
Rochester Institute of Technology Rochester Institute of Technology 

RIT Scholar Works RIT Scholar Works 

Theses 

7-2019 

Automatic Cancer Tissue Detection Using Multispectral Automatic Cancer Tissue Detection Using Multispectral 

Photoacoustic Imaging Photoacoustic Imaging 

Kamal Jnawali 
kj5500@rit.edu 

Follow this and additional works at: https://scholarworks.rit.edu/theses 

Recommended Citation Recommended Citation 
Jnawali, Kamal, "Automatic Cancer Tissue Detection Using Multispectral Photoacoustic Imaging" (2019). 
Thesis. Rochester Institute of Technology. Accessed from 

This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for 
inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact 
ritscholarworks@rit.edu. 











CHAPTER 1. INTRODUCTION AND OVERVIEW 12

Transfer learning using inception-resnet-v2

We prepared the MPA image dataset for the transfer learning network using the first

three wavelengths 760 nm, 800 nm, and 850 nm. The dimension of the PA dataset

was ranging from 20×64×200 pixels to 64×64×200 pixels. The single-channel 2D

C-scan image with maximum pixel intensity was extracted from the 200-channels 2D

C-scan at each wavelength. The MPA image samples were prepared by concatenating

three single-channel C-scan images at three wavelengths, namely 760 nm, 800nm,

850 nm. The spatial dimension of the MPA image was increased to 299× 299 pixels

using bilinear interpolation to fit into the input of the inception-resnet-v2 network.

One sample of thyroid cancer tissue specimens and its PA is shown in figure [1.3].

The data structure used for the transfer learning technique is shown in figure (1.4)

Figure 1.3: The figure shows the thyroid specimen with the metric scale, histopatho-
logical slide, and 3D PA image. The first two dimensions of the PA image cube
corresponds to the spatial 2D C-scan image, and the third dimension corresponds
to the A-line signals along the depth direction. One C-scan slice corresponded to
the tissue of depth 4�m . The spatial resolution of the PA image is 0:7× 0:7 mm2.
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Figure 1.4: The input data structure of the inception-resnet-v2 consisted of 3-channel
MPA image with 299× 299× 3 pixels.

Tissue Specimen Thyroid

Normal 40

Benign 46

Cancer 17

Total 103

Table 1.1: Normal, benign and malignant tissue distribution of thyroid MPA image
dataset

Deep 3D Convolutional Neural Network

Deep 3D CNN was implemented to improve the predictive performance for cancer

tissue detection than the transfer learning network. The structure of the input data

of the transfer learning network was the concatenation of one-channel C-scan images

at three wavelengths. The cancer tissue spreads in not only the 2D C-scan but also

the depth direction. The transfer learning network was not capable of extracting

the depth information for the spread of the cancer tissue in the depth direction.
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The implementation of deep 3D CNN becomes useful when the depth information

also becomes important [48]. In this thesis, to incorporate the depth and 2D C-scan

details at once (volumetric information), we implemented deep 3D CNN for the

cancer tissue detection with higher predictive performance.

The MPA dataset was collected in the imaging sciences lab at the University of

Rochester. The PA images of each thyroid samples were generated with the short-

pulsed laser at five different wavelengths: 760 nm, 800nm, 850 nm, 940nm, and

970 nm [28]. The set of wavelengths was chosen in order to extract the maximum

information of the oxyhemoglobin and deoxyhemoglobin content in human tissue

[104]. Those contents are prominent features for cancer tissue detection [75]. In this

section, the samples were divided into noncancer and cancer while in the previous

studies, the samples were divided into cancer, benign and normal tissue group [28,

29, 75, 90]. A radiologist provided the ground truth annotation for the MPA dataset.

For this thesis, the MPA images were labeled as cancer if there was cancer in the

given specimen otherwise labeled as the normal MPA image dataset which is different

from the previous studies [28, 29, 75]. The size of the data cube at each wavelength

was ranging from 20 × 64 × 200 pixels to 64 × 64 × 200 pixels. One sample of the

prostate cancer tissue specimen and its PA image is shown in figure (1.5).

The 21-slices 2D C-scan image cube was taken at each wavelength. The spatial

dimension of each PA sample was increased to 64×64 pixels with bilinear interpola-

tion to make the size of all dataset uniform. The MPA sample images were prepared

by concatenating five 21-slices 2D C-scan corresponding to 760 nm, 800 nm, 850
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Figure 1.5: The figure shows the photograph, histopathology slide and 3D PA image
(at 760 nm) of a prostate specimen respectively. The photograph was taken by a
camera, the histopathological slide was prepared by the pathologist, and 3D PA
image at 760 nm was prepared by the PA effect.

nm, 930 nm, and 970 nm, respectively, with dimensions equal to 64×64×105 (1.6).

Deep 3D CNNs were implemented for two cases. The first case was the imple-

mentation of the deep 3D CNN with seven layers on the thyroid MPA image dataset.

The second case was the implementation of deep 3D CNN with eleven layers on the

mixture of prostate and thyroid MPA image dataset with the best performance.

The latter case was able to detect the prostate and thyroid cancer at once with

localization.

Tissue Specimen Thyroid Prostate Total

Normal 91 17 108

Cancer 17 15 28

Total 108 28 136

Table 1.2: Normal and malignant tissue distribution

Automatic Localization of cancer tissue using MPA imaging

In this thesis, we implemented a grad-cam algorithm [84] to the proposed deep 3D

CNN for automatic localization of the cancer tissue.
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Figure 1.6: MPA image data structure with the dimension of 64 × 64 × 105 pixels
was proposed for the deep 3D architecture to incorporate the volumetric distribu-
tion of chromophores (frequency content of PA signal), and spectral signature (at
five wavelengths) of the chromophores [28]. 21-slices C-scans images at five wave-
lengths were concatenated to make 105-channel C-scan image (21-slices C-scan ×
five wavelengths).

1.1.2 Architecture design and hyperparameter tuning

There are numerous choice to select number of CNN layers, number of fully con-

nected layers, number of nodes in the fully connected layers and so on to design a

typical optimal deep learning architecture for the classification task with the partic-

ular problem at hand [12]. Thus the search of the optimal set of hyperparameters

makes the problem exponentially expensive in time [4]. For the efficient hyperpa-

rameter search, the architecture design for the cancer tissue detection was motivated
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from the deep learning architecture implemented for the brain hemorrhage (see Ap-

pendix A).

1.2 Challenges faced and summary of logic behind the

design of the network for the current dataset

In this thesis, deep learning algorithms were implemented for automatic cancer de-

tection. In general, a good number of sample images are required to train deep

neural networks to get the desired performance. The available dataset for this the-

sis was limited. However, there are some techniques such as transfer learning [66]

that have proven to be useful for training in such situations. The first project of

the thesis was to implement transfer learning using inception-resnet-v2 [96]. When

data is very similar to the imagenet image [26], then the training of the network

is only required on the last softmax layer of the inception-resnet-v2 [53]. But the

medical datasets are in general different from the imagenet dataset; therefore, we

had to train the last few layers of the network. This is because the first layer of

the inception network extracts the features related to the edges and low-resolution

images of the cancer lesion in the MPA cancer dataset. There is no requirement

to train the network which already extracted the relevant features. The use of the

same weight matrix of inception-resnet-v2 actually helps to initialize the network

with proper initialization value to the trainable set of layers [53]. This indeed helped

to train the network faster.

Saugata [89] work, done on the same MPA dataset, suggests that A-line infor-
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mation is also a useful feature vector for cancer diagnosis. Rajanna et al. [75] also

included the frequency content of the PA A-line signal that increased the cancer

detection accuracy to 95 % with the same dataset. Therefore, in addition to the

wavelength vector, we incorporated the A-line feature vector in our deep learning.

We prepared the dataset of 105-channel stacked C-scans consisted of 21-slice C-scan

of PA image cube at five wavelengths in include the wavelength and A-line feature

vectors to the dataset in precise order. The second part of the thesis was to imple-

ment deep 3D CNN. The model was trained on the thyroid because we had more

number of thyroid samples. However, the model was able to detect cancer with AUC

of 0.85; this is less than previous studies [28, 75]. In previous work, the significant

similarity was observed in the image features that defined the cancer region both

in thyroid and prostate [28]. We decided to exploit this similarity to handle the

limited sample number challenge by implementing the model developed for thyroid

but tested on the prostate with the AUC of 0.72, thus supporting our hypothesis and

encouraged us to proceed along this line of investigation. Since a deeper network

generally improved the predictive performance of the model, we decided to mix the

thyroid and prostate datasets for the same cancer detection problem[96].

The third distinguishing factor of this thesis is our attempt to design a deep

neural network that is capable of detecting the presence or absence of cancer in a

given specimen, regardless of where it is spatially located in the specimen. This

is a much more challenging problem than what has been done in studies with the

same dataset [75], where ground truth consisted of the definition of cancer lesion
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region precisely defined by histopathology slide image of the given specimen. The

discriminant analysis in the previous work was performed only on the pixel values in

the PA image defined by the pathology slide and all the pixels cancer pixels from all

the specimens were pooled together for discriminant analysis. In contrast, the only

ground truth that we considered given for our present work was whether a cancer

region is present or not present in a given specimen. This challenge was met by

implementing the deep 3D CNN with more layers compared to the deep 3D CNN

with seven layers [51], doing so requires more samples. The previous result [51]

suggested mixing two datasets to increase the number of samples. This is because

there is a similar trend when classifying cancer from normal tissue. The dataset

was divided into train, validation, and test. The training dataset was still limited

but augmented heavily up to 6,200 by rotation, scaling, translation, adding noise,

adding/subtracting pixel intensity, random warping, vertical flipping, and horizontal

flipping [16]. This is because the number of samples helps to improve the predictive

performance of deep learning networks. The network with 11 layers was able to

detect cancer with AUC of 0.96 with the comparable performance to the previous

study [75].

1.3 Organization of this thesis

• CHAPTER 2: PA Camera Used for Ex-vivo Tissue Imaging: This chapter

covers a brief introduction of PA imaging, MPA imaging, the protocol for

cancer tissue acquisition, and MPA data acquisition from the thyroid and
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prostate ex-vivo tissue specimen.

• CHAPTER 3: PA Features Useful for Cancer Detection: This chapter elabo-

rates the importance of PA imaging for cancer tissue diagnosis with the intro-

duction of the spectral signature and frequency distribution of the recorded

PA signals of tissue chromophores.

• CHAPTER 4: Previous work for Ex-vivo Cancer detection: This section de-

scribes the previous works related to the cancer tissue detection using the same

MPA dataset, and introduces the technique of deep learning for cancer tissue

detection.

• CHAPTER 5: Current Work for Ex-vivo Cancer Detection

• CHAPTER 6: Transfer Learning for Cancer Detection: This section imple-

ments the inception-resnet-v2 to detect cancer tissue with the AUC of 0.73.

• CHAPTER 7: 3D CNN for Cancer Detection: This method is an extension

of Chapter 6 with the use of deep 3D CNN. This model was trained on the

thyroid dataset and evaluated on the thyroid and prostate dataset with AUC of

0.85 and AUC of 0.72 respectively. The purpose of this study was to evaluate

the ability of PA imaging to extract similar characteristics from two tissue

locations such as thyroid and prostate specimens.

• CHAPTER 8: 3D CNN: Cancer Detection and Localization: This method

trained on the mixture of the thyroid and prostate MPA dataset with the
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deeper network. The network was tested on the mixture of the thyroid and

prostate dataset with the AUC of 0.96. This project also implemented a 3D

version of grad-cam to localize the cancer tissue region using the test MPA

dataset automatically.

• CHAPTER 9: Conclusions and Future Works

• Appendix A: Brain Hemorrhage Classification: The deep 3D CNN has devel-

oped for the automatic ICH detection during a real-time CT scan to red flag

the urgent cases with a promising result with the AUC of 0.87 at Geisinger

Health System (GHS).
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