMS surface and 

AISI52100 steel balls and four lubricants: PAO40, and three 𝐼𝐿𝑠. Enough data points were collected to 

analyze and check whether different Stribeck curves can collapse. 
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  4.0 OBJECTIVES OF THE PROPOSED WORK 

The main purpose of this work was to test whether the different Stribeck curves obtained for different 

surface lubricant combinations can collapse into one friction versus 𝜆. |𝑆∗| curve (Fig.12). To achieve 

this, the value of 𝜆 for different combinations of applied load and speed on different surface lubricant 

pairs was calculated, and several experiments to measure contact angle and friction coefficient were 

conducted. This study employed PDMS surface and four lubricants: PAO40, and 3 ILs (DET, EET, and 

MET). Also data on steel-steel surface and DET, EET, and MET was taken from a study conducted by 

Hong Guo. 

  

 

 

 

 

 

 

 

Figure 2: The primary goal is to collapse different curves for friction coefficient for different systems 
into one curve using S*. (This graph is a hypothetical sketch and is not based on real values.) 

As per eq (1), 𝜆 is a function of fluid film thickness (ℎ) and root mean square value of surface roughness. 

One can choose between two values of h: central film thickness (ℎ𝑐) and minimum film thickness (ℎ𝑚). 

Lambda was calculated with ℎ𝑚. Based on equation (6), ℎ𝑚 depends on entrainment speed (𝑈), fluid 

viscosity (𝜂), applied load (𝑊), radius of the ball (𝑅𝑥), and reduced modulus of elasticity (𝐸′).  Out of 

these parameters, 𝜂 has a constant value and the value is different for different fluids. The balls with the 

same radius (𝑅𝑥) were used for all experiments. Experiments were performed at different loads (𝑊) 

and different speeds (𝑈) to obtain different values of 𝜆. The value of S* is a function of contact angle 

(Eq.16). 

After the experiments, the friction coefficient was plotted as a function of 𝜆, and then as a function of 

𝜆. |𝑆∗| and the two plots were compared to check whether our goal is met. 

In this study, PDMS 184 was used for surface, AISI 52100 for steel balls, and PAO 40, and three ionic 

liquids for lubricants. PDMS was chosen as because all the three lubrication regimes (𝐵𝐿, 𝑀𝐿, 𝑎𝑛𝑑 𝐻𝐿) 

could be achieved on PDMS, and also because many tribological studies in [11] have been done on 

PDMS. There is a lot of data to refer to and compare results with. PAO 40 was employed for the study 

because results based on PAO would serve as reference for results based on 𝐼𝐿𝑠. DET, EET, and MET 
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were chosen as 𝐼𝐿𝑠 because these three 𝐼𝐿𝑠 have similar chemical composition but have different 

viscosities and tribological behavior. A proper analysis of their behavior helped us check the tribological 

behavior in the three lubrication regimes: 𝐵𝐿, 𝑀𝐿, 𝑎𝑛𝑑 𝐻𝐿. 

Description of methods and experiments: 

• Contact angle (𝜽): The contact angle was calculated using Rame-Hart contact angle 

goniometers. The contact angles were measured using DROPimage software. 

• Friction coefficient:  This was measured using ball-on-flat tribometer. The friction coefficients 

were measured at different values of 𝜆, by varying the applied load (W) and the entrainment 

speed (U). The tribometer is operated using Lab View.  
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5.0 EXPERIMENTAL METHODOLOGY 

Derived Data 

Tribological data pertaining to steel-steel surfaces tested with ionic liquids was obtained from Hong 

Guo. Hong performed tribological tests for AISI 52100 steel balls and surfaces with three ionic liquids: 

DET, EET, and MET. She used steel balls of 1.5mm diameter and of 0.5 𝜇𝑚 surface roughness. She used 

steel surface of 3.125 cm diameter. The surface was polished to a surface roughness of 0.01 𝜇𝑚. The 

friction tests were conducted on a reciprocating tribometer at a constant speed of 0.03 m/s (5Hz 

frequency and 3 mm stroke length) and at a constant load of 3 N. Each test was run for 3600 seconds (1 

hours) to cover a distance of 108 meters. 

Materials and Preparation 

In the study, PDMS surface, AISI 52100 steel balls, and four lubricants were used. The steel balls of 

diameter of 1.5 mm and surface roughness of 0.05 𝜇𝑚 were bought from a supplier. The PDMS surfaces 

of diameter of 1.251 inches and a height of 1 cm were cast using a mold. One of the surfaces of the mold 

was polished to achieve a surface roughness of 0.5 𝜇𝑚. For each specimen, the elastomer base and the 

elastomer curing agent were mixed in a ratio of 10:1. This mixture was then deaired for 2 hours. The 

solution was then poured into the mold. The mold was then placed in vacuum for 6 hours to remove 

entrapped air bubbles. After this process, the mold was placed in a furnace for 12 hours at 65 °𝐶. The 

prepared specimen was removed from the mold after baking. Four lubricants were used for the study: 

PAO 40, DET, MET, and EET (Table1). Out of the four lubricants, PAO 40 was sourced from market and 

the other three lubricants were synthesized by Hong Guo. 

 

Figure 3: PDMS Specimen 

 

Figure 4: Mold: (left to right) bottom plate, polished surface, cavity, and top plate 
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(DET) 

2-hydroxydimethylammonium 2-ethylhexanoate 

(EET) 

2-hydroxyethylammonium 2-ethylhexanoate 

(MET) 

2-hydroxymethylammonium 2-ethylhexanoate 

(PDMS) 

Polydimethylsiloxane 

Figure 5: Molecular structures of EET, MET, DET, and PDMS[29][30]. 

Experimental Details 

Surface Roughness:  The steel balls of 0.05 𝜇𝑚 surface roughness were outsourced. For the PDMS 

surface a surface roughness of 0.5 𝜇𝑚 was obtained by polishing a flat surface of a cylindrical steel 

specimen to the desired surface roughness. This polished specimen was then fitted in the mold and 

polymer poured over it to achieve the desired roughness. The surface roughness of the steel specimen 

was measured using optical profilometer NONOVEA ST400 (Fig.13). It measures wavelengths directly 

related to specific heights and then calculates the average roughness values for the surface (Fig.14). The 

steel specimen was placed on a platform below the lens. The area to be analyzed was demarcated using 

a computer software. The profilometer then performed the scan and returned the average value for 

surface roughness. For this study, three measurements of surface roughness were taken, and the 

average value of these readings was used. 
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Figure 6: NONOVEA ST400 

 

 

Figure 7: Surface roughness calculation of AISI 52100 1.5 mm diameter steel ball using NONOVEA 
ST400. 

 

Material Roughness 

PDMS 0.5𝝁m 

AISI 52100 0.05𝝁m 

Table 1 Surface roughness values for PDMS and AISI 52100.  

Friction Coefficient: Friction coefficients were measured using ball-on-flat or reciprocating tribometer. 

In a ball-on-flat tribometer one can conduct multiple tests on the same surface, but its sliding speed is 

limited. The speed varies in a ball-on-flat tribometer as the steel ball slides over the surface from one 

end to other, but the sliding speed is assumed to be constant. The various parts of a tribometer and 

steps involved in measurement are shown in Fig.8. The tribometer is set in such a way that the applied 

load acts normal to the surface. The applied load can be modulated by changing the weights on the 
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device. The sliding speed and sliding time are set up using Lab View. The strain gauge is attached to the 

arm of the arm of tribometer. As the pin runs on the sample the strain generated in measured by the 

strain gauge. This strain value is used to calculate friction, and then friction coefficient using lab view. 

Strain and friction are related as per the eq. 16. Where 𝐿 is length of the arm, 𝑤 is width of the arm, 𝐸 is 

elastic modulus of the arm, ℎ is the height of the arm, and 𝐹 is friction [27]. 

 𝜖 =
6𝐹𝐿

𝑤ℎ2𝐸
 (16) 

A drop of lubricant is placed between the surfaces in contact and the sliding speed is set on Lab View 

software, and the applied load is manually placed on the tribometer. The tribological behavior of 

different surface lubricant pairs was studied under different lubrication regimes. The entrainment speed 

(𝑈) and applied load (𝑊) were varied to operate the system in different lubrication regimes (different 𝜆 

values). The friction coefficient was recorded for a sliding distance of 100 meters at different speeds. 

The time for each experiment varied from 33 minutes 20 seconds to 2 hours 46 minutes 40 seconds, 

depending on the entrainment speed. Before each experiment the surface was washed, the steel ball 

was replaced, and 3 calibration readings were taken. The calibration readings were taken keeping the 

pin still on the surface. For each calibration reading, the stroke length was set to zero, and the load and 

frequency were set to the values the system would operate in for the experiment for which the 

calibration was being done. Each calibration test was run for 3 minutes. Ideally, when the piston is still 

(zero stroke length), the average friction value should be zero. The average of each calibration was taken 

and then an average of average of values of three calibration tests was taken. This value was later 

subtracted from the average of the results of tribological experiment. At least three data points were 

recorded for each selected combination of speed, load, and surface lubricant pair. 

The results were categorized based on value of 𝜆. This categorization was then compared to 

categorization based on 𝜆|𝑆∗|. In this study, 4 surface-lubricant pairs were employed, and 28 tests were 

conducted. This study analyzed the tribological behavior of systems in different regimes and tested for 𝜆 

values ranging from 0.002 to 3.86. This means that tribological behavior in all the three regimes 

(𝐵𝐿, 𝑀𝐿, 𝑎𝑛𝑑 𝐻𝐿) was observed. The friction data for each case was also plotted against time (Fig.9) to 

check whether the system reached a steady state. All the cases in this study reach a stable state within 

the first 200 seconds. This study also used friction data for steel surface and steel balls with DET, EET, 

and MET collected by Hong Guo in her study. 
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b)                                     c)                                      d)                                         e)       

    

                         f)                                     g)                                     h)                                          

Figure 8: a) Reciprocating Tribometer b) sample holder c) sample to be tested d) reciprocating 
platform e) sample holder attached f) ball is loaded on the pin g) pin is installed on tribometer h) the 

sample is levelled [31]. 

 

a) 
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Figure 9: PAO-PDMS friction against time for BL at 3 N and 0.01 m/s . The time series for all the cases 

in this study were similar. 

The PDMS and PAO pair was tested for a value of 𝜆 ranging from 0.86 to 3.10 (Table 2). The respective 

values of 𝜆 were achieved by varying load and speed. For DET and PAO, the system always operated in 

𝐵𝐿 regime (𝜆 < 1). In this study DET and PDMS pair was tested for a 𝜆  value of 0.58. For PDMS and EET 

pair the system always operated in 𝐻𝐿 regime (𝜆 > 3). PDMS and EET pair was tested for 𝜆 value of 

3.86. The PDMS and MET pair was tested for a 𝜆 value ranging from 0.946 to 3.109. In case of steel 

surface and steel balls, the 𝜆 was always less than one. The tribological data for steel surfaces and ionic 

liquids was obtained from Hong Guo. Hong Guo used AISI 52100 steel surface and balls for her study. For 

all the cases, she ran the system at a constant speed of 0.03m/s (stroke length of 3mm and frequency of 

5Hz) and at a constant load of 3N. Each experiment was conducted for a sliding distance of 108 meters 

and it took about 1 hour to complete each experiment. 
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Surface Lubricant 𝐿𝑜𝑎𝑑 

(𝑁) 

𝑆𝑝𝑒𝑒𝑑 

(
𝑚

𝑠
) 

𝑇𝑖𝑚𝑒 𝜆 𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟  

𝜆 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

𝑓𝑜𝑟 𝜆 

PDMS PAO40 1 0.05 33m20s 3.095 HL ±0.003 

PDMS PAO40 3 0.05 33m20s 2.458 ML ±0.0003 

PDMS PAO40 3 0.01 2h46m20s 0.863 BL ±0.001 

PDMS DET 1 0.05 33m20s 0.58 BL ±0.001 

PDMS EET 3.98 0.01 2h40m20s 3.86 HL ±0.004 

PDMS MET 1.5 0.05 33m20s 3.109 HL ±0.003 

PDMS MET 2.5 0.04 46m40s 2.416 ML ±0.003 

PDMS MET 3.98 0.01 2h46m20s 0.889 BL ±0.007 

Steel DET 3 0.03 1 hour 0.00291 BL ±0.0003 

Steel EET 3 0.03 1 hour 0.07361 BL ±0.008 

Steel MET 3 0.03 1 hour 0.01694 BL ±0.002 

Table 2 Load, speed, time taken for each experiment, 𝝀, and characterization of lubrication regime 

based on 𝝀 for all lubricants (PAO40, DET, EET, and MET) on different surface pairs (PDMS-

steel and steel-steel). The uncertainty is calculated at 2 standard deviations at 95 % 

confidence interval. 

Contact Angle (𝜽): The contact angle measurements were made before the experiments for each 

surface lubricant pair. Contact angle was measured using Ramé-Hart goniometer (Fig. 10). The system 

was calibrated prior to starting the measurements. The surface is placed on the stage and the height of 

the stage is adjusted to bring the surface into view. Then a drop is placed on the surface and the camera 

is focused on the drop. Once focus is set, then a horizontal reference axis is set right above the surface. 

Then either one vertical axis is set passing through the center of the drop or two vertical axes are set to 

remove the area with reflection of light. In this study, two vertical axes were set to remove the area with 

reflection from analysis. Then number of observations per second and duration for the observation are 

set using DROPimage advanced software (Fig. 11). The software also records standard deviation, range 

and mean of the contact values. Each contact angle test was conducted for 300 seconds. For every 

surface-lubricant pair the measurements were taken at least three times, and four times if there was a 

huge difference between the results of first two experiments. After each measurement the surface was 

cleaned. 
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a)  b)  

Figure 10: Ramé-Hart goniometer at Digital Microfluidics lab. 

 

Figure 11: PAO40 droplet on AISI 316 surface. The measurements were made on Ramé-Hart 
goniometer. 
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6.0 RESULTS AND DISCUSSION 

In this section, friction results are compared against different parameters: viscosity, contact angle (𝜃), 

spreading parameter (𝑆∗), specific film thickness (𝜆), and a combination of specific film thickness and 

spreading parameter (𝜆|𝑆∗|). The outliers for characterization based on different parameters are shown 

and drawbacks of the characterization discussed. At the end, the characterization based on 𝜆|𝑆∗| is  

shown and its advantages over characterization based on other parameters discussed. 

6.1 Characterization based on viscosity 

An attempt was made to characterize friction data based on viscosity (Fig.12). The friction in the system 

decreases as a more viscous lubricant is used. If the system operates in 𝐻𝐿 regime then beyond a certain 

point, the friction increases as viscosity increases. It was expected that the friction values would 

decrease with more viscous lubricants. The lambda (𝜆) can be increased by either increasing the 

operating speed or lowering the applied load. This means that as load and speed are altered the 

lubrication regime under which a system operates changes. This transition of regime would alter the 

friction results for the same surface lubricant pair. It was found that for same lubricant friction 

coefficient decreased with increase in speed. The friction coefficient also decreased as viscosity 

increased. But there were some outliers. The lowest friction values were recorded for PDMS-DET pair 

even when DET has the lowest viscosity. EET-PDMS pair recorded a high value of friction even when EET 

has the highest viscosity of all the lubricants. MET and PAO have similar viscosities but the friction values 

were different. For the same lubricant surface pair (PDMS with PAO and MET), different friction values 

were recorded depending on the operating conditions. Based on evidence, viscosity should not be used 

to characterize friction. Some other surface properties (lambda or wettability) should be used to 

characterize friction. 

 

                                                  

Figure 12: Friction versus viscosity for steel-steel surfaces at 0.03 m/s (red square) and PDMS-steel 
surfaces at 0.01 m/s (yellow dot), 0.04m/s (green), and 0.05 m/s (blue triangle) for different 

lubricants. 
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Then friction against viscosity data was compared on basis of 𝜆 value (Fig.13). The contribution of 

viscosity to friction was minimized. The value of friction decreased as value of 𝜆 increased. The friction 

decreased as system transitioned from 𝐵𝐿 to 𝐻𝐿. There were some still outliers. The friction values for 

steel were low even when the 𝜆 values were low. For 𝜆 < 1, PDMS surface in one case recorded a low 

friction value. When 𝜆 < 1, a system should operate in 𝐵𝐿 and the friction values are high. For 𝜆 > 3, 

PDMS surface in one case recorded a high friction. In 𝐻𝐿 (𝜆 > 3), a system generally records low friction 

values. The classification based on 𝜆 better characterized friction than viscosity, but still there were still 

some outliers. So, lambda alone is not enough to characterize friction and other surface properties 

should be taken into consideration. 

 

                                           

Figure 13: Friction versus viscosity for steel-steel surfaces for steel at 𝝀 < 𝟏 (𝑩𝑳), for PDMS at 𝝀 <
𝟏 (𝑩𝑳), 𝟏 < 𝝀 < 𝟑 (𝑴𝑳), and 𝝀 > 𝟑 (𝑯𝑳) for different lubricants. 

6.2 Characterization based on contact angle (𝜽) 

As per Bombard et al., wetting plays a significant role in 𝐵𝐿. It is preferable to have high wettability for a 

system that operates in 𝐵𝐿. A wetting liquid has higher wettability when the contact angle is low and 

vice versa[32]. The lubricant spreads over the surface and fills the asperities and reduces friction. It was 

expected that friction would decrease for systems operating in 𝐵𝐿 with decrease in contact angle. Low 

wettability is preferred for systems operating in 𝑀𝐿 and 𝐻𝐿 regime. The load is supported by the 

lubricant and the surfaces are either in partial contact or no contact at all. It is desired that a lubricant 

operating in 𝑀𝐿 or 𝐻𝐿 keeps the surfaces separated and does not spread over the surface. The friction 

in 𝑀𝐿 and 𝐻𝐿 increases with increase in wettability. This means that the friction values in 𝑀𝐿 and 𝐻𝐿 

were expected to increase with decrease in contact angle [4,6,11].  

The study found that when PDMS was used with PAO and MET in BL, lower friction value was recorded 

for a lower contact angle (PAO) (Fig 14, Table 3, and Fig.15). For PDMS operating in 𝑀𝐿 and 𝐻𝐿, the 

study found that lubricant with higher contact angle recorded lower friction values (MET). PDMS-EET 
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pair operated in 𝐻𝐿 and recorded very low contact angle. The pair recorded the highest value for 

friction among all systems operating in 𝐻𝐿 and the value was higher than expected. PDMS-DET pair 

operated in 𝐵𝐿 and recorded the lowest contact angle among all system PDMS systems operating in 𝐵𝐿 

regime. The pair recorded the lowest friction among all PDMS systems in 𝐵𝐿 but the friction value was 

lower than expected. Steel-steel surface pairs recorded contact angles lower than PDMS-steel pairs 

(Fig.14 and 16, and Table 4). Steel-DET recorded the lowest contact angle but recorded the highest 

friction among all the steel-steel systems. The friction values recorded by all steel-steel system cases 

were lower than the PDMS-steel cases, but the values were lower than expected.   

Contact angle could not fully characterize friction because in some cases the values were very different 

from the expected. The possible reason for this behavior is that all the systems were operated in varied 

conditions and contact angle alone cannot take into account the effect of change in operating 

conditions. Specific fluid film thickness (𝜆) takes into account the change in operating conditions. 

 

Figure 14: Average friction against contact angle for PDMS (dot) and steel (square) for PAO (blue), DET 

(grey), EET (yellow), and MET (orange). 

Lubricant Average Contact 

Angle (𝜽) 

2*SD SE at 2*SD 

PAO40 50.44 3.62 2.09 

DET 41.825 3.65 2.11 

MET 53.4 0.82 0.41 

EET 39.83 3.47 1.74 

Table 3 Average Contact angle measurements and uncertainty based on twice of standard deviation 
(SD) and standard error (SE) for a confidence interval of 95% for PAO40, DET, MET, and EET on PDMS. 

Each measurement was taken for a time period of 300 seconds at room temperature. 
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Figure 15: Average contact angle values for different lubricants on PDMS surface.  

Lubricant Average Contact 

Angle (𝜽) 

DET 22.60.03 

MET 30.96±0.01 

EET 36.29±0.25 

Table 4 Average contact angle measurements with uncertainty for a confidence interval of 95 % for 

DET, MET and EET on steel surface. 

 

Figure 16: Average contact angle values for different lubricants on steel surface 
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6.3 Characterization based on non-dimensionalized spreading parameter |𝑺∗| 

As per Kalin et al., lower value of spreading parameter leads to lower coefficient of friction[4]. Kalin et 

al. made the claim for elasto-hydrodyanmic lubrication regime (𝐸𝐻𝐿). The friction was expected to 

decrease with decrease in the value of spreading parameter if the system operates in 𝐻𝐿 regime.  It was 

observed that for 𝜆 > 3, MET recorded a lower friction value than PAO and MET also had a lower value 

of 𝑆∗ (Fig.25). PDMS-EET recorded an even lower value of spreading parameter but the friction values 

were very high. A system operating in 𝐵𝐿 was expected to experience lesser friction with increase in 

value of spreading parameter. PDMS-PAO system recorded a lower friction in 𝐵𝐿 than PDMS-MET in 𝐵𝐿. 

The value of 𝑆∗  was higher for PDMS-PAO than that for PDMS-MET. PDMS-EET recorded the highest 

value of 𝑆∗ among all the systems that operated in 𝐻𝐿 and recorded the highest value of friction among 

all the 𝐻𝐿 systems studied. The value of friction was higher than anticipated. Similarly, PDMS-DET 

recorded the highest value of 𝑆∗ and the lowest value for friction among all the PDMS systems that 

operated in 𝐵𝐿, but the friction values were lower than expected. Steel-steel surfaces witnessed highest 

friction with DET but DET recorded the highest value of 𝑆∗ on steel (Fig.17). 

It was observed that any formulation of spreading parameter (𝑆, 𝑆𝑃, 𝑜𝑟 |𝑆∗|) cannot be used alone to 

characterize friction when the same lubricant and surface pair is operated in different operating 

conditions (load and speed). The value of 𝑆∗ stays constant for a system and is not affected by any 

change in operating conditions. In scenarios where the same system is tested under different lubrication 

regimes, spreading parameter alone cannot be used to characterized wettability. The friction values for 

PDMS-MET and PDMS-PAO pairs varied as per the operating conditions but the value of |𝑆∗| remained 

constant. A lot of previous studies were able to characterize friction based on spreading parameter 

because they operated each surface lubricant pair at one operating condition and did not alter the load 

and speed to obtain different operating conditions.  

 

Figure 17: Friction versus 𝑺∗ for PDMS-steel (dot) steel-steel (square) surface pairs for PAO (blue), DET 
(orange), EET (grey), and MET (yellow) at different loads and speeds. 
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Lubricant |𝑺∗| Uncertainty 

PAO40 0.3631 ±0.05 

DET 0.2548 ±0.04 

EET 0.2321 ±0.04 

MET 0.3917 ±0.02 

Table 5 Values of |𝑺∗| for different lubricants on PDMS surface with uncertainty at two standard 
deviations at 95 % confidence interval. 

Lubricant |𝑺∗| Uncertainty 

DET 0.0768 ±0.0002 

MET 0.1425 0.0001 

EET 0.1940 0.003 

Table 6 Values of |𝑺∗| for different lubricants on steel surface with uncertainty at two standard 
deviations at 95 % confidence interval. 

6.4 Characterization based on 𝝀 and 𝝀|𝑺∗| 

In this study, characterization based on 𝜆|𝑆∗| was different from that offered by Schertzer et al. As per 

Schertzer et al., a system must operate in 𝐵𝐿 if 𝜆|𝑆∗| < 10−3, in ML if 10−3 < 𝜆|𝑆∗| < 0.5, and in HL if 

𝜆|𝑆∗| > 0.5 [6]. In this study, the friction values and 𝜆 values were compared against 𝜆|𝑆∗| values. For 

PDMS-PAO and PDMS-MET pairs, the 𝜆 values aligned with the friction values. The values for 𝜆|𝑆∗| were 

calculated for both the pairs (Table 2, 7, and 10). The characterization found in this study was as follows: 

• A system operates in 𝐻𝐿 if 𝜆|𝑆∗| > 1 

• A system operates in ML if 0.5 < 𝜆|𝑆∗| < 1 

• A system operates in BL if 𝜆|𝑆∗| < 0.5 

6.4.1 PDMS and lubricants 

6.4.1.1 PDMS and PAO 

Based on the values of 𝜆, the expected behavior was that friction would decrease with increase in 𝜆. The 

PDMS and PAO pair was tested for a value of 𝜆 ranging from 0.86 to 3.10 (Table 7). The system would 

record high friction values for 𝜆 < 1 as the system operates in 𝐵𝐿 regime, moderate values for 1 < 𝜆 <

3 as the system operates in 𝑀𝐿 regime, and low values for 𝜆 > 3 as the system operates in 𝐻𝐿 regime. 

The calculations based on 𝜆|𝑆∗| characterized the lubrication like values based on 𝜆. So, as per the 

friction values would also align with the characterization based on 𝜆|𝑆∗|. The results recorded in this 
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study matched all the expected results. The friction values decreased with increase in 𝜆 and aligned well 

with the characterization based on 𝜆 and 𝜆|𝑆∗| 

For a 𝜆 value of 0.86 three friction tests were performed and the average value of friction for these tests 

was 0.22 with a standard deviation of 0.023. The friction values were high because system operated in 

boundary lubrication regime (𝜆 < 1 𝑜𝑟 𝜆|𝑆∗| < 0.5).  

Similar behavior was observed when the PDMS and PAO pair was operated under mixed lubrication 

regime (1 <  𝜆 < 3 𝑜𝑟 0.5 < 𝜆|𝑆∗| < 1)  and hydrodynamic lubrication ( 𝜆 > 3 𝑜𝑟 𝜆|𝑆∗| > 1) (Fig. 18). 

In mixed lubrication regime, the average friction value was 0.17 with a standard deviation of 0.097. In 

hydrodynamic lubrication regime, the average friction value was 0.098 with a standard deviation of 

0.0066. Overall, the friction value was highest in boundary lubrication regime, decreased moderately in 

mixed lubrication regime, and was the lowest in hydrodynamic lubrication regime. Also, the 

characterization of friction behavior based on 𝜆 was similar to characterization based on 𝜆|𝑆∗|. This 

means that for every test case the lubrication regime pointed by value of 𝜆 and that pointed by value of 

𝜆|𝑆∗| were same. 

𝜆 𝜆|𝑆∗| 𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟 

𝜆 

𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟 

𝜆|𝑆 ∗| 

𝜇 

(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 

3.0950.003 1.1240.2 HL HL 0.03820.01 

2.4580.0003 0.8920.1 ML ML 0.17040.02 

0.8630.001 0.3130.05 BL BL 0.21260.05 

Table 7 𝝀, 𝝀|𝑺∗|, lubrication regime characterization based on 𝝀 and 𝝀|𝑺∗|, uncertainty for 𝝀 |𝑺∗|  at 
two standard deviations and 95 % confidence, friction results, and uncertainty in terms of twice of 
standard deviation (SD) and standard error (SE) at confidence interval of 95% for PAO40 and PDMS 

surface lubricant pair.  
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a)       

b)  

Figure 18: PAO-PDMS friction values (blue triangles) against a) three values of 𝝀: 0.86 (grey), 2.46 

(orange), and 3.10 (blue) and b) three values of 𝝀|𝑺∗|: 0.31 (grey), 0.89 (orange), and 1.12. 

Characterization based on both 𝝀 and 𝝀|𝑺∗| aligned with the actual results. 

6.4.1.2 PDMS and Ionic Liquids 

6.4.1.2.a DET 

The expected behavior for DET-PDMS pair was to record high friction value. DET recorded lowest 𝜆 value 

(Table 8) and was the least viscous lubricant in this study. The 𝜆|𝑆∗| value like 𝜆 value predicted that the 

system would operate in 𝐵𝐿 regime. But the actual results were different from the expectation. DET-

PDMS pair recorded a very low friction value. Characterization based neither on 𝜆 nor on 𝜆|𝑆∗| aligned 

with the friction results. The friction behavior of DET-PDMS pair was similar to a system operating in 𝐻𝐿 

regime. 
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The average friction value was 0.0376 with a standard deviation of 0.0029. As per the friction values, the 

behavior of the system is similar to behavior of a system in hydrodynamic lubrication regime. A 

proposed reason for such a behavior is that DET when used in boundary lubrication regime reacts with 

steel and creates a lubrication film. This film might lower the friction. So, even when characterizations 

based on 𝜆 and 𝜆|𝑆∗| predicted that the system would behave in boundary lubrication regime, the 

system recorded very low friction values. The friction values became steady from the start of the 

experiment (Fig. 19). 

𝜆 𝜆|𝑆∗| 𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟  

𝜆 

𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟 

 𝜆|𝑆 ∗| 

𝜇  

(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 

0.580.001 0.1480.02 BL BL 0.03760.006 

 

Table 8  𝝀, 𝝀|𝑺∗|, lubrication regime characterization based on 𝝀 and 𝝀|𝑺∗|, uncertainty for 𝝀 |𝑺∗|  at 
two standard deviations and 95 % confidence, friction results, and uncertainty in terms of twice of 

standard deviation (SD) and standard error (SE) at confidence interval of 95% for DET and PDMS 
surface lubricant pair. 
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a)     

b)  

Figure 19: DET-PDMS friction value (green triangle) at a) 𝝀 = 𝟎. 𝟓𝟖 and b) 𝝀|𝑺∗| = 𝟎. 𝟏𝟒𝟖 at a 
sliding speed of 0.05 m/s and a load of 1 N for a sliding distance of 100 meters. Both 𝝀 and 

𝝀|𝑺∗| predicted the system would operate in 𝑩𝑳 (𝝀 < 𝟏 𝒐𝒓 𝝀|𝑺∗| < 𝟎. 𝟓). The characterization 
based on 𝝀 was similar to characterization based on 𝝀|𝑺∗|. The friction values were lower than 

expected and similar to that of a system in 𝑯𝑳. 

6.4.1.2.b EET 

Based on the value of 𝜆 (3.86), it was expected that EET-PDMS pair would operate in 𝐻𝐿 regime and 

record low values of friction (Table 9). But as wetting (|𝑆∗|) was included in characterization, the 𝜆|𝑆∗| 

value (0.869) predicted that the system would operate in 𝑀𝐿 regime. Now the system was expected to 

align with the results based on 𝜆|𝑆∗| as characterization based on 𝜆 does not take into account 

wettability.  

The average friction value for EET and PDMS pair was 0.1338. This value is similar to the value obtained 

for a system operating in mixed lubrication regime. Hence, the characterization based on 𝜆|𝑆∗| better 

predicted the friction behavior of the system that the characterization based on 𝜆 (Fig. 20). 
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𝝀 𝝀|𝑺∗| 𝑹𝒆𝒈𝒊𝒎𝒆 𝒂𝒔 𝒑𝒆𝒓  

𝝀 

𝑹𝒆𝒈𝒊𝒎𝒆 𝒂𝒔 𝒑𝒆𝒓 

 𝝀|𝑺 ∗| 

𝝁  

(𝒂𝒗𝒆𝒓𝒂𝒈𝒆) 

3.860.001 0.8690.1 HL ML 0.14740.036 

 

Table 9 𝝀, 𝝀|𝑺∗|, lubrication regime characterization based on 𝝀 and 𝝀|𝑺∗|, friction results, and 
uncertainty in terms of twice of standard deviation (SD) and standard error (SE) at confidence interval 

of 95% for EET and PDMS surface lubricant pair. 

a)   

b)  

Figure 20: EET-PDMS friction value (red triangle) at a) 𝝀 = 𝟑. 𝟖𝟔 and b) 𝝀|𝑺∗| = 𝟎. 𝟖𝟔𝟗 at speed of 
0.01 m/s and applied load of 3.98 N for a sliding distance of 100 meters. The 𝝀 value predicted the 

system would operate in 𝑯𝑳 (𝝀 > 𝟑) but the 𝝀|𝑺∗| predicted the system would operate in 
𝑴𝑳 (𝟎. 𝟓 < 𝝀|𝑺∗| < 𝟏). The characterization based on 𝝀|𝑺∗| better aligned with the actual results. 
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6.4.1.2.c MET 

Based on values of 𝜆, it was expected that MET-PDMS pair would operate in all three regimes and that 

friction value will decrease as the lubrication regime moves from 𝐵𝐿 to 𝐻𝐿 regime. For PDMS-MET pair, 

the surface lubricant pair was tested for 𝜆 ranging from 0.946 to 3.109 (Table 10). The characterizations 

based on 𝜆 and 𝜆|𝑆∗|  were similar.  

The friction results were expected to align with both the characterizations. In 𝐵𝐿 regime (𝜆 <

1  𝑜𝑟 𝜆|𝑆∗| < 0.5) the average friction value after 4 tests was 0.1703 with a standard deviation of 

0.0038. 

In 𝑀𝐿 regime (1 < 𝜆 < 3  𝑜𝑟 0.5 < 𝜆|𝑆∗| < 1), the average friction value was 0.1172 with a standard 

deviation of 0.0191. In 𝐻𝐿 regime (𝜆 > 3  𝑜𝑟 𝜆|𝑆∗| > 1), the average friction value was 0.0943. Lowest 

friction values were recorded for 𝐻𝐿 regime and friction value increased as we moved from 𝐻𝐿  to 𝐵𝐿 

regime. The friction results aligned with characterization based on 𝜆 and that based on 𝜆|𝑆∗| (Fig 21). 

𝜆 𝜆|𝑆∗| 𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟 

𝜆 

𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟 

𝜆|𝑆 ∗| 

𝜇 

(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 

3.1090.003 1.2180.06 HL HL 0.09430.01 

2.4160.003 0.9460.05 ML ML 0.11720.04 

0.8890.007 0.3480.02 BL BL 0.17030.003 

 

Table 10 𝝀, 𝝀|𝑺∗|, lubrication regime characterization based on 𝝀 and 𝝀|𝑺∗|, uncertainty for 𝝀 |𝑺∗|  at 
two standard deviations and 95 % confidence, friction results, and uncertainty in terms of twice of 
standard deviation (SD) and standard error (SE) at confidence interval of 95% for MET and PDMS 

surface lubricant pair. 
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a)    

b)  

Figure 21: MET-PDMS friction values (yellow triangles) against a) three values of 𝝀: 0.946 (grey), 
2.416 (orange), and 3.109 (blue) and b) three values of 𝝀|𝑺∗|: 0.371 (grey), 0.946 (orange), and 

1.218. 
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6.5 Steel and Ionic Liquids 

The data for steel-steel surface pair and ionic liquids as lubricant was collected by Hong Guo (Table 

11).  

Lubrica

nt 

𝜆 𝜆|𝑆∗| 𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟  

𝜆 

𝑅𝑒𝑔𝑖𝑚𝑒 𝑎𝑠 𝑝𝑒𝑟 

 𝜆|𝑆 ∗| 

𝜇  

(𝑎𝑣𝑒𝑟𝑎𝑔𝑒) 

DET 0.00291±

0.0003 

0.0022

0.00002 

BL BL 0.059

0.0004 

EET 0.07361±

0.008 

0.0143

0.02 

BL BL 0.038

0.001 

MET 0.01694±

0.002 

0.0024

0.0003 

BL BL 0.032

0.001 

 

Table 11  𝝀, 𝝀|𝑺∗|, lubrication regime characterization based on 𝝀 and 𝝀|𝑺∗|, uncertainty for 𝝀 |𝑺∗|  at 
two standard deviations and 95 % confidence, friction results, and uncertainty in terms of twice of 

standard deviation (SD) and standard error (SE) at confidence interval of 95% for different lubricants 
on steel.  
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a)    

b)  

Figure 22: Friction values (squares) for different lubricants on steel surface against a) 𝝀: 0.003 for 
DET (blue), 0.074 for EET (grey), and 0.017 for MET (orange), and b) 𝝀|𝑺∗|: 0.0002 for DET (blue), 

0.0142 for EET (grey), and 0.0024 for MET (orange). 

Based on values of 𝜆, the three lubricants were expected to operate in 𝐵𝐿 regime with steel. The 

lambda (𝜆)  values for all three lubricants when used with steel as surface were less than one. The 

characterization based on 𝜆|𝑆∗| was similar to that based on 𝜆 (Table 11). The systems were 

expected to record high friction values. But the friction values for all the lubricants were very low. 

The friction behavior of each lubricant with steel was similar to that of a system operating in 𝐻𝐿 

regime.  

Steel-DET pair recorded an average friction of 0.059 with a standard deviation of 0.000212. DET 

recorded the highest friction with steel in comparison to other lubricants. MET with steel recorded 

an average friction of 0.032 with a standard deviation of 0.000707. This was the lowest value for 

friction for any lubricant with steel. EET recorded an average friction of 0.038 with a standard 
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deviation of 0.000495 (Fig. 22). But in all the cases, the friction was much lower than anticipated 

friction values. A plausible explanation for such a behavior would be that the three ionic liquids 

undergo a chemical reaction with the steel surface, forming a fluid film. This fluid film might then 

result in lower friction values. 

6.6 Summary 

It was expected that different data points for different surface-lubricant pairs operated under 

different operating conditions would collapse into one friction versus 𝜆|𝑆∗| curve. In this study, 

characterization based on 𝜆|𝑆∗| witnessed some outliers. PDMS-DET pair and all the cases involving 

steel did not output friction as expected. The friction values were very low and were similar to 

values observed in any system operating in 𝐻𝐿, but the value of 𝜆|𝑆∗| for each of these systems 

predicted that the system would operate in 𝐵𝐿. For all other cases, the characterization based on 

𝜆|𝑆∗| aligned with the actual results. It was observed that different data points, except outliers, did 

align together (Fig.23)). 

 In one case the characterization based on 𝜆|𝑆∗| was better that that based on 𝜆. In case of PDMS-

EET pair, the 𝜆 value (3.86) predicted that the system would operate in 𝐻𝐿 but the 𝜆|𝑆∗| value (0.86) 

predicted that the system would operate in 𝑀𝐿. The actual performance of the system aligned with 

the value based on 𝜆|𝑆∗|. The high value of 𝜆 was adjusted by small value of𝑆∗ to give a moderate 

value of friction. This observation suggests that neither 𝜆 nor 𝑆∗ (spreading parameter) should be 

used alone to characterize friction, rather a combination of both (𝜆|𝑆∗|) should be used. 
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a)    

b)   

Figure 23: Combined friction values for steel and PDMS surfaces and DET, EET, and MET lubricants 
against a) 𝝀 and b) 𝝀|𝑺∗|. The arrows point out that PDMS-EET test case operated in ML regime as 
predicted by value of 𝝀|𝑺∗| and not in HL regime as predicted by value of 𝝀. The arrow indicates 

the PDMS-EET case in which 𝝀 predicted 𝑯𝑳 regime anf 𝝀|𝑺∗| predicted 𝑴𝑳 regime. This case 
operated in 𝑴𝑳. 
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7.0 Conclusion 

• Contact angle measurements cannot be used to characterize friction when a surface 

lubricant pair is operated under different operating conditions. For a surface lubricant pair, 

the friction behavior changed with operating conditions. 

• For most of the test cases, the characterization based on 𝜆 was similar to characterization 

based on 𝜆|𝑆∗|. But in one test case of PDMS-EET pair the 𝜆 value predicted that the system 

would operate in 𝐻𝐿 regime and 𝜆|𝑆∗| value predicted that the system would operate in ML 

regime. Based on the friction values it was found that prediction based on 𝜆|𝑆∗| was more 

accurate. 

• There were some outliers in the study. DET-PDMS pair recorded very low friction values but 

the 𝜆 and 𝜆|𝑆∗| values predicted that the system would operate in boundary lubrication 

regime. Also, when steel was used as the surface, all the lubricants recorded very low 

friction values but 𝜆 and 𝜆|𝑆∗| values predicted that the system would operate in boundary 

lubrication regime. One plausible explanation for this deviant behavior would be that all the 

ionic liquids react with the steel surface and form a lubricant film. This film then helps in 

reducing friction. 
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  8.0 Future Work 

• The effect of change in surface roughness of soft surface in case of soft surface and hard surface 

pair should be taken into consideration. The change in surface roughness might alter surface 

properties (specific film thickness). This change in surface properties might alter friction 

behavior. 

• A study should be conducted to analyze tribological behavior of a system that uses same 

polymer for both the surfaces. This study will help avoid the possibility of any chemical reaction 

between lubricant and any of the surfaces. 

• Analysis should be conducted for metal-metal surface pairs in which different lubrication 

regimes can be reached. Such an analysis will help analyze and characterize wear behavior. This 

study will also help characterize friction for hard-hard surface pair. 

• This study was not able to characterize friction for some outliers. A possible explanation for such 

a behavior might be that lubricant reacted with the surface and formed a fluid film. This fluid 

film might have then altered some surface properties and reduced friction. Future studies 

should analyze wetting behavior before and after the experiments to look for any change. If the 

wettability of the system changes after the reaction then this change might explain the different 

behavior observed in the outliers. 
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