Global Congestion and Fault Aware Wireless Interconnection Framework for Multicore Systems

Sajeed Mohammad Shahriat
sms9874@rit.edu

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
Global Congestion and Fault Aware Wireless Interconnection Framework for Multicore Systems

Sajeed Mohammad Shahriat
Global Congestion and Fault Aware Wireless Interconnection Framework for Multicore Systems

Sajeed Mohammad Shahriat

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science
In
Electrical Engineering

Supervised by
Dr. Amlan Ganguly
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, NY
May 2019

R·I·T
Kate Gleason
College of Engineering

Department of Electrical and Microelectronic Engineering
Global Congestion and Fault Aware Wireless Interconnection Framework for Multicore Systems

Sajeed Mohammad Shahriat
May 2019

Committee Approval:

Dr. Amlan Ganguly, Advisor
Associate Professor – R.I.T Dept. Of Computer Engineering

Dr. Andres Kwasinski
Professor – R.I.T Dept. Of Computer Engineering

Dr. Panos P. Markopoulos
Assistant Professor – R.I.T Dept. Of Electrical and Microelectronic Engineering

Dr. Sohail Dianat
Department Head – R.I.T Dept. Of Electrical and Microelectronic Engineering
ACKNOWLEDGEMENTS

This thesis would not have been possible without the motivational and intellectual support of many people. First and foremost I would like to thank my advisor Dr. Amlan Ganguly, who has mentored and guided me almost throughout my time at RIT. He has taught me invaluable research skills and has helped shape the work that is presented in this thesis book. My sincere thanks also goes to Dr. Andres Kwasinski and Dr. Panos P. Markopoulos to agreeing to be my thesis external committee members and provide there invaluable ideas and suggestions wherever needed. I would also like to thank all my mentors and colleagues I made during my internship at AMD, especially Ray Talacka, Steve Anderson and my manager David Meyerhofer. Lastly, but not the least I would like to thank my family and friends who has been a constant source of emotional support during my entire time here at RIT.
ABSTRACT

Multicore processors are getting more common in the implementation of all type of computing demands, starting from personal computers to the large server farms for high computational demanding applications. The network-on-chip provides a better alternative to the traditional bus based communication infrastructure for this multicore system. Conventional wire-based NoC interconnect faces constraints due to their long multi-hop latencies and high power consumptions. Furthermore high traffic generating applications sometimes creates congestions in such system further degrading the systems performance.

In this thesis work, a novel two-state congestion aware wireless interconnection framework for network chip is presented. This WiNoC system was designed to able to dynamically redirect traffic to avoid congestion based on network condition information shared among all the core tiles in the system. Hence a novel routing scheme and a two-state MAC protocol is proposed based on a proposed two layer hybrid mesh-based NoC architecture. The underlying mesh network is connected via wired-based interconnect and on top of that a shared wireless interconnect framework is added for single-hop communication. The routing scheme is non-deterministic in nature and utilizes the principles from existing dynamic routing algorithms. The MAC protocol for the wireless interface works in two modes. The first is data mode where a token-based protocol is utilized to transfer core data. And the second mode is the control mode where a broadcast-based communication protocol is used to share the network congestion information. The work details the switching methodology between these two modes and also explain, how the routing scheme utilizes the congestion information (gathered during the control mode) to route data packets during normal operation mode. The proposed work was modeled in a cycle accurate network simulator and its performance were evaluated against traditional NoC and WiNoC designs.
Abbreviations

1. NoC: Network On Chip
2. IC: integrated circuits
3. SoC: System-on-chip
4. MPSoC: Multi-processor System-on-chip
5. WDM: Wavelength Division Multiplexing
6. EM: Electromagnetic
7. TSV: Through Silicon Via
8. CMOS: Complementary MOSFET
9. MOSFET: Metal Oxide Semiconductor Field Effect Transistor
10. UWB: Ultrawideband
11. CNT: Carbon nanotube
12. WI: Wireless Interface
13. CDMA: Code Division Multiple Access
14. TDMA: Time Division Multiple Access
15. WiNoC: Wireless Network-on-Chip
16. BFT: Butterfly Fat Tree
17. MAC: Media Access Control
18. VC: Virtual Channel
19. OOK: On-Off Keying
20. PIR: Packet Injection Rate
TABLE OF CONTENTS

Signature Sheet. ... i

Acknowledgements. ... ii

Abstract. ... iii

Abbreviations. .. iv

Table of Contents. .. v

List of Tables. ... vii

List of Figures. ... viii

Chapter 1: INTRODUCTION. .. 1

1.1: Emerging Interconnect Technologies. 3

1.2: Designing wireless interconnect- Challenges and Benefits. 5

1.3: Significance of Routing schemes, communication protocols and selection strategy
in NoCs. ... 9

1.4: Fault Tolerance in NoCs. .. 10

1.5: Contributions of this thesis work. 10

1.6: Thesis organization. ... 12

Chapter 2: RELATED WORKS. .. 14

Chapter 3: SYSTEM ARCHITECTURE. 19

3.1: Proposed WiNoC topology and design. 19

3.2: Wireless interface physical layer. 22

3.3: Operation modes. ... 26

3.4: Routing scheme and controller design. 30

3.5: Example operation. ... 34
3.6: Simulation setup and methodology. .. 39
3.7: Performance evaluation under Uniform Random Traffic.42
3.8: Performance evaluation under Transpose Traffic.45
3.9: Performance evaluation under Hotspot Traffic. 48
3.10: Energy consumption. .. 51

Chapter 4: FAULT TOLERANCE STUDY.53

Chapter 5: CONCLUSION AND FUTURE WORK. 57

Bibliography. ... 59
LIST OF TABLES

Table I: General and wireless configurations for simulation. .. 40

LIST OF FIGURES

Figure 1: Proposed 8x8 WiNoC Framework. ... 19
Figure 2: Proposed subnet architecture. .. 21
Figure 3: proposed zig-zag antenna placement on the die. 22
Figure 4: (a) Transmitter (b) receiver block diagram. ... 23
Figure 5: (a) Control packet (b) State diagram. ... 26
Figure 6: The routing scheme flowchart. ... 30
Figure 7: Block diagram for the router architecture. .. 33
Figure 8: Network condition for the case scenario 1. .. 35
Figure 9: Network condition for the case scenario 2 (a) adjacent (b) diagonal. 36
Figure 10: Network condition for the case scenario 3. .. 37
Figure 11: Network condition for the case scenario 4. .. 38
Figure 12: Global average delay VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Uniform Random Traffic .. 42-43
Figure 13: Throughput VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Uniform Random Traffic. .. 43-44
Figure 14: Global average delay VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Transpose Traffic .. 45-46
Figure 15: Throughput VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Transpose Traffic. ... 46-47

Figure 16: Global average delay VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Hotspot Traffic. ... 48-49

Figure 17: Throughput VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Hotspot Traffic. ... 49-50

Figure 18: Total energy consumption for three simulated systems. 51

Figure 19: Fault modeling and the Hotspot tiles. ... 53

Figure 20: 8x8 (a) Global Average Delay VS PIR (b) Throughput VS PIR. 54

Figure 21: 10x10 (a) Global Average Delay VS PIR (b) Throughput VS PIR. 55
Chapter 1: INTRODUCTION

Transistor scaling has come a long way since the Moore’s law was presented. Current industry trends show that, transistors will no longer will be able to be scaled (effectively) after the year 2021 [1]. With regards to that, the single uniprocessor systems also seem to be a non-viable option these days due to the computational demands of modern workload. As this would require a single processor to work at a very high frequency which in turn will cause processors to become very power hungry. Instead of increasing the frequency both industry and research has focused on creating multi-processors system-on-chips (MPSoC), where identical processing cores will execute tasks at lower clock speed simultaneously, instead of one processing core operating at a higher frequency and power rating. To give some examples of such MPSoCs we can look into Intel’s 80 core Polaris [2] and the 48 cores Single Chip Cloud Computer (SCC) [3], Tilera’s 64 core TILE64 [4] and Cavium’s 32-64 cores ThunderX2 [5] (most recent) amongst other multicore systems. In addition to higher throughput at the same clock frequency, multicore systems allows for the execution of complex task at a comparatively lower energy cost than a single core processor.

The bottleneck in such multicore system is the underlying communication infrastructure that needs to be developed in order for these cores to communicate with each other and maintain a coherency in terms of executing tasks in parallel. Currently developed general purpose CPUs are multicore systems consisting of core count ranging from 4 to 16 cores [6]. Most of these systems uses some form of a shared bus-based interconnection systems which are incompatible for systems mentioned above consisting of cores ranging from 48 to 80 cores! In addition to the network slow down, a failure in such shared bus-based system would cause the entire communication backbone to fail causing the entire system to non-operational.
In order for the aforementioned large systems to communicate efficiently high-performance Network on Chip (NoC) architectures were developed to act as the communication fabric. NoC as its name suggest is a network-based communication system which can be implemented into integrated circuits. The major advantage of NoC over shared bus based system is, it is more scalable and reliable due to its modular design and multi-path architecture. Past research has looked into various NoC architectures such as Mesh, Ring, Folded Torus, Butterfly Fat Tree, Small World [7, 8]. Each of these architectures has its own advantage and disadvantage but, this study will focus mostly on the Mesh system since the multicore systems mentioned above uses a mesh network due to its symmetrical nature which makes it easier to physically implement such large systems. Since it a symmetrical system, each link in the system is identical to each other hence maintaining a uniform energy consumption across the same workload.

Traditional NoCs uses planar metallic interconnect which requires data to travel through multiple hops across an underlying wired path in forms of packets. In a large system the energy required to route such packet is higher since it requires more hop to communicate between cores thus limiting any performance gain. Besides power gain another issue is the network latency. Since data has to travel over a wired path it will require buffers to make sure no data is lost over the long range. This in turn cause the system latency to increase, which degrades the overall performance of the system. In order to improve system performance by addressing these issues emerging interconnect technologies have been proposed by researchers and in the next subsection will discuss some of them in details.
1.1: Emerging Interconnect Technologies

State of the art interconnect technologies can be broadly categorized into 4 categories namely, Photonic interconnects, RF Interconnect, Wireless Interconnect and finally 3D Interconnect. Each of the categories will be discussed in details below:

A. 3D Integration: Three-dimensional integration of wired interconnects exploits a SoCs ability to be stack multiple IPs on top of each other. The metallic interconnect is passed through the silicon substrates by using special vias such as TSVs. This allows in the reduction of length for long distance communication hence decreasing both latency and power consumption.

But due to its complex routing nature which requires communicating core to be aligned in such a way which allows for seamless intra-layer communication. The multi-layer technique also makes testing and adding test structure to the system more complex which is ok if the cores communicating are simple IPs (such as memory cell stacks). But structures such as Processing/Computing units require a large amount of data to be communicated between Processing/Computing units which make communication using TSVs very cumbersome in nature. Furthermore the 3D interconnect designs are more prone to heating due the presence densely packed wires between silicon layers and due to the lack of proper cooling mechanism for it.

B. Photonic Interconnect: Instead of metallic wires photonic interconnects utilizes on-chip laser source, optical waveguides and resonators. Since data is transmitted at the speed of light, the latency is significantly reduced \([9, 10]\) and since the data is travelling in the form of light through an optical waveguide, there is minimal loss and thus does require constant buffering. Another advantage of using photonic is that, the principal of multiplexing
multiple light waves using WDM techniques allows for multiple data source to traverse through the MPSoC using a single waveguide.

The issue with this technology is that current design and fabrication tools does not support any kind of photonic interconnect structures which makes any research in this field intangible. Lasers used in this type of systems are very power hungry in nature and requires large structures to build them thus increasing the power consumption and laying out waveguide increase the overhead of such SoCs significantly. Finally the waveguides themselves have bending loss and electro-optical conversion itself requires a lot of additional overhead.

C. RF Interconnect: The RF interconnect as its name suggest uses EM waves which are transmitted over length of wire which acts as an EM waveguide. This allows for single hop communications between cores thus decreasing the latency. Furthermore, the latency of such systems can be further improved by applying similar multiplexing technique as seen in the Photonic interconnect architectures. FDMA and CDMA techniques implemented in certain research [11, 12] showed these further improvements in performance.

The issue faced in terms of RF interconnect is similar to that of the photonic interconnect in essence that the EM waveguide and the high frequency oscillators are needed to be laid out throughout the MPSoC, which again is not supported by recent design and fabrication tools.

D. Wireless Interconnect: In principle wireless interconnects communicates using EM waves similar to RF interconnect but unlike RF interconnect, wireless interconnect does not require any form of waveguides due to the introduction of specialized on-chip wireless interfaces. This means that the advantages seen in the RF interconnect can be exploited in
this architecture with none of the drawbacks of the RF interconnect due to the absence of
the waveguide and the high frequency oscillators. And due to the absence of physical layout
the wireless interconnect is able to stand out from the other emerging technology discussed
above. In this work we will be utilizing wireless interconnect to show improvement in
performance for previously mentioned large MPSoC systems.

Since Wireless Interconnect is the choice of architecture of this work, the challenges faced
in designing such Interconnect will discussed in detail in the next subsections.

1.2: Designing wireless interconnect- Challenges and Benefits

In the previous subsection it was seen how emerging technology can be used in designing of a
communication fabric for MPSoC systems. It needs to be pointed out that most research uses this
emerging technology-based interconnect on top of wired interconnect system usually mesh [13,
14, 15]. Therefore, the resulting MPSoC system consisting of planar metallic wire and the “state-
of-the-art” interconnect combined to form a Hybrid System which enhances the traditional NoC’s
performance and ability. In this work we will look into such hybrid MPSoC system consisting of
a planar wired mesh system and a wireless interconnect framework integrated to it.

As mentioned earlier the wireless interconnect has special structures called wireless hubs which
enable wireless communication between the IP cores. This hub can be placed adjacent to the IP
cores and based on the design and research objective these routers can be implemented in multiples
ways but two important components of these hubs need to be present for successful wireless
transmission. These two components are (1) The Antenna, (2) The Transceiver.

Recent research has shown that these on-chip antennas and transceivers can be designed in
miniature scales to be implemented in such NoCs [16 -19]. This miniature antennas and transceiver
can work in frequencies ranging from megahertz to terahertz range. Some of this antenna and transceiver technologies are detailed below:

A. CMOS Ultra-Wideband (UWB) technology: This design is a more popular choice in the RF interconnect architecture. Simple and small transceivers and antennas was shown to be operating over a 100-500GHz frequency range as wireless interconnect [20]. But due to the impulse based transceivers the effective range of such routers are limited to only few millimeters [17].

B. Graphene/CNT based technology: Carbon based structures such as graphene and carbon nanotubes have been explored in antenna designs in recent researches [21, 22]. The advantage over the UWB antennas is that unlike UWB Graphene/CNT antennas can transmit data at frequencies in terahertz range thus increasing the overall bandwidth of the system. But the issue with such devices is, integrating carbon-based structure in the CMOS process is a very complex fabrication process in itself. Furthermore Graphene/CNT based structures are very unreliable and are prone to high failure rate.

C. Millimeter-Wave technology: mm-wave antennas has been shown to transmit data from a range of 10 to one hundred GHz range. It was also seen through research [18] that CMOS compatible wireless shortcuts operating in the mm-wave frequencies are able to communicate between WIs deployed across multiple die hence showing long range capability. The issue with the mm-wave technology is that the bandwidth of the wireless channel is limited by the transceiver design.

Another bottleneck for WIs is that the size of the antennas and transceivers. The antennas implemented in the system needs to provide the best power gain with the least amount of physical
overhead. The metal zigzag antenna has been shown to fulfil both the aforementioned requirements [23].

The next challenges in a wireless interconnect system is to develop an efficient wireless channel access mechanism between all the wireless router in the system. It is possible to utilize multiple frequency bands for a one-to-one communication between two WIs but this approach is not feasible since large system would require multiple frequency channel and multiple transceiver for each router which makes the design very inefficient. Thus, a MAC based mechanisms are used to efficiently allocate wireless bandwidth between all the wireless routers in the system. As mention in previous subsections, the use of EM waves allows for multiple signals to be multiplexed into a single wireless channel using multiplexing techniques such as TDMA and CDMA. Recent researches have shown to successfully implement simple and distributed MAC mechanism such as the ALOHA [24], carrier sense multiple access (CSMA) [25], Token based TDMA [26] and CDMA [13], to just name a few. It was also found out that the token-based MAC mechanisms allow for smaller structural overhead while maintaining fairness in the channel access [25]. In this thesis work, both token-passing based and the orthogonal code-based (which is the principle of CDMA) communication MAC protocols will be utilized for the developed Hybrid WiNoC system. Thus, making the system have a twofold communication protocol, each having its own mode of operation based on the current state of the WiNoc system.

The principal of token passing mechanism is to organize all the WIs in the system into a virtual ring. The token is passed from one router to the next wirelessly as a token packet. Each token packet contains the necessary information for a router to access the wireless channel and transmit a predetermined data packet to the destination router. Once the transmission is complete the token packet is updated and send to the next the router for it to gain access to the wireless channel and
transmit data. It is important that such control packets and data packets are distinguishable to the system. In this work the token passing protocol will be used during the normal operation mode, when core data packet from one tile needs to be transmitted to another tile and vice versa. From this point onwards, this token-based data transmission operation mode will be called as “data mode”.

In a wireless communication system orthogonal code-based MAC protocol is used for multiple access, where several WIs can transmit information over a single communication channel without any centralized control or arbitration. This kind encoding technique exploits mathematical properties of orthogonality between vectors representing data strings. Using the principle of orthogonal-based coding each transmitting WI encodes its data bits using a unique keyword consisting of multiple code bits called the chip code or chipping code. Each code is orthogonal to the other codes such that the cross-correlation between different codeword is zero. By doing so the interference between transmissions from different wireless transceivers is eliminated since each wireless transceiver has a different chip code assigned to it. In this work orthogonal code-based operation mode will be used to broadcast network congestion information as control data to all the WIs in the system, so that the routing scheme can utilize this control data for a more efficient routing path for core data during data mode. From this point onwards, this orthogonal code-based control data broadcast will be as “control mode”. The separation of the control mode and the data mode will be further investigated in the next section in details, since the novelty of this work highly depends on it.

Lastly the designed WiNoC architecture needs to satisfy the traffic need of the MPSoC system while reducing the overall energy consumption of the system since the wireless system enables communication at lower number of hops than a wired system. It also needs to be established that
the performance of these WiNoCs depends on the fault tolerance of the system in the case of a failing wireless or wired path.

1.3: Significance of Routing schemes, communication protocols and selection strategy in NoCs

From the previous section it is seen that the performance of the WiNoC is also dependent on the application running on the MPSoC. This statement is true for all NoCs since the application running on the system is responsible for traffic distribution within the system. Some application causes heavy traffic in the system which in turn creates lots of congestion in the NoC which results in the decrease of performance in the system. The effects of congestion can be alleviated using emerging interconnect technology as discussed in the previous subsections. But to keep the system mostly congestion free and more importantly deadlock and livelock free, the routing of the traffic within the NoC has to be implemented.

Routing of packets within the system can be done in either through a deterministic or a non-deterministic way. Based on this, various researches have looked into various static (deterministic) and dynamic/adaptive (non-deterministic) routing algorithms. Few static routing algorithms that has been looked into the past includes: XY routing, Table based routing, etc. This kind of routing allows for simple router design but are not efficient at heavy traffic loads or in large MPSoC system. To overcome the issue of the heavy traffic load and large MPSoC systems the researchers have looked into non-deterministic routing algorithms such as DYAD [27], DyXY [28], Odd Even [29] and many more. The main advantage of nondeterministic routing over deterministic routing is that non-deterministic can “adapts” to the network traffic load and “dynamically” adjust the route through which the packet has to make sure that congestion in the network is avoided thus
increasing the system performance. The issue with such system is that non-deterministic algorithms are more intricate in nature and thus increases the switch complexity in the NoC. This work will focus primarily on non-deterministic routing algorithms and will propose a novel routing scheme based on existing dynamic routing algorithms.

1.4: Fault Tolerance in NoCs
As feature size of the integrated circuits are decreasing, the reliability of such nanoscale devices are becoming a significant issues. Failing links in NoCs reduces the quality of service in the system and hence research has focused into developing fault tolerant NoC to alleviate the issues. Faults in a NoC can be either permanent, transient or intermittent in nature. Permanent fault arises due to failing links due to electromigration and other physical damage or defects. Transient and intermittent failure occurs due to crosstalk and noise picked up by the links in the interconnect network. If this faults are not recognized by the system the overall system performance degrades significantly and may lead to bigger failures in the system. Thus in order for a NoC to be resilient the underlying NoC architecture must account for reliability issues seen in the NoC systems. In this thesis work the proposed two-state hybrid WiNoC utilizes routing algorithm which is able to account for non-functioning WIs in the system and then choose the most optimized path in order to avoid any kind of congestions due to faulty WIs in the system. The detail of the work will be seen in the coming chapter (chapter 4) in the thesis book.

1.5: Contributions of this thesis work
The motivation for this thesis work was to develop a fault tolerant wireless NoC framework which is also congestion aware. This work proposes a novel dynamic fault-tolerant wireless interconnect framework and shows that its implementation improves system performance over traditional wired mesh NoC and also some hybrid NoC based MPSoCs.
The contribution of this thesis work is summarized below:

Firstly, in this work a novel routing scheme is presented for mesh based NoCs with a wireless interconnect framework on top of it, to create a WI based hybrid NoC. The work will first show how the wireless interconnect framework is first implemented on top of a wired mesh architecture. The novelty of the main routing scheme of the paper is based on how the wireless component of the network communicates with each other in two different modes, which are explained briefly below:

a. The first operation mode is based on token-based operation principal (as discussed in the previous subsection) where core data packets will be transferred between two communicating routers, when the transmitting router is holding the channel access token. For the entirety of the thesis work we will address this operation mode as the “data mode”.

b. The second operation mode is based on the orthogonal code-based operation principal (as discussed in the previous subsection). Unlike data mode where there is a one to one communication between two communicating routers, the orthogonal code-based operation mode will be used to broadcast the status of all the wireless routers in the system. This operation will occur at the end of each data mode cycle so that the next cycle of data mode can determine the best possible (least number of hops) path for the data packets to travel based on the traffic congestion in the system. For the entirety of the thesis work we will address this operation mode as the “control mode”.

Secondly, this work will show the switching technique between these two modes and will also show that the global traffic information gathered during the control mode will be used to select between the wired and wireless routers and create the most optimized path for the data packet to traverse through.
Finally, the performance of the proposed system will be evaluated in an academic simulator, where the performance will be evaluated based on different system size, traffic level and fault tolerance and how it effects the throughput, latency and energy consumption of such system compared to traditional wired mesh NoCs and a default WiNoC system.

1.6: Thesis organization

The thesis is organized in 5 chapters. This chapter introduces the challenges of recent multicore system and discusses the emerging technology to solve them. And based on this problem statement we propose a novel two-state MAC based hybrid WiNoC design. Chapter two gives a background on the current state of the knowledge and discusses research work related to this thesis work. Chapter three will present the proposed two-state MAC based hybrid WiNoC design and its operation and furthermore its performance will be evaluated under various traffic condition. Chapter 4 will show the fault tolerance study for the proposed design, and based on network level simulation results the fault tolerance capability of the system will be discussed. Finally, chapter five will summarize the important conclusions and will point out the direction of future research.
Chapter 2: RELATED WORKS

The first idea of using NoC instead of using design specific global wires was first seen in research such as presented by Dally et al. [31]. This work showed that general purpose on-chip interconnection network can successfully replace traditional bus-based communication protocol which can be still be seen in various MPSoC to these days. The main advantages of using NoC based communication over bus-based systems include: (1) Modular design: Since the design of the interconnection network is not ad-hoc in nature (like bus-based systems), the network on chip layer of the system can be designed and tested independently of the module being attached to it. This allows for design reusability and also decreases the overall design and testing times for the MPSoC (2) Concurrent communication: Unlike many bus-based systems where a single wired backbone is used to communicate data over various modules, the NoC architecture allows data to travel through alternative routes if a certain link in the network is busy. (3) Reduced latency and higher bandwidth: due to the modularity and multiple communication path the NoC architecture allows for an overall reduced latency and higher bandwidth since, congestions are better handled in a NoC architecture than a bus-based system. Further research into this NoC architecture has shown that the underlying interconnection network can be made more efficient in design by redesigning the traditional mesh network into other network topologies.

Besides mesh, various network topology has been proposed since the beginning of the NoC concept. A work presented by Pande et al. has evaluated the performance of various other wired NoC topology such as SPIN, CLICHÉ, Torus, Octagon and BFT [7]. Each of these topologies showed various level of performance improvement based on the number of virtual channels in the network routers and also the amount of load injected into the system. But up until now all the topologies mentioned above consists of wired links, which at the end of the work don’t address
the problems that are seen in wires when they are used to transmit data. According to work presented by Ho et al. - “Future of wires in integrated circuit technologies appears grim” [31] since a majority of the delay caused in semiconductor devices are seen to be in the metallic interconnections seen in them. There are three major electrical characteristics that effect the delay that is seen metallic wires and they are (1) resistance, (2) capacitance and (3) inductance. The paper creates electrical and models and show how each of these electrical parameters exacerbate the issue of delay with changing wire dimension. Based on the previous statement it was seen that as the network size was scaling the effect of delay in the wires were becoming noticeable. Besides this issue the paper also discuss how signal coupling and crosstalk between wires causes data signals to become weaker or even lost! One of the proposed solutions was to insert repeaters in intervals between wire links but this in turn increases the power consumption of the system and also increases the overhead costs.

Another issue seen in the traditional wired based NoC is that the communication between distant nodes requires multiple hops through a long-wired line in the interconnection network. Multi-hop communication increases the system latency and also increases the power consumption. Research done by Ogras et al. proposed a “small-world” architecture [8] which showed that the performance of wired mesh-based system can be improved by inserting long range wires between two distant nodes based on pre-design calculations. Thus, communication between these two distant nodes can be done via this long-range wire in one-hop instead of multiple hops. But the issue that still remains is that the long-range links in the system are still physical metallic wires and hence suffer from the same issues of long wires as discussed above. Based on this observations research has looked into alternative methods to using wires for long links and this is where NoC with emerging technology came into the picture.
Various emerging technology in regards to NoC architecture have been discussed in the previous section. It was also established (with reasons) why the Wireless NoC was chosen for this work and this section will focus on previous research work that has been done with regard to WiNoC architecture. One of the initial works in WiNoC architecture were presented by Ganguly et al. [32]. In this work the paper shows that the multi-hop communication in traditional wired-based NoC can be replaced by the insertion of WIs within the existing wired NoC. This would allow for long distance communication via WIs in a single hop instead of multi-hop communication via wired links. The paper goes into details about the optimal number of wireless link insertion based on the network size and also evaluates the performance of hybrid network with different number of wireless links in the systems. Similar to this work Deb et al. presented various challenges and solutions to designing efficient and reliable WiNoC architectures. Both WiNoC research discussed above had shown that the long-distance communication between two distant nodes can be reduced to a single hop communication using WiNoC. It was also seen that the one-hop communication in WiNoC architectures were more efficient than the methodology proposed by Ogras et al. [8]. This is due to the fact that the WiNoC architectures don’t have any physical long-distant wired links and hence the effect of wire resistance, capacitance and inductance is taken out of the equation.

Next criteria in the successful implementation of the WiNoC architecture is to come up with the communication protocol between the WIs. As discussed before various researches have implemented various efficient MAC schemes in order to utilize the limited channel bandwidth of the WIs. Token based communication has been proposed in [7, 19]. The issue with such system is that, if a WI in the system fails, the token passing mechanism might become inefficient as the token slot allocated for the faulty node is not being utilized for any wireless communication. Other research such as [33] have used orthogonal CDMA as a multiple access mechanism to enable
simultaneous transmission of the data. The issue in such design is that, orthogonal-code based operation decreases the effective bandwidth of the wireless channel and thus, even though data can be sent concurrently to multiple WIs the amount of data sent to each WI is reduced.

One challenge that needs to be addressed irrespective of the designed NoC being wired or wireless, is the deadlock and livelock avoidance. In order to avoid congestion and maximum utilization of the network routing schemes are adopted for the NoC architecture. But as mention before this routing schemes need to route data in such a way that there is no deadlock or livelock in the system. From the previous section we have seen that routing schemes in NoC based systems can be either deterministic or non-deterministic and it was also established that the non-deterministic algorithms are able to adapt and also dynamically route packets at the cost of higher design complexity. Since this thesis work focuses on non-deterministic routing schemes, previous research related to the development non-deterministic routing schemes will be discussed.

Different non-deterministic routing schemes employs different methodologies to make the routing in the system dynamic in nature. Non-deterministic routing algorithm such as DyXY [28], Turn-Model Odd-Even [29] and DyAD [27] utilizes information based on local traffic congestion to select the best path for packet routing. Deadlock is avoided in such system by restricting certain turns in the available routing paths. The issue with such system is that local congestion awareness does not guarantee that the path ahead will not be congested since the amount of traffic flow to certain portion of the network depends on the application that is currently being executed in the system and hence situation may arise the data packet is not taking the most optimized path. Other adaptive routing schemes such as Hot Potato [34] and Deflection routing [35], routes packet to an output channel regardless of the fact that if routing to that direction will reduce the distance between the current location of the packet and the destination. But issues with such schemes is
they will not be always livelock free and hence may increase the system’s latency. Hence, researchers have looked into regional congestion awareness-based routing schemes as proposed in such works [36 - 38]. Instead of solely relying on the local traffic congestion level, these routing schemes also monitor global traffic conditions and based on that the routing decisions are made. The global congestion information is maintained by aggregating local traffic information with previous congestion level information that is sent with the packet at each hop as the packet traverse through the network. The issue with such schemes is that, the resolution of the congestion information is quite poor since previous router may no longer be congested and thus reducing the performance. Work done by Ramakrishna et al. [39] has shown that timely and complete congestion of the whole network can be done by per-hop lookahead routing. This technique introduces a new field in the header flit of a data packet called the “traffic vector”. This field consists of previous congestion information which is stored in a local congestion map and updated at each hop based on the information brought in by the incoming data packets. With the help of a pre-route table and the updated congestion map the system computes the most optimized path for the packet at every hop. The issue with such system is that the size of the “traffic vector” field will increase in size as the system size is increasing. Furthermore, since the study was done for a wired mesh system large flit size would increase energy consumption and would not be able to adapt if one of the links fail, since the final routing is based on the fixed pre-route table. None of the routing algorithm mentioned above have considered Hybrid NoC architecture where single hop communications can occur with the help of WIs. In such cases if a data packet sees that a single hop communication path exist the data packets will always try to access this WIs and thus creating an artificial traffic congestion in those WIs which can further exacerbate the traffic congestion in the network, even at low load. Thus, this work will first present a novel hybrid WiNoC design with
dual operation mode and then based on that design, give a novel routing scheme which is inspired by existing congestion aware routing schemes but without the drawbacks that can be seen in the traditional wired based mesh NoC.

Since dynamic routing schemes are able to route packet based on network traffic condition, different research have proposed dynamic routing schemes to avoid faulty links in the networks. Most research focuses on fault tolerance by modelling the faults in the wired links [40 - 43] and some of this fault tolerant routing schemes can be seen for emerging NoCs with interconnects developed using emerging technologies such as 3D-NoCs [44], Photonic [45] and even Wireless interconnect [46, 47]. In this thesis the proposed routing scheme will be shown to have the ability to detect such faulty WI structure and the system will avoid them in order to maintain a high throughput and prevent packet loss in the system.
Chapter 3: SYSTEM ARCHITECTURE

In this chapter, we begin the discussion of the NoC design with the dynamic wireless interconnection framework. Next, the proposed wireless antenna and transceiver circuit design will be discussed and based on the proposed transceiver design the proposed two-mode MAC protocol and its switching will be discussed. After the two-mode MAC protocol is established the the routing scheme and the router architecture will be discussed. Finally based on the proposed routing scheme for data mode, various routing scenarios will be explained with the help of some example operations.

3.1: Proposed WiNoC topology and design

![Proposed 8x8 hybrid WiNoC Framework](image_url)

Figure 1: Proposed 8x8 hybrid WiNoC Framework
Figure 1 shows the proposed hybrid NoC topology that will also be used to build upon for further architectural discussions from this point forward. From the figure it can be seen that the proposed system consists of an underlying 8x8 wired mesh with 64 core tiles in total. Each tile is labelled with an X and Y co-ordinates starting with the bottom left corner. From the figure it can also be seen that the entire system has been divided into 16 sub-networks (subnets) each consisting of 4 core tiles as shown in the figure. Each of this subnet consist of a single wireless hub that is shared between the 4 core tiles in the subnet. The wireless hubs act as the wireless interfaces for the wireless communication between the wireless hubs in each subnet.

As seen in figure 1 the wireless interconnection framework is formed my connecting the core tiles in the subnet to the central hub through traditional metal wires. Previous research work [32] on wireless link insertion and optimization has shown an efficient scaling technique for large system sizes. It was seen from that work [32], that for a given system size, increasing the number of subnets and at the same time keeping the inter-subnet distances minimal will give the best performance for the wired path in the WiNoC system. Based on this finding, this thesis work proposes a subnet size of 4 core tiles per subnet. Thus, for a 64-core system the total number of subnets is going to be 16. In this thesis work the maximum system size that will be considered is a 100-core system (10x10 mesh), this is because similar to other global congestion aware systems [39, 48, and 49] the proposed system has scalability issues for larger system size which will be discussed in detail in the later section.
Figure 2: Proposed subnet architecture

Figure 2 shows a zoomed in top-level view of view of the subnet-10 in figure 1. This figure shows the arrangement between core tile and the wireless interface and how they are connected with each other. The diagram also shows the various VC buffers of the core tiles and the hub, and from the figure it can be seen that each core tile has multiple input and output VC buffers for each direction the core tile is connected to. The figure does not show the local processing element or its VC buffer since they have to be present by default with each processing elements in the core tile. The VC buffer plays an important role in the selection and routing of data packets in the system and number and the size of each of these buffers will be discussed in detail further down this section. The processing elements in the NoC is based on the type of application for which the NoC will be implemented for and it can be either CPU, GPU, or DSP units or a combination of them. In this thesis work all of the processing elements in the system is going to be considered as identical CPU cores, in order to make a large multi-core CPU environment which can be seen in the researches mentioned in section 1 [3 - 6]. This assumption makes the system more symmetric in nature and
also makes the calculation for the number of clock cycle required for data to processed and transmitted more predictable.

3.2: Wireless interface physical layer

In this section we will look into the design of the proposed antenna and the transceiver for the hybrid WiNoC system presented in this thesis work. As discussed in Chapter 1 on-chip antennas are required to establish links between the wireless hubs in the proposed hybrid NoC system. Furthermore, the proposed on-chip antenna has to provide the maximum power gain with the least amount of area overhead. Previously it was seen that various research has designed and effectively implemented different kinds of antenna for their WiNoC research. Out of the three antenna designs discussed above, the proposed hybrid NoC system for this thesis work is going to consider the use of mm-wave antenna in all of the wireless hubs. Research done in [17 - 19] has shown that the use of zig-zag mm-wave antennas with non-coherent OOK modulation scheme in the transceiver shows the best performance for current CMOS technology in terms of reliability, throughput and energy efficiency. Furthermore, the mm-wave has a transmission range of 20 mm which means that long range communication within the chip will not be an issue.

A. On-chip antennas: The metal zig-zag antenna which was shown to provide the best power gain with the smallest area overhead in previous researches [18, 19, 50 - 53]. Based on
those criteria, this thesis work utilizes the same antenna design as done in previous work [52] since it adopts an on-chip mm-wave zig-zag antenna tuned to 60 GHz operating frequency with a bandwidth of 16 GHz. As shown in figure 3 the on-chip mm-wave zig-zag antenna is based on the co-planar feed structure as it has low-losses compared to other feed structures such as microstrip. Furthermore, this type of antenna was seen to be non-directional [53] which makes the wireless medium in the system a shared channel.

![Figure 3](image1)

Figure 3: On-chip mm-wave zig-zag antenna

B. Wireless Transceiver Circuit: For the system to have a high throughput and low energy with the least bit error rate, this thesis work adopts the non-coherent on-off keying (OOK) modulated transceiver design to go with the above proposed on-chip antenna. Figure 4(a) and (b) shows the proposed transmitter and receiver circuit block diagram respectively, that will be used for the wireless communication in this thesis work. As mentioned in section one, this thesis work utilizes a two state MAC operation based on whether the WIs are trying to communicate core or control data. Considering the different operation modes this thesis work adopts the transceiver design from [54, 55] for the data
mode. In addition to the OOK modulator in [54] and the demodulator in [55], a orthogonal-code encoder and decoder is added to the design to support the congestion information (control data) transmission during the control mode.

In control mode, the congestion data bits are first encoded by XORing it with a transmitter-specific code word. In this thesis work a Walsh code-based communication is adopted for the control messages during the control mode. The encoded control data or the unencoded core data (during data mode) is then modulated with the 60 GHz carrier generated by the Voltage Control Oscillator (VCO) by an OOK modulator and then the resulting signal is then amplified using the power amplifier (PA). Once the signal has been amplified the resulting signal is then coupled to the on-chip antenna, to be transmitted to the destination WI(s). Furthermore, the wireless channel is assumed to be an additive multipath channel which means that individual transmission encoded into different codes are added over the channel.

On the receiver side, the received signal is first amplified by the Low Noise Amplifier (LNA), then this signal is sent to the Envelop Detector (ED), which will strip of the actual signal from the carrier frequency signal. The core signal is then amplified by a base-band amplifier (BA). Based on the operation mode the next step for the incoming signal will be decided. If the data transmitted was during the data mode then no further action is required and the received data can be transmitted to the destination core tile, thus only employing the first part of the receiver circuit boxed in grey as shown in figure 4(b). But if the data was transmitted during control mode the received data are from all other WIs in the system, thus the receiver needs to have additional decoders for every transmitter-specific code-channel. Therefore, in receiver side of the transceiver, the output of the OOK demodulator
is further sent to a code decoder. An Analog-to-Digital Converter (ADC) converts the received envelop from the additive multi-path channel into digital signals. Then, the signal is correlated with each code word from the code book to create separate receiving channels corresponding to every code word. The digital signal enables the adoption of a digital correlator receiver that accumulates and compares the positive and the negative part of the received symbols to compute the received digit for each channel [56]. Since all the transmitter in the system has its own predetermined code word, a single receiver can receive data from multiple transmitter simultaneously. A Power Gating (PG) cell, controlled by the “Done” signal generated based on the operation mode (see next subsection for more details), separates the receiver circuitry and the orthogonal-code decoder circuits. The PG cell selectively turns on and off the part of the receiver based on the operation mode. Furthermore, the PG cell also helps to improve power efficiency of the transceivers in the WiNoC system.

Lastly it is shown in [54, 55] that such OOK modulator–demodulator design achieves a very high spectral efficiency over the 60 GHz carrier, providing a physical data rate of 16 Gbps in a point-to-point link at total energy consumption of 2.075pJ/bit. The signal-to-noise (SNR) for these wireless links are given by:

\[SNR = P_T - P_L - N_f (1) \]

Where \(P_T \) is the transmitted power, \(P_L \) is the path loss and \(N_f \) is the noise floor of the receiver (all in decibels (dB) units). However, as noted in [57], the Bit Error Rate (BER) of such chip-to-chip wireless interconnects is governed by Inter-Symbol Interference (ISI) due to the high-speed transceivers and antennas being bandwidth limited and is \(10^{-15} \) for a PT of -0.5dBm.
3.3: Operation modes

As mentioned in the earlier sections the proposed WiNoC system consists of two operation modes each consisting of its own MAC protocol. In this subsection, the switching between these two protocols will be discussed in details.

The “Data Mode” as mentioned in the previous section is the mode when the WiNoC system is utilizing both its wired and wireless medium to communicate core data with other core tiles. From figure 2 it can be seen that each subnet consists of a single WI and four core tiles and all of the modules are connected using wireline links and bidirectional ports. For the wireline links, a wormhole switching technique is adopted where data packets are broken down into flow control units or flits [58]. The wormhole switching was chosen because it provides low buffering requirements and high network utilization through the use of VCs. For the wireless links, the same wormhole switching principle is used but with a modified flow control which will discussed in the next subsection. For the wireless communication in data mode, the token-based MAC protocol is
used to establish on-to-one communication between the source WI (who is holding the token) and the destination WI.

The “Control Mode” as mentioned in the previous section is the mode when the WiNoC system is utilizing only the wireless medium to communicate the network congestion information in the system. Adopting a token-based MAC protocol similar to that of that used in the data mode will introduce overheads and reduce effective bandwidth for the data transfer. Since one of the goals of the thesis is to create a system which has global traffic awareness, each WI needs to share its local congestion information with all the other WIs by broadcasting it at the same time. Therefore, in this thesis the orthogonal-code based MAC protocol is used, which is capable of supporting multiple broadcast transmission simultaneously for such control message transmission. The transmitter and receiver designs of such systems was discussed in the previous subsection. During the data mode the control data is XORed with the code word unique to that WI and then transmitted simultaneously to all the other WIs in the system. The issue with using orthogonal-code based encoding technique is that as the size of such system increases the effective wireless bandwidth is reduced and the average packet latency increase with the increase in code length. The number of cycles for such broadcasting transmission can be given by the general equation:

$$T = N \times V \times \frac{F_{clk}}{G} \quad (2)$$

Here, T is the number of cycles for transmission, N is the total number of WIs in the system, V is the control message length in bits, F_{clk} is the clock frequency of the system in GHz and G is the aggregate wireless bandwidth in Gbps. Furthermore, the control packet for such system has to be as small as possible in order to maintain a lower packet latency and use the limited bandwidth of 16 Gbps effectively.
From the previous chapters and subsection it has been established that in “Control Mode” the network congestion information is broadcasted using only the wireless links with the help of orthogonal-code based MAC policy. Each control packet contains VC status information for the transmitting WI. The broadcasted congestion information needs to communicate the following information to establish an effective global congestion awareness: (a) The address of the WIs, (b) The VC buffer status of each WI, and (c) The address of the free VC buffer in each WI. Since the information needs to be broadcasted using orthogonal-code based encoding technique, the control packet for such system has to be as small as possible, in order to maintain a low latency. For such reason the address of the WIs will not be broadcasted since in orthogonal-code based MAC policy assigns a unique communication channel for each WI. Thus each WI can be assumed to be aware of the identity of the other WIs in the system by associating the channel to a particular WI.

Figure 5(a) shows the control packet that each transmitter broadcast during control mode. The first field of the control packet contain the VC status bit which is a 1-bit field. When the VC status bit is high, it signifies that the WI from which the corresponding control packet came from has no empty VC buffer and in the next data mode the WI corresponding to that control packet will not be used to transmit core data wirelessly from other WIs in the system. If the VC status bit is low it means that there is one or multiple free VC buffers available for wireless transmission in data mode, the second part of the control packet which contains the VC address will be used as the destination buffer for the wireless transmission in the data mode. For this thesis work, the designed hybrid WiNoC system has 4 VCs per input and thus only take 2 bits to represent the VC address. If multiple VCs are empty, the VC having the lowest address value is considered. Even though multiple VCs can be free for a given WI, the control packet will only consider one VC in order to maintain a low control packet length since, larger packet size will deter the system performance.
Thus, based on the control packet structure and the equation (2) described above, it can be inferred that for a system shown in figure 1 with 16 WIs, running at 1 GHz frequency, the data mode would require 3 cycles to transmit all the control information with all the WIs in the system and then return to the data mode for normal one-to-one data transmission. Since the two modes utilizes two different MAC protocol, the two state MAC operation can be realized into a hybrid MAC protocol controlled using a “DONE” signal as shown in figure 5(b).

In data mode the token-based MAC protocol is used to establish a one-to-one communication between the source WI (the token holder) and the destination WI. The token period T_p in this data mode is defined as the round-trip time for a WI to get the token back once it finishes its transmission. Once a WI finishes it transmission after an epoch of Y cycles (where $Y = T_p/N$), it passes the token to the next Wi and then the done signal goes high which marks the transition of the system from the data mode to control mode. Once in the control mode all the WIs updates and share its VC buffer status with all other WIs in the system for T cycles (given by equation (2)) using the orthogonal-code based MAC protocol. Once the broadcast is completed the done signal goes low and the system once again transitions to data mode. The amount of time the “DONE” signal is in data mode depends on the data packet length the source WI is trying to transmit. Thus, the “DONE” signal can be can be thought of as a logical OR implementation of a cycle and flit counter in the data mode whereas in the control mode, it resets purely based on the cycle count given by equation (2). To keep the simulation more predictable and also ensure the system is robust, this thesis work will consider the packet size to be fixed in size and the buffer depth for each VC equal to the packet size in terms of flits per packet. In doing so, the proposed hybrid MAC protocol also ensures no flits are dropped for partial packet transmission over the wireless medium.
3.4: Routing scheme and controller design

In a hybrid WiNoC system such as the one presented in this work, a contention free routing scheme must be developed in order to maintain high network utilization by using both the wired and the wireless path. Without the use of proper contention free routing algorithm data packets will always try use wireless path, since they provide the opportunity for one hop communication between a
source and destination core tiles. This causes the wireless line to be heavily congested even in low traffic applications and the wired paths remain underutilized. For this reason, this thesis work proposes a dynamic routing scheme for the data mode which is based on existing routing scheme and also with the help of the network traffic information gained during the control mode create to create a load balancing routing scheme which utilizes both the wired and the wireless path in the proposed hybrid WiNoC.

Figure 6 shows the proposed routing scheme flow which will be used during the data mode for the proposed hybrid WiNoC. Once a data packet is generated by the processing element, the core data is packetized and a header flit is added to the data packet. In the header flit the current and the destination address for the message is assigned. Each current and destination address is divided into two parts. The first part of the message contains the subnet address which is common to all the core tiles in a given subnet and the second part contains the address of a specific core tile in the subnet where the message needs to be sent. Based on the proposed routing scheme, if the current subnet address of the message is equal to the message’s destination subnet address, the message is being transmitted between two core tiles in the same subnet and the wired path will be selected for its transmission. In the proposed hybrid WiNoC all inter-subnet communication will be done via the wired links since the Hybrid WiNoC allows one hop communication via wired links between the core tiles and the shared central WI (as shown in figure 1 and 2).

If the message’s current subnet address is not equal to the destination subnet address, a second stage calculation is done by the router to determine the most optimized path for the packet based on the global traffic congestion map which contains the VC status of all the WIs in the system. The VC status of all the WIs are updated during the control mode and based on this and the routers local congestion information the router calculates which of the path will reduce the Manhattan
distance between the current and the destination core tile. If the router sees that the destination WI has free VC buffer then the message will be sent via wireless path in a one hop communication. If the destination WI VC buffer is not free, the router first calculates the worst-case Manhattan distance which is the maximum number of hops required if the message takes only wired path from the current tile to the destination tile. In the next stage the router checks if transmitting the message to any nearby WI reduces the distance, such that the effective number of hops are reduced from the intermediary WI to the destination. If there is such an intermediary WI, the message is sent to that intermediary WI and the current router address is updated and the done signal goes high to start the control mode. If no such intermediary WI is found the router transmit the packet via the wired link to the next core tile updating its current address and trying again for the WI in the next data mode after the control mode for this current cycle completes. All this routing scheme calculations are done in the individual router connected to each core tile in the proposed hybrid WiNoC system. Furthermore, a more detailed routing scheme and the selection strategy for the data packets will be explained with the help of example scenarios in the coming subsection.
The routing scheme described above utilizes the router at each core tile which carries out the non-trivial task of finding out the most optimized path for a data packet to take during the data mode. Figure 7 shows the block diagram of the router architecture which needs to be implemented for the proposed hybrid WiNoC in this thesis work. From the figure it can be seen that each tile has an input and an output buffer space for each direction the router needs transmit the data. When a new header flit is seen, the address decoder decodes the destination address and sends it to the router controller which controls all the input and output port access. Here in the router controller the routing scheme algorithm is implemented in hardware and based on the congestion information from the neighboring router’s port controller and the global congestion map, the router controller
makes it decision on which direction the packet needs to be routed. The port controller then sends a connection request to the crossbar arbiter in order to set up the path to the corresponding output port for the data packet to take. Another reason for the crossbar arbiter is that to ensure that all input buffers from each direction gets equal access opportunity to the router controller based on a first come first serve basis. During control mode the crossbar arbiter stops any access to the output ports and wireless a separate wireless channel is used to broadcast and receive the global traffic congestion information and update its own global WI congestion map. Once the global WI congestion map is updated the system goes transitions to the data mode again and once again the crossbar arbiter and the router controller resumes its normal operations.

3.5: Example operation
To have a better understanding of the routing scheme and the selection strategy for the communication in the data mode, this subsection is going to present some case scenario based on which the router will mathematically calculate and logically decide which path will be most optimized for the data packet to take during the data mode. Since the proposed hybrid WiNoC has a mesh-based architecture, all the core tile can be assumed that they are equally far apart and each of their location can be coordinated as shown in figure 1. Since for a given system size the coordinates of the core tile are fixed, the router at each tile then have the wired path only Manhattan distance information from its own tile to all the corresponding core tiles in the system. Using this information and also the network traffic information the router will decide on the most optimized path based on the algorithm explained above.

The Manhattan distance between two points is defined as the sum of the horizontal and vertical distance between those two points. Mathematically it can be defined as:
\[d(S, D) = |S_x - D_x| + |S_y - D_y| \] (3)

Where, \((S_x, S_y) = x\) and \(y\) coordinate of the source tile; \((D_x, D_y) = x\) and \(y\) coordinate of the destination tile and “d” = the Manhattan distance.

The Manhattan distance in the WiNoC architecture will be represented as number of hops from one tile to the next. Furthermore, one hop is counted for data packet moving between a core tile and the WI in the center of each subnet.

Case Scenario 1: Source and destination are in the same subnet

![Figure 8: network condition for the case scenario 1](image)

For scenario-1 (as shown in figure 8), both the source and the destination are in the same subnet and based on the proposed routing scheme the data packet will take the wired path regardless of the condition of the source VC buffer status. Since the WI is in the center of the subnet, diagonal wired path between the source and the destination can be created via the WI. Therefore, based on the proposed routing scheme any intra-subnet communication can be done in 1 hop via the wired path.
Case Scenario 2: Source and destination are in different subnets but are adjacent routers OR diagonal communication

For scenario 2 (as shown in figure 9(a)), the source and the destination tile are in different subnet but as the router controller first calculates the Manhattan distance for the wired path it sees that it will require only one hop whereas using the WI it will take 3 hops (source to source WI then WI to WI and finally the destination). The same can be said for diagonal communication (as shown in figure 9(b)) where using the wired path takes 2 hops to complete the transaction instead of 3 hops (using the WIs). Therefore, based on the proposed routing scheme the router will always take the wired path for communication between adjacent routers in adjacent subnets or for diagonal communications as shown in figure 9(b).
Case Scenario 3: Source and destination are in a different subnet (free destination WI VC buffer)

For scenario-3 (as shown in figure 10), the source and destination are in different subnet and both their WIs are available wireless communication. The Manhattan distance between the source and the destination via the wired path only will require 6 hops, whereas using the WIs it will take only 3 hops. Thus, based on the proposed routing scheme the wireless path will be selected for this communication.
Case Scenario 4: Source and destination are in a different subnet (no free destination WI VC buffer)

For scenario-4 (as shown in figure 11), the source WI is available for wireless transmission but the destination WI is not available due to no free VC buffers. In this case, according to the proposed routing scheme, the next available WI, which will reduce the Manhattan distance to the destination tile will be selected.

From figure 11 it can be seen that the WIs in subnet 7,9,13 and 14 are available for wireless transmission but out of those four transferring the data packet to tile position (7,5) will reduce the
most Manhattan distance to the destination tile (7,7). Thus, the proposed routing scheme will select the WI in subnet 14 to be the intermediary WI for its wireless communication.

Lastly, in cases where there is no wireless based shortcuts available or in cases where taking the wired path and the wireless path reduces the Manhattan distance by equal number of hops, the proposed routing scheme will always choose the wired paths in these scenarios in order to reduce congestion in the wireless paths and also balance the traffic loads between the wired and the wireless paths.

3.6: Simulation setup and methodology

The performance of the proposed interconnect framework will be evaluated based on the average packet latency for varying traffic load in the system. The average packet latency is the average number of cycles required for each data packet to reach from its source to destination at saturated network conditions. All simulations were carried out in a cycle-accurate network simulator called Noxim [59], which is developed using systemC (a system level language based on C++). Noxim allows performance analysis of both conventional wired NoC and emerging WiNoC architectures based on the various network on chip parameters. The reason Noxim was chosen because it allows the user to implement and analyze customized routing algorithm and selection strategies such as the one presented in this thesis work.

To evaluate the performance of the proposed design, three different mesh network sizes were evaluated with three different traffic patterns and varying PIR. The PIR measures as the number of packets per each core tile per cycle (packet/tile/cycle). The network sizes considered for this thesis work were 6x6, 8x8 and 10x10 mesh networks each with 36, 64 and 100 core tiles.
respectively. The traffic patterns that were simulated consists of uniform random, transpose and hotspot traffic.

The rest of the simulation parameters were kept constant throughout all the experiments. Table I shows the summarized list of all the parameters that were kept constant. The energy values for the wireless transceiver and codecs are based of designs done in research [13] using the 65nm technology node. This energy parameters will then be used to develop the power model in the Noxim environment for the simulated WIs.

<table>
<thead>
<tr>
<th>Parameters (General)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System clock</td>
<td>1 GHz</td>
</tr>
<tr>
<td>NoC router</td>
<td>3 stage pipelined, 6 ports (including wireless)</td>
</tr>
<tr>
<td>VC number</td>
<td>4</td>
</tr>
<tr>
<td>VC Buffer size</td>
<td>8 flits deep</td>
</tr>
<tr>
<td>Flit width</td>
<td>64 bits</td>
</tr>
<tr>
<td>Packet Size</td>
<td>8 flits</td>
</tr>
<tr>
<td>Wired NoC links</td>
<td>64 bits, single cycle latency, 0.2pJ/bit/mm</td>
</tr>
<tr>
<td>Wired NoC links</td>
<td>64-bit flits, single cycle latency64-bit flits, single cycle latency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters (Wireless)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOK Wireless transceiver</td>
<td>16Gbps, 2.07 pJ/bit, OOK modulated at 60GHz</td>
</tr>
<tr>
<td>Orthogonal codec and ADC</td>
<td>16Gbps, 0.66pJ/bit, OOK modulated with ADC and CDMA decoder [13] at 60 GHz</td>
</tr>
<tr>
<td>To and from tiles buffer number</td>
<td>4, each 8 flits deep</td>
</tr>
<tr>
<td>Tx and Rx buffer size</td>
<td>8 flits deep</td>
</tr>
</tbody>
</table>

The routing and path selection strategy was based on the proposed routing scheme in the previous section. The routing scheme and the mac protocol was modeled in the Noxim environment and the simulations were executed for 10,000 cycles with the first 1000 cycles eliminated for transient synthetic traffic patterns separately. The performance of the proposed two-state hybrid WiNoC was compared with traditional wired based mesh NoC and default mesh WiNoC in the Noxim environment. The default WiNoC system in Noxim follows a distance-based metric called the
“delta” value to select wireless communication between two communicating tile via the WIs. This delta value is fixed and does not allow for the dynamic selection operation that is done in this thesis work. Furthermore, the selection of the wireless path is also deterministic that is as long as the communicating WIs are separated by a distance greater than the delta value the router in the tiles will always allocate the wireless path for such communication and will not consider the buffer availability in the WIs.

According to observations by Tang et al. [60], congestions in network is caused by any one or multiple reasons:

a. Observation 1: Congestion usually occurs at partial nodes in a local network region or multiple regions
b. Observation 2: Some particular communications pairs will be affected by the congestions and hence have the longest delays.
c. Observation 3: The few nodes affected by the congestion greatly contribute to the overall global average delay of the system
d. Observation 4: Under some routing and traffic conditions, throughput of the system will first increase and once the saturation point is reached further injection of packets into the system will cause the system throughput to remain unchanged or decrease.

Hence based on these observations, the uniform random traffic, transpose traffic and hotspot traffic were selected to be used to observe the behavior of the developed hybrid WiNoC. Furthermore the developed two-state hybrid WiNoC (Hy-WiNoC) was tested against a traditional wired mesh NoC (Wired) and also a default WiNoC (D-WiNoC) scheme in Noxim (as explained above).
3.7: Performance evaluation under Uniform Random Traffic

In uniform random traffic each node generates traffic for other nodes in the system randomly with the same probability. Figure 12 shows the improvement in the global average delay with varying packet injection rate for different network sizes where, uniform random traffic was generated and injected into the wired, D-WiNoC and Hy-WiNoC systems. Figure 13 shows the improvement in the throughput for varying injection rate under uniform random traffic.
Figure 12: Global average delay VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Uniform Random Traffic
Based on the presented results in figure 12 and 13, the global average delay decreases from the wired mesh to the D-WiNoC and a further decrease is seen from the D-WiNoC to the proposed Hy-WiNoC. Similarly the throughput for the various system sizes were increasing from the wired mesh to D-WiNoC and from the D-WiNoC to the Hy-WiNoC. For the 6x6 network size, the global average delay decreases by 32% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 24%. The throughput of the D-WiNoC is shown to be almost 1.4 times higher than the wired mesh and a further 25% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC. For the 8x8 network size, the global average delay decreases by 10% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 11%. The throughput of the D-WiNoC is shown to be almost 1.4 times higher than the wired mesh and a further 11% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC. For the 10x10 network size the global average delay decreases by 10% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 8%. The throughput of the D-WiNoC is
shown to be almost 1.6 times higher than the wired mesh and a further 26% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC.

3.8: Performance evaluation under Transpose Traffic

In transpose traffic the node (x,y) only sends data packet to the node (y,x). Figure 14 shows the improvement in the global average delay with varying packet injection rate for different network sizes and Figure 15 shows the improvement in the throughput for varying injection rate under uniform random traffic.
Figure 14: Global average delay VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Transpose Traffic
Based on the presented results in figures 14 and 15, the global average delay decreases from the wired mesh to the D-WiNoC and a further decrease is seen from the D-WiNoC to the proposed Hy-WiNoC. Similarly the throughput for the various system sizes were increasing from the wired mesh to D-WiNoC and from the D-WiNoC to the Hy-WiNoC. For the 6x6 network size, the global average delay decreases by 17% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 20%. The throughput of the D-WiNoC is shown to be almost 1.5 times higher than the wired mesh and a further 20% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC. For the 8x8 network size, the global average delay decreases by 26% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 18%. The throughput of the D-WiNoC is shown to be almost 84% higher than the wired mesh and a 17% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC. For the 10x10 network size the global average delay decreases by 16% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 10%. The throughput of the D-WiNoC is shown to be almost
1.3 times higher than the wired mesh and a further 10% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC.

3.9: Performance evaluation under Hotspot Traffic

In hotspot traffic, four hotspot nodes were selected for each network size and 20% of all the traffic generated by the other core tiles is sent to these four cores creating 4 separate but localized hotspots. The four selected hot spot nodes for the 6x6 network size were in the mesh coordinate position (1,1), (1,4), (4,1), (4,4). The four selected hot spot nodes for the 6x6 network size were in the mesh coordinate position (1,1), (1,6), (6,1), (6,6). The four selected hot spot nodes for the 10x10 network size were in the mesh coordinate position (1,1), (1,8), (8,1), (8,8). Figure 16 shows the improvement in the global average delay with varying packet injection rate for different network sizes and Figure 17 shows the improvement in the throughput for varying injection rate under uniform random traffic.
Figure 16: Global average delay VS PIR for network sizes (a) 6x6 (b) 8x8 (c) 10x10 under Hotspot Traffic
Based on the presented results in figure 16 and 17, the global average delay decreases from the wired mesh to the D-WiNoC and a further decrease is seen from the D-WiNoC to the proposed Hy-WiNoC. Similarly the throughput for the various system sizes were increasing from the wired mesh to D-WiNoC and from the D-WiNoC to the Hy-WiNoC. For the 6x6 network size, the global average delay decreases by 30% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 29%. The throughput of the D-WiNoC is shown to improve by 77% from the wired mesh and a 42% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC. For the 8x8 network size, the global average delay decreases by 23% from the wired mesh network to the D-
WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 25%. The throughput of the D-WiNoC is shown to be almost 59% higher than the wired mesh and a 34% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC. For the 10x10 network size the global average delay decreases by 24% from the wired mesh network to the D-WiNoC and from the D-WiNoC to the proposed Hy-WiNoC, the global average delay decreases by almost 18%. The throughput of the D-WiNoC is shown to improve by 89% than the wired mesh and a 50% improvement is seen in the throughput from D-WiNoC to the proposed Hy-WiNoC.

3.10: Energy consumption

![Figure 18: Total energy consumption for three simulated systems](image)

The energy consumption of all the simulated system were evaluated in the Noxim environment using the power modelling tools within the simulator. Using the energy parameters from table 1 and previous research [13] the total energy consumed by each of the simulated system was evaluated. Figure 18 shows the total energy consumed by the wired, the default WiNoC (D-WiNoC) and the proposed hybrid WiNoC (Hy-WiNoC) during a simulation run with 10,000
iterations. From figure 18 it can be seen that the highest energy consumption can be seen for the traditional wired system followed by the proposed Hy-WiNoC and the least energy consuming design was the default WiNoC. The increase in energy consumption from the D-WiNoC to the Hy-WiNoC is due the fact that the Hy-WiNoC has two modes of operation for its WIs whereas the D-WiNoC is only using the WIs based on the token policy. The additional orthogonal code-base broadcasting in the data mode causes all the WIs in the system to be active simultaneously and hence more energy is dissipated across the WIs in the system. Based on the presented results the proposed Hy-WiNoC shows almost 60% less energy consumption rates than the wired counterparts of the same size and with only 23% higher energy consumptions from the D-WiNoC systems of the same size.
Chapter 4: FAULT TOLERANCE STUDY

From the previous chapter it was seen that the proposed routing scheme is able to detect congestion in the network and based on the WIs VC buffer space the system is able to choose the most optimized path for the data packet to take. The same routing can be used to detect faulty WIs in the system. As seen in the previous chapters, during control mode one bit is allocated for the wireless hub status. This status bit can also be toggled to zero if the WI in that subnet becomes faulty. When this hub status bit is zero the routing scheme will not consider the faulty WIs in the transmission of the data packets wirelessly. If the failure is transient or intermittent the hub status can be once again toggled to 1 in order to resume wireless transmission to the subnets. Thus using the same routing scheme the system can be made fault tolerant and simulation results based on the fault tolerance study will be discussed below.

Figure 19: Fault modeling and the Hotspot tiles
Figure 19 shows the faulty WIs which was modelled for the 8x8 system. From the figure it can be seen that the faulty WIs are considered to be in the 4 corner subnet of the proposed hybrid WiNoC network. The same 4 corner subnets were modelled to be faulty for the fault tolerance study in the 10x10 system. The fault in the WIs were modelled by setting the specific hub’s reliability parameter in the Noxim simulator to zero. Furthermore in order to model the worst case behavior each tile in marked in orange in figure 19 was modelled to be core tiles with hotspot traffic. Based on the simulation run for 10,000 iterations, for 8x8 and 10x10 system the performance of the faulty networks were evaluated against the non-faulty D-WiNoC and the Hy-WiNoC respectively.

Figure 20: 8x8 (a) Global Average Delay VS PIR (b) Throughput VS PIR
Figure 20 and 21 shows the performance degradation for the faulty D-WiNoC and the proposed Hy-WiNoC for system size of 8x8 and 10x10 respectively. From the figures it can be seen that that both of the faulty D-WiNoC and the Hy-WiNoC showed higher global average delay and lowered throughput, when compared to their non-faulty counterparts.

For the 8x8 system the global average delay of the faulty D-WiNoC increased by 15% and throughput almost dropped by 30% when compared fault free D-WiNoC. The global average delay for the faulty Hy-WiNoC system increased by 10% and the throughput dropped by 12%, when compared to the fault-free Hy-WiNoC. For the 10x10 system the global average delay of the faulty
D-WiNoC increased by 20% and throughput almost dropped by 38% when compared fault free D-WiNoC. The global average delay for the faulty Hy-WiNoC system increased by 11% and the throughput dropped by 23%, when compared to the fault-free Hy-WiNoC. In both network sizes it was seen that the the proposed Hy-WiNoC was more resilient to faults when compared to the default WiNoC with the same fault cases. This shows the proposed routing scheme in the proposed Hy-WiNoC system is able handle faults much more efficiently than the default WiNoC system.
Chapter 5: CONCLUSION AND FUTURE WORK

Wireless interconnection can be envisioned as the energy efficient communication framework for the current and the future multicore systems. The key aspect of this communication framework is to develop an underlying interconnect network that is able to communicate the maximum amount of information while creating the least amount of congestion in the system. In this thesis work the proposed two-state hybrid WiNoC was able to show just that by outperforming both the traditional wired based NoC and the non-deterministic WiNoC systems.

The key aspect of the research was the development of a new routing scheme which is able to calculate the most optimized path for a packet to take based on the global congestion information. The global congestion information is shared between all the subnets via broadcasting this control information over the wireless interconnect framework using an orthogonal code-based broadcasting MAC protocol. On the other hand the core data is transmitted using both the wired and the wireless interconnect framework using the dynamic routing scheme and selection strategy and using a token based MAC protocol. Since the proposed system has two different MAC protocols, this thesis work also proposes a novel switching technique between the MAC protocols in order to maintain coherency between the two operation modes of the system. Results based on simulations has shown that the proposed system is able have lower latency and higher throughput when compared to a traditional wired NoC and non-deterministic WiNoC systems. One important observation that was seen was that, as the system size was increasing from 36 to 48 to 100 cores, the gain in performance was gradually decreasing which shows the proposed system has scalability issues as seen for other global congestion aware proposed in previous researches [38, 48, and 39]. The scalability issue of the system arise from the sharing of global congestion information. Since the system size is increasing the size of the global congestion information is becoming larger and
hence more clock cycles are utilized in broadcasting the congestion information rather than actual data transmission. Beside this drawback the proposed system is more suitable for systems having less than 100 cores due to its performance gain and is more resilient when compared to traditional wired mesh NoCs and non-deterministic WiNoC systems.

Future work based on this thesis work can look into addressing the scalability issues seen in global congestion aware systems. One way to improve such system is to find a more optimized encoding technique for the congestion information in the control mode. If a more optimized encoding techniques is used instead of the orthogonal based coding the effective cycles for the data mode can be reduced.
Bibliography:

37 Ebrahimi, Masoumeh, Masoud Daneshtalab, Pasi Liljeberg, Juha Plosila, and Hannu Tenhunen. "CATRA-congestion aware trapezoid-based routing algorithm for on-chip

