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Abstract

Cryptoprocessors are becoming a standard to make the data-usage more discrete. A well-

known elector-mechanical cipher machine called the “enigma machine” was used in early 20th

century to encrypt all confidential military and diplomatic information. With the advent of mi-

croprocessors in late 20th century the world of cryptography revolutionized. A cryptosystem

is system on chip which contains cryptography algorithms used for encryption and decryp-

tion of data. These cryptoprocessors are used in ATM’s and highly portable communication

systems. Encryption and decryption are the fundamental processes behind any cryptosystem.

There are many encryption and decryption algorithms available; one such algorithm is known

as the RSA (Rivest-Shamir-Adlean) algorithm. This project focuses on development of an en-

cryption cryptoprocessor which will deal with key generation, key distribution, and encryption

parts of the RSA algorithm and also discusses the verification environment required to verify

this core.
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Chapter 1

Introduction

The information has been and will be one of the treasured resources since the dawn of civi-

lization. In the last 20 years, many economies have changed from manufacturing and heavy

industry to knowledge and data. This has emphasized the importance of protecting the infor-

mation through cryptography. Cryptography is an art of secret writing, the first documented

application of cryptography is traced back to 1900 BC when Egyptians used hieroglyphs. The

widespread of cryptography came into existence after the development of computers. Every-

thing surrounding us from our smartphone to internet banking heavily uses cryptography. The

main functions of modern-day cryptography systems are

1. Privacy: To make sure no third party can access or read the information.

2. Authentication: When we use a correct cryptographic system, we establish a secured

communication between remote user and host. The best example for this is the SSL

certificate feature of web server. Once we connect to that server, it will give the user a

proof that they are connected to the correct server. Here the identity of the user is not the

question but the cryptographic key used by that user. Meaning, assuming the keys are

secured to the user, it is okay to assume that the user is the correct sender. In the case
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of highly valuable data, the data are encrypted with a private key and then with a public

key.

3. Integrity: The cryptosystems should make sure that the receiver has received the mes-

sage in the same form of the original. For example, some cryptography systems ensure

that rivaling companies cannot tamper with their internal data. The standard way to

achieve this data integrity is through “hashing.”

4. Key exchange: The process by which encryption keys are distributed between senders

and receivers.

One crucial process of cryptography is encryption and decryption. The process of encoding

a standard data also referred to as “plain-text” in a way such that only designated end users

can gain access to the information contained in it. The encoded data is also referred to as

“cipher-text.” Decryption is the process of converting back a cipher text to a plain-text. The

main ingredient of this process is the “key.”

A key is a variable or a small piece of information which determines the output of a crypto-

graphic algorithm. Key can be created in various ways, but the underlining concept is, it should

be a random number, and it should not be easily predicted. Most commonly known key gen-

erators are pseudo-random number generator and random-number generator. Random number

generators create random number automatically while the pseudo-random number generator

needs a seed value. These seed values can be changed to create a new set of random number.

One disadvantage of this pseudo-random generator is the ability to recreate the random number

if the seed value is known. Research is going on to develop an utterly random number based

on autonomously occurring events like electron spin.

One important thing to note about the key concept is the “key length.” It determines actually

how many combinations of random numbers are possible. The total possible combinations can
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be determined using this formula 2(keylength). For example, if a key is 20 bit wide, then 220

combinations are possible which is around a million combinations. Even though this is a large

number, the key is still insecure given the ability of the modern day computers to crack it in

minutes.

Development of processor chips and need to improve the data security has given rise to

cryptoprocessor. A cryptoprocessor is a dedicated system on chip which is used for carry-

ing out cryptographic algorithms. Some other functions of cryptoprocessors are encryption

accelerators, intrusion detection, and tamper resistance enhanced key and data protection and

enhanced secured memory access. The first application of cryptoprocessors was during the

1980s when IBM’s 3848 model was released. This cryptoprocessor was used in the ATM, and

it was the first financially successful ATM for safe banking. Some cryptoprocessors are used

as hardware between the bus interface and cache or memory. The data is decrypted on the fly

while accessing from the RAM or cache and encrypted while writing back into the RAM or

cache

Following phases are carried out for designing a cryptoprocessor.

• Hardware design

• Application design

• Security design

• Software design

The following section will be discussing more regarding the hardware design phase carried out

for this project.
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1.1 Research Goals

There are many encryption and decryption algorithms available in cryptography, and one such

algorithm is called the RSA (Rivest-Shamir-Adleman) algorithm. This is an asymmetric algo-

rithm were the public-key is different from the private key. It contains the following stages:

• Key generation

• Key distribution

• Encryption

• Decryption

This project will be focusing on the development of an RSA cryptoprocessor which will only

deal with key generation, key distribution and encryption parst of the algorithm. This is can be

achieved through the following stages:

• A software model of the same must be designed for comparing the hardware results

with the software results. This software model will be running concurrently with the

hardware model.

• The verification environment must be provided, which will act as a platform to compare

the results of hardware model with that of the software model.

1.2 Organization

• Chapter 1: Brief introduction to cryptography and research goals.

• Chapter 2: Will discuss basic concepts behind cryptographic processors.
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• Chapter 3: Will discuss the RSA algorithm and basics of modular exponentiation tech-

niques.

• Chapter 4: Will discuss the software and hardware implementation of RSA encryption

core.

• Chapter 5: Will discuss the verification strategy and test bench components and software

model required for verifying the hardware model.

• Chapter 6: Will discuss the results of this work

• Chapter 7: Conclusion



Chapter 2

Bibliographical Research

The basics of Cryptography as discussed in [2] are briefly explained below

One of the key aspects behind hardware design is their computational power and ability to

reconfigure the design during the latter part of the design stage. A trade-off must be achieved

between strength, performance, security, and flexibility to get the right product. The crypto-

graphic hardware is classified into three types:

1. Custom Cryptoprocessor: A custom cryptoprocessor includes are a standalone func-

tional unit which performs the cryptographic algorithms. This functional unit should be

able to perform either Symmetric operations or Asymmetric operations. These proces-

sors have dedicated arithmetic logic units (ALUs) for this purpose which run concur-

rently with the program execution. Most of these processors have two channels: one for

secure I/O, and one clear (plain text) I/O. There must be precise isolation between these

two channels to defend the hardware against non-invasive attacks like power analysis

and electromagnetic analysis. The data is decrypted inside the functional unit and is

stored into the RAM or cache using a secure I/O channel. These processors have a cru-

cial dedicated management unit which is used for key generation and securing the key.
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Figure 2.1: Custom Cryptoprocessor [1]

The keys are sometimes generated externally and fed to the hardware or hardwired in the

system. Some cryptoprocessors store keys in their memory which is a significant dis-

advantage because this makes the processor more vulnerable to software attacks. Since

these processors are flexible, it is easy to configure the instruction set of the hardware

when such attacks happen. Some processors are extremely fast because they use internal

data path to the internal memory and do not have to use external memory. Therefore

a custom cryptoprocessors increases security, performance, flexibility at the expense of

computational power. Figure 2.1 shows an example of custom cryptoprocessor.

2. Crypto-Coprocessor: These are hardware modules which are present in concurrent to

the main processor. Many of these co-processors also perform the same task done by

the custom cryptoprocessor, but they do not have the same efficiency as their coun-

terparts. Since they are integrated into an SoC, they do not have high flexibility and
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Figure 2.2: Cyrpto-Coprocessor [1]

cannot be reconfigured. But some of the modern day processors can be configured

by using a host processor. Another advantage of such systems is multiple dedicated

cryptoprocessors can be attached to the same host processor. This allows the use of

various cryptographic applications. Parallel computing and pipeline architecture have

made it possible to perform multiple cryptographic applications simultaneously. In [3]

the proposed co-processor utilizes different characteristics of cryptographic algorithms

and optimizes the size of the core and performance. The co-processor implemented in

this system is a High-speed functional unit which includes two hash functions SHA-1

(Secure Hash Algorithm 1), SHA-2 (Secure Hash Algorithm 2), and AES (Advanced

Encryption Standard). The main idea behind the use of the proposed design is to share

the available resources. This coprocessor is configurable by host core and architecture

allows parallel computation of three cryptographic primitives. Figure 2.2 shows an ex-

ample of Crypto-Coprocessors.
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3. Crypto-arrays: These are developed recently, and they have many advantages in terms

of both performance and flexibility.

The common item in the above-listed cryptosystems is encryption and decryption. Note that

encryption algorithms are classified into two families based on the type of key they use to

encrypt and decrypt the data: symmetric or secret key, and asymmetric or public key.

2.1 Symmetric key

This is the oldest type of encryption algorithm and used for data protection for a long time. The

systems employing this algorithm need a secure way to transfer the private key to the concerned

party. If there is an interception in the transfer, the algorithm can be easily cracked, and the

entire system will be easily compromised. Thus while designing the symmetric encryption

algorithm, it is vital to evaluate a secure way to transfer the key. Fortunately, this necessity has

given rise to many ingenious methods to transfer the key. One way is to use a key to encrypt a

data and send the data to the receiver; the receiver decrypts the data and destroys the key. This

way the algorithm can never be broken, and it has been proved mathematically. Such systems

are known as a one-time pad. So, Naturally, a lot number of keys have to generate to transfer

data through one-off pad systems. Still there exists a question of securely transferring the key

and such method is not commercially viable.

Symmetric encryption is used for encrypting the bulk of data together. Two main tech-

niques of symmetric encryption are substitution and transposition. Substitution ciphers are

basic encryption technique where another aspect replaces a character. For example, the letter

“G” will be replaced by “A” wherever it occurs. These ciphers are not used much often today

due to the obvious fact that it can be easily broken with regressive cryptanalysis. In contrast,

transposition ciphers cannot be easily broken. In this, the text or part of the data is moved to
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a different location in the cipher-text rather than replacing each letter. A simple example of

transposition is “word jumble” which comes in daily newspapers. But the word jumble is an

example of random transposition that is the word is moved to a random location, but in the

transposition based encryption, the words are moved in definite pattern, which can be easily

reversed and decrypted. Even pure transposition based encryption is rarely used today because

of the ease of breaking it using computer-based cryptanalysis.

So researchers came up with a way to encrypt data using both of the above methods. All

modern day symmetric key encryption works on the diffusion of these two principles. Diffu-

sion algorithms that are being used today substitute different letter for the same letter based on

its location and data which is preceding it.

Most secret keys today have a property called Avalanche effect, in which a single bit change

will result in a change of one-half of cipher-text bits. Symmetric encryption is fast and compact

concerning code and memory utilization, which is an essential property since most of the

modern encryptors should be compatible with smartphones which have a smaller, low power

processor.

Symmetric algorithms can be further classified as stream ciphers and block ciphers. Block

cipher algorithms encrypt and decrypt a block size of data, whereas stream ciphers continu-

ously encrypt data of any sized that is available at its input.

The following are secret vital algorithms that are commonly used today.

• Data Encryption Standard (DES): This is a standardized encryption algorithm which

is approved by the US government in 1977 after years of analysis. The origin of this

algorithm can be traced back to an encryption method called “Lucifer” invented by IBM.

It uses a 64-bit key which includes additional parity bits. DES uses a block cipher

technique and encrypts 64-bit data. Although the algorithm was difficult to crack when it

was first introduced, now due to improvements in cryptanalysis and brute force methods
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it has become insecure now. So the government agencies have considered using longer

keys to prevent penetration. Despite all these, it is still known as most crypts analyzed

algorithm in the world withstanding all attacks.

• RC4 (Rivest Cipher 4): This is a stream cipher published in 1987. The disadvantage of

these techniques is the generation of the key-stream, which is a potentially long sequence

of values consisting of 40 bit to 128-bit key and a 24-bit initialization vector. But the

encryption is straightforward, the actual plain-text is xor’d with the key-stream. The

key-stream is replicable if the IV is known. In practice, both the sender and receiver will

be generating the same keystream, and this technique is ten times faster than DES.

• RC5 (Rivest Cipher 4): This is a block cipher algorithm, published in 1994, which uses

variable block size, key size, encryption steps.

• Advanced Encryption Standard (AES): AES is a block cipher created by two Belgian

cryptographers Vincent Rijmen and Joan Daemen. The National Institute of Standards

and Technology (NIST) replaced DES with AES after any analysis. The US government

updated the cipher standards from DES to AES in 2002, and since then it has become a

commercially accessible standard for encryption purpose. AES algorithm is available to

the public with unrestricted access.

2.2 Asymmetric key or Public key

As per the above discussion, a noteworthy drawback of the secret key encryption is the need

for sending the cipher key to the concerned parties. This need has given rise to a key exchange

system where the parties can exchange a known variable and which would be then used to

derive a secret key. In 1976 Hellman created simple arithmetic which allowed both the parties
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to be able to obtain the same secret key. This distribution method was known as Diffie-Hellman

(DH) key exchange. One inconvenience of DH key exchange is its iterative process for key

generation. It requires the participation of both parties to generate a new secret key.

MIT researcher Ronald Rivest, Ari Shamir and Leonard Adleman created a new public

key algorithm called the RSA algorithm [4]. For this algorithm, there isn’t a need to share the

secret keys. When the sender wants to encrypt the data, it can be done by using the receiver’s

public key. As the name suggests, the public key can be sent freely without any concern. But

the private key must be kept safe. To decrypt the data, the receiver will use its private key.

The fundamental difference between symmetric and asymmetric encryption is that while

using a secret key there exists many private keys for all the parties that are communicating

with the host. Whereas in public key cipher there exists only one key pair between sender and

receiver. Any host can send encrypted data to receiver using the receivers public key, but the

receiver decides which data should decrypted.

Other advantages of public key encryption is that it supports authentication, i.e the sender

needs to be identified first.

2.2.1 RSA public key algorithm

The logic behind the RSA algorithm is simple, factoring the product of any two prime num-

bers. Here the product of the two prime numbers are known as the public key, and each prime

number is the private key. If anyone can factor the prime number, the private key is compro-

mised.

A question might arise why this algorithm isn’t used for all encryption given its benefits:

the reason is speed. The RSA algorithm is not viable for bulk encryption. The only way to

crack the RSA algorithm is by factoring the public key or through brute-force, which is quite

hopeless because of the fact that the most public keys are 1024 - 2048 bit long.
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Modular multiplication is the most important process of the RSA algorithm, and many

papers discuss using different techniques to implement modular multiplication.

[5] discusses the implementation of RSA algorithm using an FPGA. In this system, a 1024-

bit public key is used. This system employs multiple and square algorithms for modular op-

eration. The design is described using VHDL and implemented in Xilinx Spartan3 (XC3S50)

field-programmable gate array (FPGA) board. This is a single FPGA board and the design con-

sumed only 29% of chip resources with an operating frequency of 68.573 MHz. This confirms

that RSA designs can consume less hardware resources than other crypto algorithms.

In any data communication network, security is an important characteristic. As discussed

in [6], most public key cryptography, including the RSA cryptography, this characteristic is

dependent on modular exponentiation, i.e security lies in the inability to factor out the two

large prime numbers. This modular exponentiation is achieved through modular multiplication

of two large prime numbers. The main challenge here is to achieve this process in less amount

of time and hardware. There are many types of modular multiplication but they generally fall

into these two categories. 1) Division-after-multiplication 2) Division during multiplication. In

this paper, the authors take advantage of both methods and come up with a new algorithm. The

basic idea is to split the operand into many equal-sized segments and perform multiplication

and residue operation in each stage of the pipeline.

In [7], the authors have implemented the modular exponentiation by introducing “Vedic

Multipliers” into the pipelined system. The authors have concluded by comparing three

versions of the same system using different multipliers (Vedic Multiplier, Array Multiplier,

Pipelined Multiplier) and have presented a comparative analysis.

When the key size is increased the dedicated hardware accelerators are required to per-

form heavy computations at a high throughput rate. Two popular methods are available for

modular multiplication of large number. One is Montgomery’s multiplication algorithm [8]
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and the other is multiplication succeeded by modular reduction. [9] discusses implementing

Montgomery multiplication for carrying out modular multiplication. Carry-save adders are

used to stop carry propagation at each stage. Also, buffers are introduced to synchronize the

worst case delay with the clock. A comparative analysis of power consumption and area of

this proposed design with other designs are made and significant results are presented.

The authors of [10] use a modified radix-4 multiplier based on Booth’s multiplication tech-

nique. The difficulty of implementing multiplication and Modular exponentiation depends

upon the algorithm which uses these techniques. The Karatsuba implementation and FFT im-

plementation are the fastest multiplication algorithms used in software, But these algorithms

are rarely used in hardware application due to their recursive nature. In [11] authors have

performed an in-depth analysis of above-mentioned implementation and have proposed an

optimized version of these algorithms. These algorithms show that recursive deployment in-

creases efficient implementation for small bit operands s. But the modified algorithms showed

improved efficient implementation for systems having 346-bit operands

In the previous section we discussed using re-configurable Crypto-Coprocessors which

can be configured by the host CPU. [12] proposes using scalable modules which can be con-

figured by the host system. Here the RSA algorithm is implemented as a co-processor and

system contain 6 levels 1) random generation of two prime numbers, 2) multiplication of two

prime numbers, 3) decrementing their value, 4) creating encryption key (public key), 5) cre-

ating decryption key (secret key), and 6) the encryption and decryption process. And inter-

leaved multiplication algorithm has been included into the modular multiplication to make

forward correction more robust. The entire design is scalable to fit into an ALTERA Cyclone

IV EP4CE115F29C7 FPGA.

A much more efficient hardware implementation of RSA cryptography is discussed in [13]

where the authors have implemented the Miller Rabin algorithm to check primality of the
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operands and then performing interleaved multiplication. Since RSA is an computationally

intensive algorithm, a cryptographic accelerator can be embedded as a co-processor and share

the computation process with the main host. The final design is an 8-bit RSA circuit but it is a

fully parameterized design which can be extended to 1024 / 2048 bit implementation.

There is research on-going to improve the throughput and minimize the power for RSA

cryptoprocessors. [14] introduce the following implementation as an improvement:

1. A fast half-carry-save Montgomery modular multiplication algorithm.

2. A high-speed dual-core multiplier accumulator to optimize critical path.

3. And several other low power optimizations for RSA co-processor.

The previous papers focused more on performance and fast processing of the system. This

paper focuses on improving power relation as well.

As discussed earlier, modular multiplication forms the heart of RSA encryption. Its secu-

rity and reliability depend on whether the modulus can be factored out or not. Nowadays the

modulus is of 2048 bits size which provides good security to a certain level. As more powerful

computers emerge, the key size of 2048 bits will be soon insufficient. So it is necessary to

increase the key size to 4096 or to even 8192 bits to provide security. [15] presents the design

of 8192-bit RSA cryptoprocessor. This design uses radix-2 Montgomery multiplier which is

designed as a systolic architecture. This hardware was verified by carrying out two exhaus-

tive tests. One performs encryption and decryption of a 2048-bit message using standard test

vectors recommended by RSA laboratories

The performance of the RSA system entirely depends upon the throughput of the modular

multiplication model. When the key size becomes larger, high throughput hardware acceler-

ators are needed. The Fast Fourier transform based Strassen algorithm is generally sufficient

for large number multiplication. In [16] the authors propose a novel approach by combining
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FFT-base multiplication and Montgomery reduction. The authors have implemented 8k bit,

12k bit, and 48k bit RSA cryptosystems and their performance is compared with their previ-

ous work. Their results show that their 48k-bit RSA design outperforms its counterpart with

respect to throughput and efficiency.

Implementation of RSA algorithm or any public key cryptosystems in a general purpose

processor (GPP) is very flexible because of the ability to drive many cryptosystems at run-time.

One disadvantage of GPP is they result in low throughput and consume more power. For most

real-time purposes dedicated hardware is required to increase the computation power of cryp-

tosystems. So to fill the gap between dedicated hardware and GPP, a novel approach has been

discussed in [17] where domain-specific reconfiguration is utilized to provide a highly flexible

system. The resulting system is capable of performing cryptographic primitives, with a fully

re-programmable modulus. In [18], a domain-specific reconfiguration is further explored to

improve operating speed and hardware utilization. In particular, algorithms sharing the same

resource for different arithmetic operations are explored to reduce hardware utilization. Exper-

imental results reveal that users are able to program crypt-processor in microcode sequences

for cryptographic algorithms like RSA and elliptic curve cryptosystems.

In 1999, “Tenac” and “Koc” proposed a new algorithm for matrix multiplication called

Multiple-word Radix-2 Montgomery multiplication [19]. This system optimized for minimum

latency performed Montgomery multiplication in 2n clock cycles where n is the size of the

operand. In [20] the authors propose a two hardware architecture which was able to perform

the same operation in n clock cycles. They achieved this by precomputing partial results of the

operation and arriving at two best possible solutions.

The previous section discussed 4 important steps in any cryptographic processors: 1) key

generation, 2) key distribution, 3) Encryption, and 4) Decryption. The generation of a prime

number is the basic task of public-key schemes and essentially needed for the creation of key
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pairs. Despite years of investigation of primality testing, prime number generation algorithms

are still scarcely researched upon. In [21] authors have proposed new algorithms for gen-

erating pseudo-random numbers. This chapter is the basis for all prime number generation

algorithms. This paper shows a way to reduce the value of hidden constants and provide an

efficient way to generate prime numbers. The problem of validating prime number has posed a

great challenge. Differentiating between prime and composite numbers is the most important

problem in arithmetic. It is easy to multiply two prime numbers but factoring them is difficult.

FPGA can be used as a platform for validating any digital systems. In [22] authors propose a

scalable architecture for validating the prime numbers by using re-configurable FPGAs. In this

paper, the authors use the Rabin-Miller primality test for validating the prime number. They

also use the Montgomery algorithm for modular multiplication. The system was designed and

implemented on Spartan XC3S2000-4-FG900 chip. Since the design is scalable it can also be

implemented on smaller and bigger FPGAs.

In [23] authors have proposed an efficient solution to accelerate key pair generation process

by using a residue number system. Transport Triggered Architecture (TTA) is the type of

a processor design where external programs control the internal buses of a processor. For

example writing data into a data bus will actually trigger the functional unit of the processor

to initiate the computational process. TTA hardware is proposed where the functional unit is a

residue number system which will generate a pair of keys. Whereas in [24], the key generation

process is based on selecting a random public key from the predefined list of public keys then

using Euclid’s extended algorithm to derive at the private key. The Euclidean method is the

best way to find the Greatest common divisor of a two natural number a and b.

Modular multiplication on large operands makes RSA computation more challenging. The

software designs of such systems give more flexibility to the designer but lacked performance.

On the other hand, the hardware model gave high performance but lacked flexibility. In [25]
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the authors have presented a hardware/software co-design of the RSA encryption core. A

Zynq-7000 SoC platform is adopted for this purpose, which has a Dual ARM core as the

main processing system. A comparative analysis of hardware/software design with that of a

complete software model was done, which proved that a speedup of 57 times is achieved for

a 2048-bit operand system. To achieve this task a proper partitioning between hardware and

software process of the algorithm must be made.

The main motivation behind [26] is to design an efficient hardware algorithm for the RSA

encryption/decryption algorithm using Montgomery multiplication. FPGA nowadays have

embedded DSP blocks and block RAMs (BRAMs). This paper presents the implementation

of RSA encryption with just one DSP block and one BRAM thereby reducing logic units. The

multiplier inside the DSP clocks for more 97% of the clock cycles for all clock cycles, and

key size ranges from 64-bit to 2048-bit can be applied to the same architectural design. The

design runs at 447.027 Mhz. This hardware implementation is close to optimal, in other words,

the DSP works on almost all processing clock and can be executed in parallel to obtain high

throughput.



Chapter 3

RSA (Rivest–Shamir–Adleman)

Algorithm

This chapter will discuss about the architecture of the RSA_CORE. Section 3.1 will start with

basics of RSA encryption with a simple example.

3.1 RSA Encryption and Decryption

Securing Information has become a huge factor with development of modern communication

networks. Having a small loophole will lead to devastating effects. There are two types of en-

cryption methods used by modern computers for encryption and decryption of messages: sym-

metric and asymmetric encryption. The former encryption method uses same cryptographic

keys for both encryption and decryption of plain text. A cryptographic key is a string of random

data used by cryptographic algorithms to convert a plain text to cipher text. Here the involved

parties share the key, passphrase. Whereas the latter method uses a public key for encrypting

the plain text and private key for decryption of the cipher text. RSA is a type of asymmetric
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Figure 3.1: Asymmetric Cipher block

encryption algorithm developed in the year 1978 and is still used today. The security of this

encryption method depends upon the difficulty to factor large prime numbers. Recent times

computers can factor large prime numbers with size over 200 digits. Nevertheless these large

prime numbers require reasonable time duration to crack it. For example, a test conducted in

2005 took nearly 1.5 years to factor a 200 digit number. The figure3.1 represent a Asymmetric

cipher model.

3.2 RSA algorithm for Public and Private Key pair.

3.2.1 Key generation

The main components required for the RSA algorithm are: Message, Public key, and Private

Key.

• A public key is made up of two components, a modulus and exponent value. Let’s call

these n and e respectively.

• A private key is also made up of two components, a modulus and exponent value. Let’s

call that n and d.

The first step of the RSA Algorithm is two generate two prime numbers p and q. The product

of these numbers is the modulus n. The modulus value will be exposed in the encryption
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and decryption key, but the value p and q will not be revealed explicitly. p and q should be

large enough so that it is difficult to derive from n. Next a Euler’s totient function of n is

calculated using the formula Φ[n] = (p−1)∗ (q−1). The value of e is randomly chosen such

that 1 < e < Φ[n] where e and Φ[n] are relatively prime. Then the d value of the private key

component is calculated using the relation d ∗ e = 1(mod(Φ[n])). In other words, the value d

is calculated such that d ∗ e−1 can be evenly divided by Φ[n].

Once complete, we have the Public key: (e,n), and Private Key: (d,n).

The following remarks can be made as far as operands size are concerned.

• The prime numbers p and q should be selected in such a way to make sure that it is

computationally infeasible to factor them. A rule of thumb is to have these primes ap-

proximately of same bit length. For example, p and q should be around 512 bits long

each for a modulus n, of size 1024bits.

• The value of exponent is usually a small number , in order to increase the efficiency of

the exponentiation.

3.2.2 Encryption

Let “m” be the message that is to be encrypted using public key. The following relation shows

how an encrypted cipher text is calculated.

C = me(mod(n))

3.2.3 Decryption

The decrypted message from the cipher text can be obtained from following relation.

m =Cd(mod(n))
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3.3 Modular Exponentiation

The equations 3.2.2 and 3.2.3 are known as modular exponentiation. There are many methods

using which the above two relations can be realized. The performance of any asymmetric

encryption and decryption algorithm primarily depends upon the efficiency of the modular

exponentiation. The following section will cover in brief about the available methods.

3.3.1 Direct Method

This is the most direct way of calculating the modular exponent value. It calculates the resul-

tant power value by recursive multiplication and taking the modulus of this value at the end.

For example, given m = 4 , e = 13 , and n = 497.

C = 413(mod(497))

computing 413 would result in to 67,108,854. Taking modulo 497 with this value will

result in to 445 (C = 445).

The size of the modulus is as same as that of the resultant 8 digits. A strong cryptography

method requires modulus value at least 1024 bit long. These calculations are possible on

modern computers , but the it would cause the speed of the calculation considerably slow.

3.3.2 Memory efficient method

This method is similar to Direct method 3.3.1 but require more operations compared to the

direct method, because the memory operation is less. This method makes use of following

relativity conditions.

• c(mod(n)) = (x∗ y)(mod(n))

• c(mod(n)) = [x(mod(n))∗ y(mod(n))]mod(n)
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The algorithm for this method is as follows,

1. Initialize e
′
= 0 and c = 1;

2. Increment e
′
by 1.

3. Calculate c = (m∗ c)mod(n)

4. if e
′
< e , go to step 2 and repeat the process , else C is the final output.

The example for above algorithm is as follows, let us take the same values used in the previous

method so as to compare the final result, i.e m = 4 , e = 13 , and n = 497.

1. Initialize e
′
= 0 , c = 1

2. Increment e
′
= e

′
+1 = 1;c = (4∗1)∗mod(497) = 4

3. Increment e
′
= e

′
+1 = 2;c = (4∗4)∗mod(497) = 16

4. Increment e
′
= e

′
+1 = 3;c = (4∗16)∗mod(497) = 64

5. Increment e
′
= e

′
+1 = 4;c = (4∗64)∗mod(497) = 256

6. Increment e
′
= e

′
+1 = 5;c = (4∗256)∗mod(497) = 30

7. Increment e
′
= e

′
+1 = 6;c = (4∗30)∗mod(497) = 120

8. Increment e
′
= e

′
+1 = 7;c = (4∗120)∗mod(497) = 480

9. Increment e
′
= e

′
+1 = 8;c = (4∗480)∗mod(497) = 429

10. Increment e
′
= e

′
+1 = 9;c = (4∗429)∗mod(497) = 225

11. Increment e
′
= e

′
+1 = 10;c = (4∗425)∗mod(497) = 403
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12. Increment e
′
= e

′
+1 = 11;c = (4∗403)∗mod(497) = 121

13. Increment e
′
= e

′
+1 = 12;c = (4∗121)∗mod(497) = 484

14. Increment e
′
= e

′
+1 = 13;c = (4∗484)∗mod(497) = 445

15. Increment e
′
= e

′
+1 = 13;e

′
> e so, 445 is the final answer.

Both direct method and this method requires e multiplications to arrive at the final result.

3.3.3 Square and Multiply Algorithm or Binary exponentiation Algo-

rithm

This algorithm is used to find results of a large integers power. i,e when powers are in the

range of thousands.This algorithm is done by scanning each bit of the exponent. On each step

a exponent bit is scanned and a square operation is done and if and only if the scanned exponent

bit value is 1 then a multiply operation is performed. There are two types of this algorithm

• left to right binary method.

• right to left binary method.

The left to right binary methods start from the MSB of the exponent value and traverse to the

LSB of the exponent value. In this method after each multiplication the result is reduced (mod

n ) before proceeding to next step. The following example shows steps to compute b13. The

binary representation of 13 is 1101 of size 4 bits. Starting from the MSB of 1101.

1. Initialize the resultant register r with b0value, i.e 1 in this case

2. Square the resultant , r = r2 ( = b0); bit 1 = 1 , so calculate r = r * b ( = b1)

3. Square the resultant , r = r2 ( = b2); bit 2 = 1 , so calculate r = r * b( = b3)
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4. Square the resultant , r = r2 ( = b6); bit 3 = 0 , so no subsequent multiplication

5. Square the resultant , r = r2 ( = b12); bit 4 = 1 , so calculate r = r * b( = b13)

The right to left binary method follow the below algorithm, Starting from the least significant

bit (LSB) of 1101.

• Step 1) Initialize R = 1 and x = m

• Step 2) bit 1 = 1 ; So compute R = R∗ x ; Set x = x2

• Step 3) bit 2 = 0 ; So do not compute anything ; Set x = x2

• Step 4) bit 3 = 1; So compute R = R∗ x ; Set x = x2

• Step 5) bit 3 = 1; So compute R = R∗ x

The run time of this method is log e. This algorithm gives better speed benefit compared to the

other methods.

3.3.4 Montgomery Multiplication Algorithm

This algorithm is especially used when there is a need to perform recursive modular multipli-

cation by transforming the input variables to other form. This algorithm is inferior to other

methods for single multiplication.This algorithm has fast execution time compared to the oth-

ers. This algorithm is to be used where value of m and e is less than modulus n. Also there

is an another integer introduced r and gcd(r,m) = 1, where gcd represents calculating the

greatest common divisor. Following steps summarize Montgomery multiplication to compute

c = (x∗ y∗mod(n)).

1. Choose the value r such that r > n and gcd(r,n) = 1.
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2. k = r(r−1modn)−1
n

3. x̄ = (x∗ r ∗mod(n)) , ȳ = (y∗ r ∗mod(n)) ( Montgomery Input form)

4. x = x̄∗ ȳ

5. s = (x∗ k ∗mod(r))

6. t = x + sn

7. u = t
r

8. c̄ = u if u < n else u−n ( Output Montgomery form )

9. c = (c̄r−1mod(n)) (Standard Output form)

Explanation :

• This algorithm is used when we have to compute c = (x∗y∗mod(n)). with many values

of x and y but with same modulus n.

• The value of r has to be greater n and coprime with n.

• The r−1mod n value exists because r is co -prime with n. This is calculated using

extended euclidean algorithm.

• x̄ = (x ∗ r ∗mod(n)) and ȳ = (y ∗ r ∗mod(n)) converts input number xand y to Mont-

gomery form.

• Convert the output Montgomery form c̄ to standard form using c = (c̄r−1mod(n)).



Chapter 4

Software and Hardware Implementation

of RSA Encryption Core

This chapter will be discussing the hardware and software implementation of the RSA encryp-

tion core.

4.1 Software Model

As discussed in previous chapters the RSA algorithm consists of three steps,

• Key generation

• Encryption

• Decryption

Usually, a linear feedback shift register (LFSR) of size n bit is used to generate a random

number of size 2n− 1 bit long. The random number generated is then tested for primality

using Miller-Rabin primality tester. The software model performs all the steps and creates
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public and private key pairs and stores it in a file to be used by the Design under Test (DUT).

All functions in the software model are modular and can be called as per user requirements.

A library is built using this model and will be run in concurrent with DUT for verification

purposes.

4.1.1 rsa_gen_keys()

This function is used in the software model to generate the keys. Once the prime numbers are

generated, the modulus and totient function is calculated as per the formula described in the

previous chapter. In this model, the Extended Euclidean Algorithm is used to find the greatest

common divisor (gcd) of the selected exponent value and Euler’s totient function. This is done

to verify if the exponent value selected is indeed correct. Once the entire process is finished,

each key pair is stored inside a text file to be used by the DUT. This function is looped multiple

time to generate a large variety of keys to be used by the DUT.

4.1.2 rsa_encrypt()

This function performs the RSA encryption algorithm using the direct approach. The inputs

to this function are public key pair , message. The function takes in the message and stores

each character into a character array based on message length. The key pair encrypts each

character and outputs cipher data of all the characters. The modular exponentiation process

is performed by recursive multiplication method where the message data is multiplied that

many times based on exponent value. And then the final output is modulo with n to obtain the

encrypted the data. This process is performed until all the characters are encrypted. Once the

message is encrypted, the cipher-text is stored into a text file for further analysis.
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4.1.3 rsa_decrypt()

This is the decryption function which performs the RSA decryption algorithm using a direct

approach. This function takes the encrypted data, private key pairs as input. The modular

exponentiation process is as same as encryption algorithm. The final output is the original

input message.

4.2 Hardware Architecture

The main objective of this hardware is to perform RSA encryption using the direct approach

as discussed in the last chapter. For this purpose, the three input necessary data is needed the

exponent, modulus, and message. The verification environment will provide these inputs. The

wr-data port is used to get Exponent and Modulus value whereas the msg port is used to get

message data. Since the same port is used to both exponent and modulus data, memory is

used inside the DUT to store the incoming data. Table 4.1 contains all the top-level Input and

Outputs of the Hardware design.

4.2.1 Hardware Components

The RSA hardware consist of following components,

4.2.1.1 Write Cycle

A single write cycle is utilized in this design. The process begins from MASTER in this in-

stance the verification environment representing the valid address on the address line, valid

data on wr_data, valid assert on wr_stb, valid bank select on chip_select. The DUT once it re-

ceives wr_stb and chip_select, the corresponding block memory is selected and wr_data is sent
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Figure 4.1: RSA encryption top

Table 4.1: Input/Output Ports

Port Name Direction Size Description

clk Input 1 Clock

reset Input 1 Reset

chip_select Input 2 Chip select to select the Block memory

wr_stb Input 1 Write enable signal

wr_data Input 64/32 Write Data bus

msg Input 800 Message bus

str_len Input 32 Message Length bus

done Output 1 Message encryption done signal

div_done Output 1 Character encryption done signal

o_data Output 64/32 Output data
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Figure 4.2: Hardware Components
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Table 4.2: DW_MUL pin description

Port name Direction Size Description

A Input A_width Input Multiplier operand. The A_width size ≥ 1

B Input B_width Input Multiplicand operand.The B_width size ≥ 1

TC Input 1 Two’s complement control signal.

Product Output A_width + B_width Output product

through it. The block memory latches that data and sends a acknowledge signal back to Mas-

ter to indicate locked data via the wr_ack port. The Master on receiving this acknowledgment

negates the wr_stb and chip_select to terminate the cycle

4.2.1.2 DW_MUL

This is a Synopsys DesignWare IP used for multiplication purposes. This multiplies input

A and B. Both unsigned and signed multiplication could be done using this IP, and the in-

put word length is parameterized. A control signal is used to indicate if signed or unsigned

multiplication to be done.

4.2.1.3 DW_DIV

This is also a Synopsys DesignWare IP which is used for division purposes. This IP divided the

input dividend A by the input divisor B. Both quotient and remainder are produced as output.

The remainder output calculates the modulus, which is required in the current design.

4.2.1.4 Block Memory

A block memory is used to store all the incoming data to the DUT. In this design separate block

memories are used to store the exponent and modulus and message data. This is a simple block
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Table 4.3: DW_DIV pin description

Port name Direction Size Description

A Input A_width Input Dividend operand. The A_width size ≥ 1

B Input B_width Input Divisor operand.The B_width size ≥ 1

quotient Input A_width quotient

remainder Output B_width remainder/modulus

memory where it gets data and puts into the memory based on address value. Once the data

has been stored, an acknowledge signal is sent to top. The RSA finite state machine receives

these signals and instructs the next data to be addressed.

4.3 Design Flow

This is the central part of the RSA core whose purpose is properly to control data flow between

the components. Two state machines are present in the top model. One is to get the data and

store it in the memory, and other is to fetch all these data and control modular exponentiation

and reduction process. Both the state machine is responsible for all the control signals for a

required operation.Figure 4.3 details the working of the first state machine. This state machine

consists of six states namely IDLE, EXP, MOD, MSG, ACK, GO. The state will be in the

idle state until wr_stb is asserted. Once this signal is asserted the based on the incoming

chip select value, the next state is moved to either of EXP or MOD or MSG state. The state

machine will be in these state until wr_ack from the block memory is asserted. Once the

acknowledge is received from block memory, the control is moved to ACK state. A control

signal is maintained in this state which will be asserted indicating once all the acknowledgment

from all the block memory is received and a “go” signal is issued, which shows that start of
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modular exponentiation process.

Figure 4.4 details the working of the second finite state machine which controls all the

modular exponentiation and reduction process. There is a total of six states namely S0, S1, S2,

S3, S4, S5.

• State S0: This is the ideal state of the state machine which waits for the "go" signal to

be asserted. Once the signal is asserted control is moved to the next state.

• State S1: This state sets up all the registers required for modular exponentiation. A read

signal is asserted to read the data from the block memory to the local registers. Also,

The length of the string is stored into a local register which will be decremented every

time a character has been encrypted.

• State S2: The modular exponentiation process starts at this state. Register named

“counter” has the exponent value which will be reduced every time a multiplication

operation is done. The message byte is sent as operands to the multiplier.

• State S3: This state waits for the multiplication process to be finished until the exponent

is zero. Once the process is finished the control is moved to the next state for the modular

reduction process.

• State S4: The product result and the modulus value is sent to the divider for modular

reduction operation. DW_div has two outputs, a quotient and remainder. The remainder

port has the reduced output. A division done signal is asserted to indicate completion of

encryption of one character. If all the characters are encrypted the control is moved to

the next state, or it is moved back to state S2 for encryption of next character.

• State S5: A done signal is asserted which indicate the encryption of all the characters

and output is available in o_data port. And control moves back to state S0 where it waits
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Figure 4.3: Finite State Machine 1

for the next data to be fed.
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Figure 4.4: Finite State Machine 2



Chapter 5

Verification Concepts and Methodology

This chapter discusses the basic verification concepts and methodology adopted to verify the

DUT.

5.1 SystemVerilog And Universal Verification Methodology

(UVM)

Over the years, constrained random testing has been adopted as a methodology for func-

tional verification of application-specific integrated circuit (ASIC) projects. SystemVerilog is a

widely accepted hardware verification language which is supported by all the three major elec-

tronic design automation (EDA) vendors. Certain features of SystemVerilog is well-defined

and implemented in most of the simulators. These features include:

• ANSI style port declarations.

• C-style constructs for statements like for, for each, break, continue, etc.

• Classes based programming
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• Data types, dynamic arrays, associative arrays, constrained random generation, and

queues.

• Communication between modules and classes via the virtual interface.

One of the reasons SystemVerilog is implemented consistently apart from the above-mentioned

features is because they are used widely to create libraries of base classes which forms the

basis of UVM (Universal Verification Methodology), OVM (Open Verification Methodology),

etc. Although SystemVerilog was adopted for verification for block-level modules, a problem

arose when it was difficult to use the same verification environment for all other modules. All

these needs led to the creation of verification methodologies. UVM was introduced in 2011 by

Accellera based on OVM v2.1.1.

5.1.1 Object oriented programming concepts

Object-oriented programming concepts (OOP) are important to constraint random testing be-

cause of the ability to reuse. OOP techniques allow the testbench components to be reused

without modifying their source code. Also, there is structured communication between the

components using function calls. Unlike structure oriented programming, in OOP the pro-

grams are organized using objects and data rather than logic and actions. Because of this,

there is great flexibility to manipulate the objects and their relations. Following are some of

the important concepts of OOP.

5.1.1.1 Class

Class is the main part of a program which represents the behavior, properties and initial values

of the state. Classes are important for creating objects. In UVM everything happens inside the

class and it accounts a group of objects with common behavior.
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Figure 5.1: Basic Testbench Environment

uvm_transaction class. All the uvm_phases methods are defined in this class.

5.3 UVM components

Figure 5.1 details the structure of the verification environment.

5.3.1 Sequence_item and Sequence

Sequence_item is the basic unit of the testbench environment which is used to model a piece of

information to be transmitted between the two component of the environment. For example,

a write protocol is a sequence item. The sequence is the object which is used by its body()



5.3 UVM components 42

method to send the data to the driver. In other words, the sequence is a collection of sequence

items.

5.3.2 Driver

The driver is the main component of this environment as it communicates with the DUT via

the virtual interface. A state machine is used to drive the sequence data to the DUT. The driver

fetches the data from sequencer using get_next_item() method, and the data which is available

in the FIFO is sent to the DUT. Once the data is sent, the driver waits for the done signal from

the DUT such that the next batch of data can be sent to the DUT.

5.3.3 Monitor

The monitor is used to used detect the output signals coming from the DUT and perform

necessary logic to determine the validity of the output signal. It communicates with DUT via

the virtual interface.

5.3.4 Agent

The agent is a wrapper component which comprises of the driver, monitor, and the sequencer.

Agents are specific to the DUT and verification environments can consist of many agents. The

agent provides sequence_item data to the DUT and scoreboard.

5.3.5 Scoreboard

The scoreboard is the component where the actual analysis of the data coming from the DUT

and a reference model is done.
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5.3.6 Environment

The environment is a wrapper component which holds all the above-mentioned components.

A complex verification environment has multiple agents and a scoreboard, and it is the duty of

the environment to provide a connection between these components accurately.

5.3.7 Test

This is the top level component which is used to configure the base class components as per the

task-specific work. It also performs an important task of invoking the sequence to be passed to

the DUT via the environment.

5.3.8 Top

This is the top level testbench component which is used to connect the testbench with the

DUT. An interface instance is created and appropriate signals are connected with each other in

this component. The interface is passed to the base class components via config_db() factory

method.

5.4 UVM phases

All of these UVM components has to go through a set of pre-defined phases and will not

proceed to next phase until the current phase is completed. UVM phases can be grouped into

three phases, ran in order:

1. Build phase

2. Run phase
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3. Clean-up phase

5.4.1 Build phase

This phase is executed before the uvm testbench simulation is started and its main objective is

to build, connect, and configure all the testbench components.

5.4.1.1 build

This phase constructs all the uvm components in top-down hierarchy. UVM factory is used to

register all the component objects.

5.4.1.2 connect

All the TLM ports of the uvm components are connected using this phase.

5.4.1.3 end_of_elaboration

This phase is used to make any last adjustments to the body , configuration , connectivity of

the verification environment.

5.4.2 Run phase

5.4.2.1 start_of_simulation

This phase is used to set the run-time configurations. This phase is mainly used to communi-

cate with other environments using DPI.
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5.4.2.2 run_phase

This main phase where all the stimulus generation and testbench activities are scheduled. This

is a time consuming phase and all the test-case activities is executed. All the uvm_components

run phase’s s are executed in parallel. The below listed phases are the scheduled actions that

are performed in run_phase.

5.4.2.3 pre_reset and post_reset

The main purpose of this method is to sample signals that have to be occur before and after the

reset signal should occur; for example: waiting for the power signal to be asserted.

5.4.2.4 reset

This phase is used to generate the reset and drive the reset to the DUT.

5.4.2.5 pre_configure

This phase is to prepare the DUT configurations once it has been out of the reset process.

5.4.2.6 configure

This phase is to put the DUT into an ideal state or a defined state before the stimulus could be

driven to the DUT.

5.4.2.7 post_configure

This phase is used to wait for the configurations to be distributed through the DUT.
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5.4.2.8 pre_main

This phase ensures that all components are generated which are needed for the stimulus to be

applied to the DUT.

5.4.2.9 main

This is the main phase where the generated stimulus of a test-case is applied to the DUT.

Sequences are executed in this phase. The phase ends on successful completion of all the

stimulus and / or when a timeout occurs.

5.4.2.10 post_main

This phase performs all the jobs necessary after main phase.

5.4.2.11 pre_shutdown

This phase is used as buffer to apply any remaining stimulus to the DUT before the shutdown

occurs.

5.4.2.12 shutdown

This phase make certain that all the stimulus data are driven to the DUT.

5.4.2.13 post_shutdown

This phase is used as an final act before the beginning of clean-up phase.

5.4.3 Clean up phase

All the below methods are used by the analysis side of a uvm component.
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5.4.3.1 extract

This method is used to collect all the functional coverage information from the scoreboard and

monitors.

5.4.3.2 check

This method is used analyze the collected data from the monitor and scoreboard if the behavior

of the DUT is correct or not.

5.4.3.3 report

This method reports the analysis of the output data to a standard output or to a file.

5.5 Test methodology

The basic idea behind the verification method adopted in this project is to verify the functional

correctness of the design by sending the same stimulus data to both the DUT and a software

model, and compare the output results from the DUT and a software model. The flow chart in

figure5.2 details the flow of both hardware and software flow. There are two types of testing ,

constrained random and direct testing. Constrained random testing is adopted in this test plan

to verify all the test corners of the design.

5.5.1 Sequence_item

As discussed in 5.3.1, a sequence is a basic unit of data, in this case, the data for e,n,d, message

are already generated via rsa_gen_keys() and stored in a text file. The top once it raises the

sequence, each of these keys from the file is read stored into a separate local memory starting
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Figure 5.2: The Verification flow



5.5 Test methodology 49

from index 0. A variable “index” is used which gets randomized for every sequence and based

on the randomized value the corresponding index data is selected from the local memory of

each data. The following subsection provides all the variables used in the sequence_item.

5.5.1.1 Sequence_item variables

• e: A 64-bit width variable with 3000 locations to store the exponent value of the public

key.

• n: A 64-bit width variable with 3000 locations to store the modulus value of the public

key.

• d: A 64-bit width variable with 3000 locations to store the exponent value of the private

key.

• m: A 100-bit width variable with 3000 locations to store the message.

• Index: a 32-bit variable that gives the index location when randomized.

Constraints are used to restrict the random value generated of the index variable between 0 to

3000.

5.5.2 Sequencer

The sequencer is used to generate the sequence_item and queue it up in order for transferring

it to the driver.

5.5.3 Driver

Once the Data is ready in sequencer it signals the driver to start driving the data to the DUT.

A state machine is implemented in the driver which constantly gets this data and send it to the
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DUT via the virtual interface. Meanwhile the same data is pushed to the software model via

DPI. Once the data is sent it waits for the “done” signal from DUT to send the next batch of

data.

5.5.4 Monitor

The monitor performs the same task as mentioned in 5.3.3 . The Output from the DUT and

reference model is compared in this model and objection is raised if the data mismatches. The

method compare() performs this task.

5.5.5 Coverage

A thorough understanding of the DUT is required to set up the verification role. Following

cover groups is created for this purpose.

• Modulus data of the public is key covered to check if all the combinations of 64-bit

values are driven to the DUT.

• A cover group for the message port is created to check if all the ASCII values are being

covered,

• The output from the DUT is covered.

• Assertions are created for the write cycle and check its functionality.

• Cross coverage between Output from DUT and Reference model.
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Results and Discussion

This Chapter will be dealing with result and analysis of the results of the RSA_CORE.

6.1 RSA _CORE Synthesis results

The table 6.1 details the area, power, timing details obtained after logic synthesis of the

RSA_CORE using three different technology node libraries. Synopsys Design Compiler is

used for logic synthesis. The latency of the process depends upon the length of the message to

be encrypted. Figure 6.1 and 6.2 plots the area and power distribution of the RSA_CORE for

three different technology nodes.

6.2 RSA_CORE Coverage results

Figure 6.4 shows the simulation outputs obtained from the RSA_CORE. Cadence SimVision

was used to run simulations. The coverage reports are analyzed and explored using Cadence

Integrated Metrics (IMC) tool. As observed from the figure the latency of the core depends

upon the string length of the message. The go signal denotes the start of the encryption process
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Parameter 180 nm 65 nm 32 nm

Area (um2)

Combinational
Area

1639073.63 154920.60 194733.77

Non combi-
national

Area
167534.13 23638.68 17460.70

Total area 1806607.76 178559.28 269028.01

Power

Internal
Power (mW )

32.1622 1.5125 2.376

Switching
Power (mW )

32.4103 0.3566 0.70139808

Leakage
Power (nW )

7.8655e+03 8.5201e+03 16.705

Total Power
(mW )

64.5807 1.8776 19.795

Timing (ns)
Worst case

Delay
51.0993 21.2107 77.5613

DFT
coverage

% 86.44 86.30 85.79

Gate count 181204 123999 176992

Table 6.1: RSA _CORE Logic synthesis report
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Figure 6.1: RSA _CORE Area
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Figure 6.2: RSA _CORE Power
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Table 6.2: Coverage results

Runs
Code

Coverage %
Functional Coverage %

Overall
Functional

Coverage %

Assertions
Coverage

Cover Groups

10 82.95 100 41.15 85.29

100 85.2 100 78.12 94.53

1000 83.46 100 97.42 98.7

10000 83.48 100 99.48 99.74

100000 83.48 100 99.48 99.74

1000000 83.48 100 99.48 99.74

and done denotes the end of the encryption process. Figure 6.5 details the coverage run for

1,000,000 vectors using the IMC tool . As discussed in the last chapter cover-ports are created

for input and outputs. It can be seen that the code coverage is 83.48%, this low percentage is

due to because of unsynthesizable expressions in the DesignWare IP. These Expressions are

never attained and therefore can be neglected. But the functional coverage run was 99.74%

as show in the figure. Figure 6.3 plots functional coverage percentage against number of

runs. Until 10000 runs , a steep increase in functional coverage percentage is observed in

correspondence with the number of runs. After 10000 runs the percentage seems to flattens

out. Table6.2 details the code and functional coverage report of the DUT for different runs.
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Figure 6.3: Functional Coverage vs Runs

Figure 6.4: RSA_CORE simulation
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Figure 6.5: RSA _CORE Coverage report
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Conclusion

In this project a RSA encryption core is designed using the direct method approach of modular

exponentiation. For this purpose a DesignWare multiplier and divider was used. The code is

parameterized hence the word size can be modified using the configuration file for higher key

size. To verify the functionality of this core a UVM verification environment was designed. A

software model was integrated into this environment to compare the DUT and model results.

The testbench is capable of providing the randomized data to the DUT. This ensured a wide

range of data was passed to the DUT.

The RTL design was started using top down design methodology, and initially the wrap-

per code and control flow of the design was coded and then DesignWare IP’s were added to

the code and it was completely synthesizable. The DUT design and verification environment

design was done in parallel to minimize the time required to complete the project. Constraint

random testing test plan was adopted for verifying the core. A 99.74 % of functional coverage

was achieved by running 1,000,000 random vectors.
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7.1 Future work

• Chapter 3 discussed different types of the modular exponentiation techniques. Other

techniques can be adopted to do this process and merits can be compared with this model.

• A decryption core can be designed and integrated with this encryption core to create a

complete encryption and decryption unit.

• More research can be done on modular exponentiation process for higher key sizes.
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Appendix A

Source Code

A.1 RSA top

module r s a (

r e s e t ,

c lk ,

s can_ in0 ,

scan_en ,

t e s t_mode ,

scan_ou t0 ,

a d d r e s s ,

c h i p _ s e l e c t ,

wr_s tb ,

wr_data ,

wr_ack ,

msg ,
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done ,

o_da ta ,

s t r _ l e n ,

d iv_done

) ;

` i n c l u d e " . / i n c l u d e / c o n f i g . h "

i n p u t r e s e t ; / / sys tem r e s e t

i n p u t c l k ; / / sys tem c l o c k

i n p u t

scan_ in0 , / / t e s t s can mode d a t a i n p u t

scan_en , / / t e s t s can mode e n a b l e

t e s t _ m o d e ; / / t e s t mode s e l e c t

o u t p u t

s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t

i n p u t [ `STATE_SIZE_2 −1:0] a d d r e s s ;

i n p u t w r_s tb ;

i n p u t [ `DATA_WIDTH−1:0] wr_da t a ; / / / 2048

i n p u t [ `MSG_WIDTH−1:0] msg ;

i n p u t [ `STATE_SIZE_2 −1:0] c h i p _ s e l e c t ;

i n p u t [ 0 : 6 ] s t r _ l e n ;

o u t p u t wr_ack ;
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o u t p u t [ `DATA_WIDTH−1:0] o _ d a t a ;

o u t p u t r e g done ;

o u t p u t d iv_done ;

/ / R e g i s t e r

/ / r e g [ `STATE_SIZE_2 −1:0] a d d r e s s _ o u t ;

r e g c s _ e x p o n e n t ;

r e g cs_modulus ;

r e g cs_message ;

r e g wr_en_exponen t ;

r e g wr_en_modulus ;

r e g wr_en_message ;

r e g [ `STATE_SIZE_1 −1:0] p r e s e n t s t a t e ;

r e g [ `STATE_SIZE_1 −1:0] c o r e _ s t a t e ;

r e g go ;

r e g s q r _ d o n e ;

r e g e x p o n e n t _ r e a d y ;

r e g modulus_ready ;

r e g message_ready ;

r e g r d _ e n _ c o r e ;

r e g d i v _ d o n e _ r e g ;

/ / w i r e s
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wire a c k _ e x p o n e n t ;

w i r e ack_modulus ;

w i r e ack_message ;

r e g [ 0 : 6 ] l e n ;

w i r e [ `DATA_WIDTH−1:0] mem2core_exp_da ta_reg ;

w i r e [`MODULUS_WIDTH−1:0] mem2core_mod_data_reg ;

w i r e [ `MSG_WIDTH−1:0] mem2core_msg_data_reg ;

r e g [ `A_DATA_WIDTH−1:0] A_in ;

r e g [ `B_DATA_WIDTH−1:0] B_in ;

w i r e [ `A_DATA_WIDTH+`B_DATA_WIDTH−1:0] s q r _ r e s u l t ;

r e g [`A_DATA_WIDTH+`B_DATA_WIDTH−1:0] A_in_div ;

r e g [`DATA_WIDTH−1:0] B_ in_d iv ;

w i r e [ `A_DATA_WIDTH+`B_DATA_WIDTH−1:0] q u o t i e n t ;

r e g [`MODULUS_WIDTH−1:0] r e m a i n d e r ;

r e g TC ;

r e g [ `EXP_WIDTH−1:0] c o u n t e r ;

r e g ds ;

a s s i g n o _ d a t a = r e m a i n d e r ;

a s s i g n d iv_done = d i v _ d o n e _ r e g ;

/ / I n s t a n t i a t i o n s

/ / / Exponent memory

bram exp_bram (
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. r e s e t ( r e s e t ) ,

. c l k ( c l k ) ,

. s c a n _ i n 0 ( s c a n _ i n 0 ) ,

. s can_en ( scan_en ) ,

. t e s t _ m o d e ( t e s t _ m o d e ) ,

. s c a n _ o u t 0 ( s c a n _ o u t 0 ) ,

. wr_en ( wr_en_exponen t ) ,

. c s ( c s _ e x p o n e n t ) ,

. ack ( a c k _ e x p o n e n t ) ,

. add r ( a d d r e s s ) ,

. wr_da t a ( wr_da t a ) ,

. r d _ d a t a (

mem2core_exp_da ta_reg ) ,

. rd_en ( r d _ e n _ c o r e )

) ;

/ / / Modulus memory

bram mod_bram (

. r e s e t ( r e s e t ) ,

. c l k ( c l k ) ,

. s c a n _ i n 0 ( s c a n _ i n 0 ) ,

. s can_en ( scan_en ) ,

. t e s t _ m o d e ( t e s t _ m o d e ) ,

. s c a n _ o u t 0 ( s c a n _ o u t 0 ) ,

. wr_en ( wr_en_modulus ) ,
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. c s ( cs_modulus ) ,

. ack ( ack_modulus ) ,

. add r ( a d d r e s s ) ,

. wr_da t a ( wr_da t a ) ,

. r d _ d a t a (

mem2core_mod_data_reg ) ,

. rd_en ( r d _ e n _ c o r e )

) ;

/ / / Message memory

bram_msg msg_bram (

. r e s e t ( r e s e t ) ,

. c l k ( c l k ) ,

. s c a n _ i n 0 ( s c a n _ i n 0 ) ,

. s can_en ( scan_en ) ,

. t e s t _ m o d e ( t e s t _ m o d e ) ,

. s c a n _ o u t 0 ( s c a n _ o u t 0 ) ,

. wr_en ( wr_en_message ) ,

. c s ( cs_message ) ,

. ack ( ack_message ) ,

. add r ( a d d r e s s ) ,

. wr_da t a ( msg ) ,

. r d _ d a t a (

mem2core_msg_data_reg ) ,

. rd_en ( r d _ e n _ c o r e )

) ;
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/ / M u l t i p l i e r f o r s q u a r i n g o p e r a t i o n

DW02_mult # (

. A_width (`A_DATA_WIDTH) ,

. B_width ( `B_DATA_WIDTH)

)

mul_sqr (

.A( A_in ) ,

. B( B_in ) ,

. TC(TC) ,

.PRODUCT( s q r _ r e s u l t )

) ;

/ / Modulus C a l c u l a t i o n

DW_div #(

. a_wid th ( ( `A_DATA_WIDTH+

`B_DATA_WIDTH) ) ,

. b_wid th (`DATA_WIDTH)

)

d i v (

. a ( A_in_div ) ,

. b ( B_ in_d iv ) ,

. q u o t i e n t ( q u o t i e n t ) ,

. r e m a i n d e r ( r e m a i n d e r ) ,

. d i v i d e _ b y _ 0 ( d i v i d e _ b y _ 0 )

) ;



A.1 RSA top 71

a s s i g n wr_ack = a c k _ e x p o n e n t ? 1 ' b1 :

ack_modulus ? 1 ' b1 :

ack_message ? 1 ' b1 : 1 ' b0 ;

/ / / / Main FSM t o r e c e i v e d a t a and p u t i n t o t h e memory

a lways @( posedge c l k o r posedge r e s e t )

b e g i n

i f ( r e s e t )

b e g i n

p r e s e n t s t a t e <= `IDLE ;

c s _ e x p o n e n t <= 1 ' b0 ;

cs_modulus <= 1 ' b0 ;

cs_message <= 1 ' b0 ;

wr_en_exponen t <= 1 ' b0 ;

wr_en_modulus <= 1 ' b0 ;

wr_en_message <= 1 ' b0 ;

e x p o n e n t _ r e a d y <= 1 ' b0 ;

modulus_ready <= 1 ' b0 ;

message_ready <= 1 ' b0 ;

go <= 1 ' b0 ;

end

e l s e

b e g i n

c a s e ( p r e s e n t s t a t e )
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`IDLE : / / 0

b e g i n

i f ( w r_s tb )

b e g i n

c a s e ( c h i p _ s e l e c t )

`EXPONENT_BASE_ADDRESS :

b e g i n

p r e s e n t s t a t e <=

`EXPONENT_BRAM_EN_WR;

c s _ e x p o n e n t <= 1 ' b1 ;

wr_en_exponen t <= wr _s tb ;

end

`MODULUS_BASE_ADDRESS:

b e g i n

p r e s e n t s t a t e <=

`MODULUS_BRAM_EN_WR;

cs_modulus <= 1 ' b1 ;

wr_en_modulus <= wr _s t b ;

end

`MESSAGE_BASE_ADDRESS :

b e g i n

p r e s e n t s t a t e <=

`MESSAGE_BRAM_EN_WR;

cs_message <= 1 ' b1 ;
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wr_en_message <= wr_ s t b ;

end

d e f a u l t :

b e g i n

p r e s e n t s t a t e <= `IDLE ;

end

e n d c a s e

end / / w r_ s t b

e l s e

b e g i n

p r e s e n t s t a t e <= `IDLE ;

end

end / / i d l e

`EXPONENT_BRAM_EN_WR: / / 1

b e g i n

p r e s e n t s t a t e <= `ACK ;

end

`MODULUS_BRAM_EN_WR: / / 2

b e g i n

p r e s e n t s t a t e <= `ACK ;

end

`MESSAGE_BRAM_EN_WR: / / 3

b e g i n

p r e s e n t s t a t e <= `ACK ;

end
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`ACK : / / 4

b e g i n

i f ( a c k _ e x p o n e n t )

b e g i n

c s _ e x p o n e n t <= 1 ' b0 ;

wr_en_exponen t <= wr _s tb ;

e x p o n e n t _ r e a d y <= 1 ' b1 ;

p r e s e n t s t a t e <= `IDLE ;

end

e l s e i f ( ack_modulus )

b e g i n

cs_modulus <= 1 ' b0 ;

wr_en_modulus <= wr _s t b ;

modulus_ready <= 1 ' b1 ;

p r e s e n t s t a t e <= `IDLE ;

end

e l s e i f ( ack_message )

b e g i n

cs_message <= 1 ' b0 ;

wr_en_message <= wr_ s t b ;

message_ready <= 1 ' b1 ;

p r e s e n t s t a t e <= `IDLE ;

end

end
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d e f a u l t :

b e g i n

p r e s e n t s t a t e <= `IDLE ;

end

e n d c a s e / / p r e s e n t s t a t e

i f ( e x p o n e n t _ r e a d y && modulus_ready && message_ready )

b e g i n

p r e s e n t s t a t e <= `IDLE ;

go <= 1 ' b1 ;

e x p o n e n t _ r e a d y <= 1 ' b0 ;

modulus_ready <= 1 ' b0 ;

message_ready <= 1 ' b0 ;

end

e l s e

b e g i n

go <= 1 ' b0 ;

end

end / / e l s e

end / / a lways

a lways @( posedge c l k o r posedge r e s e t )

b e g i n

i f ( r e s e t )

b e g i n
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c o r e _ s t a t e <= `S0 ;

r d _ e n _ c o r e <= 1 ' b0 ;

ds <= 1 ' b0 ;

done <= 1 ' b0 ;

end

e l s e

b e g i n

c a s e ( c o r e _ s t a t e )

`S0 :

b e g i n

i f ( go )

b e g i n

c o r e _ s t a t e <= `S1 ;

r d _ e n _ c o r e <= 1 ' b1 ;

done <= 1 ' b0 ;

end

e l s e

b e g i n

c o r e _ s t a t e <= `S0 ;

done <= 1 ' b0 ;

r d _ e n _ c o r e <= 1 ' b0 ;

end

end

`S1 : / / / s e t u p t h e v a l u e s f o r s q u a r i n g o p e r a t i o n

b e g i n
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c o r e _ s t a t e <= `S2 ;

l e n <= s t r _ l e n ;

end

`S2 : / / /LUT f o r c o n v e r t i n g t h e hex t o p r e f f e r e d

c o n v e r s i o n . b e f o r e d e l e t i n g check t h e s o f t w a r e model

b e g i n

c o r e _ s t a t e <= `S3 ;

c o u n t e r <= mem2core_exp_da ta_reg ;

ds <= 1 ' b1 ;

TC <= 1 ' b0 ;

d i v _ d o n e _ r e g <= 1 ' b0 ;

end

`S3 : / / / w a i t f o r t h e s q r _ d o n e and t h e n move on t o n e x t

s t a t e f o r s e t t i n g t h e v a l u e s f o r t h e p r o d u c t

o p e r a t i o n

b e g i n

i f ( ds == 1)

b e g i n

A_in <= mem2core_msg_data_reg [ ( l en −1)

*8 + : 7 ] ;

B_in <= mem2core_msg_data_reg [ ( l en −1)

*8 + : 7 ] ;

c o u n t e r <= c o u n t e r − 1 ' b1 ;
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ds <= 1 ' b0 ;

end

e l s e

b e g i n

A_in <= s q r _ r e s u l t ;

B_in <= mem2core_msg_data_reg [ ( l en −1)

*8 + : 7 ] ;

c o u n t e r <= c o u n t e r − 1 ' b1 ;

end

i f ( c o u n t e r == 2)

b e g i n

c o r e _ s t a t e <= `S4 ;

s q r _ d o n e <= 1 ' b1 ;

l e n <= len −1 ' b1 ;

end

e l s e

c o r e _ s t a t e <= `S3 ;

end

`S4 :

b e g i n

i f ( l e n == 0)

b e g i n

c o r e _ s t a t e <= `S5 ;

s q r _ d o n e <= 1 ' b0 ;
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end

e l s e

c o r e _ s t a t e <= `S2 ;

d i v _ d o n e _ r e g <= 1 ' b1 ;

A_in_div <= s q r _ r e s u l t ;

B_ in_d iv <= mem2core_mod_data_reg ;

end

`S5 :

b e g i n

A_in_div <= s q r _ r e s u l t ;

B_ in_d iv <= mem2core_mod_data_reg ;

done <= 1 ' b1 ;

d i v _ d o n e _ r e g <= 1 ' b0 ;

c o r e _ s t a t e <= `S0 ;

end

d e f a u l t :

b e g i n

c o r e _ s t a t e <= `S0 ;

end

e n d c a s e

end

end

endmodule / / r s a
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A.2 BRAM

module bram (

r e s e t ,

c lk ,

s can_ in0 ,

scan_en ,

t e s t_mode ,

scan_ou t0 ,

wr_en ,

cs ,

ack ,

addr ,

wr_data ,

r d _ d a t a ,

rd_en

) ;

/ / I n c l u d e F i l e s

` i n c l u d e " . / i n c l u d e / c o n f i g . h "

/ / / Clock S i g n a l s

i n p u t

r e s e t , / / sys tem r e s e t

c l k ; / / sys t em c l o c k
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/ / T e s t I n s e r t i o n I n p u t S i g n a l s

i n p u t

scan_ in0 , / / t e s t s can mode d a t a i n p u t

scan_en , / / t e s t s can mode e n a b l e

t e s t _ m o d e ; / / t e s t mode s e l e c t

/ / T e s t I n s e r t i o n Outpu t S i g n a l s

o u t p u t

s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t

/ / I n p u t S i g n a l s

i n p u t wr_en ;

i n p u t rd_en ;

i n p u t [ `BRAM_ADDR_SIZE−1:0] add r ;

i n p u t [ 0 : `DATA_WIDTH−1] wr_da t a ;

i n p u t c s ;

/ / Ou tpu t S i g n a l s

o u t p u t r e g [ 0 : `DATA_WIDTH−1] r d _ d a t a ;

o u t p u t ack ;
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/ / memory

r e g [`DATA_WIDTH−1:0] memory [ 0 : `MEMORY_SIZE−1];

/ / Reg

r e g a c k _ r e g ;

a s s i g n ack = a c k _ r e g ;

a lways @( posedge c l k )

b e g i n

i f ( wr_en )

b e g i n

memory [ 0 ] <= wr_da t a ;

a c k _ r e g <= 1 ' b1 ;

end

e l s e

b e g i n

a c k _ r e g <= 1 ' b0 ;

end

end

a lways @( posedge c l k )

b e g i n
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i f ( rd_en )

b e g i n

r d _ d a t a <= memory [ 0 ] ;

end

e l s e

b e g i n

/ / a c k _ r e g <= 1 ' b0 ;

end

end

endmodule / / bram
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A.3 BRAM_MSG

module bram_msg (

r e s e t ,

c lk ,

s can_ in0 ,

scan_en ,

t e s t_mode ,

scan_ou t0 ,

wr_en ,

cs ,

ack ,

addr ,

wr_data ,

r d _ d a t a ,

rd_en

) ;

/ / I n c l u d e F i l e s

` i n c l u d e " . / i n c l u d e / c o n f i g . h "

/ / / Clock S i g n a l s

i n p u t

r e s e t , / / sys tem r e s e t

c l k ; / / sys t em c l o c k
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/ / T e s t I n s e r t i o n I n p u t S i g n a l s

i n p u t

scan_ in0 , / / t e s t s can mode d a t a i n p u t

scan_en , / / t e s t s can mode e n a b l e

t e s t _ m o d e ; / / t e s t mode s e l e c t

/ / T e s t I n s e r t i o n Outpu t S i g n a l s

o u t p u t

s c a n _ o u t 0 ; / / t e s t s can mode d a t a o u t p u t

/ / I n p u t S i g n a l s

i n p u t wr_en ;

i n p u t rd_en ;

i n p u t [ `BRAM_ADDR_SIZE−1:0] add r ;

i n p u t [ `MSG_WIDTH−1:0] wr_da t a ;

i n p u t c s ;

/ / Ou tpu t S i g n a l s

o u t p u t r e g [`MSG_WIDTH−1:0] r d _ d a t a ;

o u t p u t ack ;
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/ / memory

r e g [`MSG_WIDTH−1:0] memory [ 0 : `MEMORY_SIZE−1];

/ / Reg

r e g a c k _ r e g ;

a s s i g n ack = a c k _ r e g ;

a lways @( posedge c l k )

b e g i n

i f ( wr_en )

b e g i n

memory [ 0 ] <= wr_da t a ;

a c k _ r e g <= 1 ' b1 ;

end

e l s e

b e g i n

a c k _ r e g <= 1 ' b0 ;

end

end

a lways @( posedge c l k )

b e g i n
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i f ( rd_en )

b e g i n

r d _ d a t a <= memory [ 0 ] ;

/ / a c k _ r e g <= 1 ' b1 ;

end

e l s e

b e g i n

/ / a c k _ r e g <= 1 ' b0 ;

end

end

endmodule / / bram
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A.4 Interface

` i n c l u d e " . / i n c l u d e / c o n f i g . h "

i n t e r f a c e i n t f _ c n t ( i n p u t b i t c l k , i n p u t b i t r e s e t ) ;

b i t [ `STATE_SIZE_2 −1:0] a d d r e s s ;

b i t w r_ s t b ;

b i t [ `STATE_SIZE_2 −1:0] c h i p _ s e l e c t ;

b i t [ `DATA_WIDTH−1:0] wr_da t a ;

b i t [ `MSG_WIDTH−1:0] msg ;

b i t [ `DATA_WIDTH−1:0] o _ d a t a ;

b i t wr_ack ;

b i t done ;

b i t d iv_done ;

b i t [ 0 : 6 ] s t r _ l e n ;

/ / c l o c k i n g cb @( posedge c l k ) ;

/ / o u t p u t a d d r e s s ;

/ / o u t p u t wr _s tb ;

/ / o u t p u t r d _ s t b ;
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/ / o u t p u t c h i p _ s e l e c t ;

/ / o u t p u t wr_da ta ;

/ / o u t p u t r d_ ac k ;

/ / i n p u t r d _ d a t a ;

/ / i n p u t wr_ack ;

/ / e n d c l o c k i n g

e n d i n t e r f a c e
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A.5 Sequence

c l a s s s i m p l e _ s e q u e n c e _ i t e m e x t e n d s uvm_sequence_i tem ;

/ / i n t e g e r i = 1 ' b1 ;

r e g [ 0 : 6 3 ] e [ 3 2 0 0 ] ;

b i t [ 0 : 6 3 ] n [ 3 2 0 0 ] ;

b i t [ 0 : 6 3 ] d [ 3 2 0 0 ] ;

b i t [ 0 : 6 3 ] o _ d a t a [ 3 2 0 0 ] ;

/ / r e g [8 −1:0] m [ 1 0 2 4 ] ;

b i t [ 0 : 6 ] s t r _ l e n [ $ ] ;

s t r i n g a r r [ 3 2 0 0 ] ;

s t r i n g m[ $ ] ;

r and i n t e g e r i n d e x ;

` u v m _ o b j e c t _ u t i l s _ b e g i n ( s i m p l e _ s e q u e n c e _ i t e m )

/ / ` u v m _ f i e l d _ a r r a y _ i n t ( e , UVM_ALL_ON)

/ / ` u v m _ f i e l d _ i n t ( d , UVM_ALL_ON)

/ / ` u v m _ f i e l d _ i n t (m, UVM_ALL_ON)

` u v m _ f i e l d _ i n t ( index ,UVM_ALL_ON)

/ / ` u v m _ f i e l d _ i n t ( index ,UVM_ALL_ON)

` u v m _ o b j e c t _ u t i l s _ e n d

f u n c t i o n new ( s t r i n g name = " s i m p l e _ s e q u e n c e _ i t e m " ) ;
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s u p e r . new ( name ) ;

e n d f u n c t i o n

c o n s t r a i n t cons { i n d e x i n s i d e { [ 0 : 3 1 6 5 ] } ; } / / / change

t h e c o n s t r a i n t s v a l u e as p e r t h e d e p t h o f t h e

memory

e n d c l a s s

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

/ /−−−−− Sequence 1 −−−//

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

c l a s s r s a _ s e q u e n c e 1 e x t e n d s uvm_sequence # (

s i m p l e _ s e q u e n c e _ i t e m ) ;

` u v m _ o b j e c t _ u t i l s ( r s a _ s e q u e n c e 1 )

f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e 1 " ) ;

s u p e r . new ( name ) ;

e n d f u n c t i o n

v i r t u a l t a s k body ( ) ;

s t r i n g w;

i n t e g e r f i l e ;

i n t i = 0 ;
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s i m p l e _ s e q u e n c e _ i t e m s e q _ i t e m ;

s e q _ i t e m = s i m p l e _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( "

s e q _ i t e m " ) ;

$readmemh ( " e . t x t " , s e q _ i t e m . e ) ;

$readmemh ( " n . t x t " , s e q _ i t e m . n ) ;

$readmemh ( " d . t x t " , s e q _ i t e m . d ) ;

f i l e = $fopen ( "m. t x t " , " r " ) ;

w h i l e ( ! $ f e o f ( f i l e ) )

b e g i n

$ f g e t s (w, f i l e ) ;

/ / $ d i s p l a y ( " l e n : %d " , w. l e n ( ) ) ;

s e q _ i t e m . s t r _ l e n . push_back (w. l e n ( ) ) ;

s e q _ i t e m . a r r [ i ] = w;

i = i +1 ;

/ / s e q _ i t e m .m. push_back (w) ;

/ / $ d i s p l a y ( " l e n : %d " , s e q _ i t e m . s t r _ l e n [ 0 ] ) ;

/ / $ d i s p l a y ("%p " , s e q _ i t e m . a r r ) ;

end

$ f c l o s e ( f i l e ) ;

r e p e a t ( 1 0 0 0 )
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b e g i n

s e q _ i t e m . randomize ( i n d e x ) ;

r e p e a t ( 3 ) / / / one s e q u e n c e i s made up

of s e n d i n g modulus , e x p o n e n t ,

message d a t a ( Have a n o t h e r r e p e a t

s t a t e m e n t t o make t h i s run 100000

t i m e s wi th d i f f e r e n t i n d e x v a l u e

/ / f o r e v e r

b e g i n

s t a r t _ i t e m ( s e q _ i t e m ) ;

/ / s e q _ i t e m . p r i n t ( ) ;

f i n i s h _ i t e m ( s e q _ i t e m ) ;

g e t _ r e s p o n s e ( s e q _ i t e m ) ;

/ / s e q _ i t e m =

s i m p l e _ s e q u e n c e _ i t e m : :

t y p e _ i d : : c r e a t e ( " s e q _ i t e m " )

;

end

end

#200 ;

e n d t a s k

e n d c l a s s : r s a _ s e q u e n c e 1
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/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

/ /−−−−− Sequence 2 −−−//

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

c l a s s r s a _ s e q u e n c e 2 e x t e n d s uvm_sequence # (

s i m p l e _ s e q u e n c e _ i t e m ) ;

` u v m _ o b j e c t _ u t i l s ( r s a _ s e q u e n c e 2 )

f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e 2 " ) ;

s u p e r . new ( name ) ;

e n d f u n c t i o n

v i r t u a l t a s k body ( ) ;

s t r i n g w;

i n t e g e r f i l e ;

i n t i = 0 ;

s i m p l e _ s e q u e n c e _ i t e m s e q _ i t e m ;

s e q _ i t e m = s i m p l e _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( "

s e q _ i t e m " ) ;

$readmemh ( " e . t x t " , s e q _ i t e m . e ) ;

$readmemh ( " n . t x t " , s e q _ i t e m . n ) ;

$readmemh ( " d . t x t " , s e q _ i t e m . d ) ;
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f i l e = $fopen ( "m. t x t " , " r " ) ;

w h i l e ( ! $ f e o f ( f i l e ) )

b e g i n

$ f g e t s (w, f i l e ) ;

/ / $ d i s p l a y ( " l e n : %d " , w. l e n ( ) ) ;

s e q _ i t e m . s t r _ l e n . push_back (w. l e n ( ) ) ;

s e q _ i t e m . a r r [ i ] = w;

i = i +1 ;

/ / s e q _ i t e m .m. push_back (w) ;

/ / $ d i s p l a y ( " l e n : %d " , s e q _ i t e m . s t r _ l e n [ 0 ] ) ;

/ / $ d i s p l a y ("%p " , s e q _ i t e m . a r r ) ;

end

$ f c l o s e ( f i l e ) ;

r e p e a t ( 1 0 0 0 )

b e g i n

s e q _ i t e m . randomize ( i n d e x ) ;

r e p e a t ( 3 ) / / / one s e q u e n c e i s made up

of s e n d i n g modulus , e x p o n e n t ,

message d a t a ( Have a n o t h e r r e p e a t

s t a t e m e n t t o make t h i s run 100000

t i m e s wi th d i f f e r e n t i n d e x v a l u e

/ / f o r e v e r
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b e g i n

s t a r t _ i t e m ( s e q _ i t e m ) ;

/ / s e q _ i t e m . p r i n t ( ) ;

f i n i s h _ i t e m ( s e q _ i t e m ) ;

g e t _ r e s p o n s e ( s e q _ i t e m ) ;

/ / s e q _ i t e m =

s i m p l e _ s e q u e n c e _ i t e m : :

t y p e _ i d : : c r e a t e ( " s e q _ i t e m " )

;

end

end

#200 ;

e n d t a s k

e n d c l a s s : r s a _ s e q u e n c e 2

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

/ /−−−−− Sequence 3 −−−//

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

c l a s s r s a _ s e q u e n c e 3 e x t e n d s uvm_sequence # (

s i m p l e _ s e q u e n c e _ i t e m ) ;

` u v m _ o b j e c t _ u t i l s ( r s a _ s e q u e n c e 3 )
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f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e 3 " ) ;

s u p e r . new ( name ) ;

e n d f u n c t i o n

v i r t u a l t a s k body ( ) ;

s t r i n g w;

i n t e g e r f i l e ;

i n t i = 0 ;

s i m p l e _ s e q u e n c e _ i t e m s e q _ i t e m ;

s e q _ i t e m = s i m p l e _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( "

s e q _ i t e m " ) ;

$readmemh ( " e . t x t " , s e q _ i t e m . e ) ;

$readmemh ( " n . t x t " , s e q _ i t e m . n ) ;

$readmemh ( " d . t x t " , s e q _ i t e m . d ) ;

f i l e = $fopen ( "m. t x t " , " r " ) ;

w h i l e ( ! $ f e o f ( f i l e ) )

b e g i n

$ f g e t s (w, f i l e ) ;

/ / $ d i s p l a y ( " l e n : %d " , w. l e n ( ) ) ;

s e q _ i t e m . s t r _ l e n . push_back (w. l e n ( ) ) ;

s e q _ i t e m . a r r [ i ] = w;
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i = i +1 ;

/ / s e q _ i t e m .m. push_back (w) ;

/ / $ d i s p l a y ( " l e n : %d " , s e q _ i t e m . s t r _ l e n [ 0 ] ) ;

/ / $ d i s p l a y ("%p " , s e q _ i t e m . a r r ) ;

end

$ f c l o s e ( f i l e ) ;

r e p e a t ( 1 0 0 0 )

b e g i n

s e q _ i t e m . randomize ( i n d e x ) ;

r e p e a t ( 3 ) / / / one s e q u e n c e i s made up

of s e n d i n g modulus , e x p o n e n t ,

message d a t a ( Have a n o t h e r r e p e a t

s t a t e m e n t t o make t h i s run 100000

t i m e s wi th d i f f e r e n t i n d e x v a l u e

/ / f o r e v e r

b e g i n

s t a r t _ i t e m ( s e q _ i t e m ) ;

/ / s e q _ i t e m . p r i n t ( ) ;

f i n i s h _ i t e m ( s e q _ i t e m ) ;

g e t _ r e s p o n s e ( s e q _ i t e m ) ;

/ / s e q _ i t e m =

s i m p l e _ s e q u e n c e _ i t e m : :
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t y p e _ i d : : c r e a t e ( " s e q _ i t e m " )

;

end

end

#200 ;

e n d t a s k

e n d c l a s s : r s a _ s e q u e n c e 3

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

/ /−−−−− Sequence 4 −−−//

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

c l a s s r s a _ s e q u e n c e 4 e x t e n d s uvm_sequence # (

s i m p l e _ s e q u e n c e _ i t e m ) ;

` u v m _ o b j e c t _ u t i l s ( r s a _ s e q u e n c e 4 )

f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e 4 " ) ;

s u p e r . new ( name ) ;

e n d f u n c t i o n

v i r t u a l t a s k body ( ) ;

s t r i n g w;

i n t e g e r f i l e ;

i n t i = 0 ;
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s i m p l e _ s e q u e n c e _ i t e m s e q _ i t e m ;

s e q _ i t e m = s i m p l e _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( "

s e q _ i t e m " ) ;

$readmemh ( " e . t x t " , s e q _ i t e m . e ) ;

$readmemh ( " n . t x t " , s e q _ i t e m . n ) ;

$readmemh ( " d . t x t " , s e q _ i t e m . d ) ;

f i l e = $fopen ( "m. t x t " , " r " ) ;

w h i l e ( ! $ f e o f ( f i l e ) )

b e g i n

$ f g e t s (w, f i l e ) ;

/ / $ d i s p l a y ( " l e n : %d " , w. l e n ( ) ) ;

s e q _ i t e m . s t r _ l e n . push_back (w. l e n ( ) ) ;

s e q _ i t e m . a r r [ i ] = w;

i = i +1 ;

/ / s e q _ i t e m .m. push_back (w) ;

/ / $ d i s p l a y ( " l e n : %d " , s e q _ i t e m . s t r _ l e n [ 0 ] ) ;

/ / $ d i s p l a y ("%p " , s e q _ i t e m . a r r ) ;

end

$ f c l o s e ( f i l e ) ;

r e p e a t ( 1 0 0 0 )
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b e g i n

s e q _ i t e m . randomize ( i n d e x ) ;

r e p e a t ( 3 ) / / / one s e q u e n c e i s made up

of s e n d i n g modulus , e x p o n e n t ,

message d a t a ( Have a n o t h e r r e p e a t

s t a t e m e n t t o make t h i s run 100000

t i m e s wi th d i f f e r e n t i n d e x v a l u e

/ / f o r e v e r

b e g i n

s t a r t _ i t e m ( s e q _ i t e m ) ;

/ / s e q _ i t e m . p r i n t ( ) ;

f i n i s h _ i t e m ( s e q _ i t e m ) ;

g e t _ r e s p o n s e ( s e q _ i t e m ) ;

/ / s e q _ i t e m =

s i m p l e _ s e q u e n c e _ i t e m : :

t y p e _ i d : : c r e a t e ( " s e q _ i t e m " )

;

end

end

#200 ;

e n d t a s k

e n d c l a s s : r s a _ s e q u e n c e 4
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/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

/ /−−−−− Sequence 5 −−−//

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

c l a s s r s a _ s e q u e n c e 5 e x t e n d s uvm_sequence # (

s i m p l e _ s e q u e n c e _ i t e m ) ;

` u v m _ o b j e c t _ u t i l s ( r s a _ s e q u e n c e 5 )

f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e 5 " ) ;

s u p e r . new ( name ) ;

e n d f u n c t i o n

v i r t u a l t a s k body ( ) ;

s t r i n g w;

i n t e g e r f i l e ;

i n t i = 0 ;

s i m p l e _ s e q u e n c e _ i t e m s e q _ i t e m ;

s e q _ i t e m = s i m p l e _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( "

s e q _ i t e m " ) ;

$readmemh ( " e . t x t " , s e q _ i t e m . e ) ;

$readmemh ( " n . t x t " , s e q _ i t e m . n ) ;

$readmemh ( " d . t x t " , s e q _ i t e m . d ) ;
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f i l e = $fopen ( "m. t x t " , " r " ) ;

w h i l e ( ! $ f e o f ( f i l e ) )

b e g i n

$ f g e t s (w, f i l e ) ;

/ / $ d i s p l a y ( " l e n : %d " , w. l e n ( ) ) ;

s e q _ i t e m . s t r _ l e n . push_back (w. l e n ( ) ) ;

s e q _ i t e m . a r r [ i ] = w;

i = i +1 ;

/ / s e q _ i t e m .m. push_back (w) ;

/ / $ d i s p l a y ( " l e n : %d " , s e q _ i t e m . s t r _ l e n [ 0 ] ) ;

/ / $ d i s p l a y ("%p " , s e q _ i t e m . a r r ) ;

end

$ f c l o s e ( f i l e ) ;

r e p e a t ( 1 0 0 0 )

b e g i n

s e q _ i t e m . randomize ( i n d e x ) ;

r e p e a t ( 3 ) / / / one s e q u e n c e i s made up

of s e n d i n g modulus , e x p o n e n t ,

message d a t a ( Have a n o t h e r r e p e a t

s t a t e m e n t t o make t h i s run 100000

t i m e s wi th d i f f e r e n t i n d e x v a l u e

/ / f o r e v e r



A.5 Sequence 105

b e g i n

s t a r t _ i t e m ( s e q _ i t e m ) ;

/ / s e q _ i t e m . p r i n t ( ) ;

f i n i s h _ i t e m ( s e q _ i t e m ) ;

g e t _ r e s p o n s e ( s e q _ i t e m ) ;

/ / s e q _ i t e m =

s i m p l e _ s e q u e n c e _ i t e m : :

t y p e _ i d : : c r e a t e ( " s e q _ i t e m " )

;

end

end

#200 ;

e n d t a s k

e n d c l a s s : r s a _ s e q u e n c e 5

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

/ /−−−−− Top Leve l Sequence −−−//

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

c l a s s r s a _ s e q u e n c e e x t e n d s uvm_sequence # ( s i m p l e _ s e q u e n c e _ i t e m

) ;

` u v m _ o b j e c t _ u t i l s ( r s a _ s e q u e n c e )
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f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e " ) ;

s u p e r . new ( name ) ;

e n d f u n c t i o n

r s a _ s e q u e n c e 1 seq1 ;

r s a _ s e q u e n c e 2 seq2 ;

r s a _ s e q u e n c e 3 seq3 ;

r s a _ s e q u e n c e 4 seq4 ;

r s a _ s e q u e n c e 5 seq5 ;

v i r t u a l t a s k body ( ) ;

seq1 = r s a _ s e q u e n c e 1 : : t y p e _ i d : : c r e a t e ( " seq1 " ) ;

seq2 = r s a _ s e q u e n c e 2 : : t y p e _ i d : : c r e a t e ( " seq2 " ) ;

seq3 = r s a _ s e q u e n c e 3 : : t y p e _ i d : : c r e a t e ( " seq3 " ) ;

seq4 = r s a _ s e q u e n c e 4 : : t y p e _ i d : : c r e a t e ( " seq4 " ) ;

seq5 = r s a _ s e q u e n c e 5 : : t y p e _ i d : : c r e a t e ( " seq5 " ) ;

m_sequencer . s e t _ a r b i t r a t i o n (UVM_SEQ_ARB_USER) ;

f o r k

b e g i n

seq1 . s t a r t ( m_sequencer , t h i s , 100 ) ;

end



A.5 Sequence 107

b e g i n

seq2 . s t a r t ( m_sequencer , t h i s , 200 ) ;

end

b e g i n

seq3 . s t a r t ( m_sequencer , t h i s , 300 ) ;

end

b e g i n

seq4 . s t a r t ( m_sequencer , t h i s , 400 ) ;

end

b e g i n

seq5 . s t a r t ( m_sequencer , t h i s , 500 ) ;

end

j o i n

e n d t a s k : body

e n d c l a s s : r s a _ s e q u e n c e
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A.6 Sequencer

c l a s s r s a _ s e q u e n c e r e x t e n d s uvm_sequencer # (

s i m p l e _ s e q u e n c e _ i t e m ) ;

` u v m _ c o m p o n e n t _ u t i l s ( r s a _ s e q u e n c e r )

f u n c t i o n new ( s t r i n g name = " r s a _ s e q u e n c e r " ,

uvm_component p a r e n t = n u l l ) ;

s u p e r . new ( name , p a r e n t ) ;

e n d f u n c t i o n

e n d c l a s s
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A.7 Driver

i m p o r t " DPI " f u n c t i o n vo id e n c r y p t ( i n p u t s t r i n g msg , i n p u t

l o n g i n t e_1 , n_1 , d_1 ) ;

c l a s s d r i v e r e x t e n d s uvm_dr ive r # ( s i m p l e _ s e q u e n c e _ i t e m ) ;

` i n c l u d e " . / i n c l u d e / c o n f i g . h "

` u v m _ c o m p o n e n t _ u t i l s ( d r i v e r )

v i r t u a l i n t f _ c n t v i f ;

s t r i n g msg ;

l o n g i n t e_1 , n_1 , d_1 ;

/ / −−−−−−−−−−−−−−−−−Covergroup 1−−−−−−−−−−−−−−−−−//

c o v e r g r o u p cov_1 ;

c h i p _ s e l e c t : c o v e r p o i n t v i f . c h i p _ s e l e c t {

b i n s b1 = { 1 } ; / / exp_mem

b i n s b2 = { 2 } ; / / mod_mem

b i n s b3 = { 3 } ; / / msg_mem

}

endgroup : cov_1

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
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/ / −−−−−−−−−−−−−−−−−Covergroup 2−−−−−−−−−−−−−−−−−//

c o v e r g r o u p cov_2 ;

i n p u t _ d a t a : c o v e r p o i n t v i f . wr_da ta {

}

endgroup : cov_2

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

f u n c t i o n new ( s t r i n g name = " d r i v e r " , uvm_component

p a r e n t = n u l l ) ;

s u p e r . new ( name , p a r e n t ) ;

cov_1 = new ( ) ;

cov_2 = new ( ) ;

e n d f u n c t i o n

f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

s u p e r . b u i l d _ p h a s e ( phase ) ;

void ' ( uvm_config_db #( v i r t u a l i n t f _ c n t ) : : g e t ( t h i s , " * " ,

" i n t f _ v i " , v i f ) ) ;



A.7 Driver 111

$ d i s p l a y ( " B u i l d phase d r i v e r " ) ;

e n d f u n c t i o n

t a s k r u n _ p h a s e ( uvm_phase phase ) ;

s u p e r . r u n _ p h a s e ( phase ) ;

$ d i s p l a y ( " Run phase d r i v e r s t a r t " ) ;

s t a r t ( ) ;

$ d i s p l a y ( " Run phase d r i v e r end " ) ;

e n d t a s k

t a s k s t a r t ( ) ;

i n t e g e r f i l e ;

i n t e g e r r ;

i n t s t a t e = `EXPONENT ;

i n t c o u n t e r ;

i n t f _ f l a g = 1 ' b1 ;

i n t f l a g = 1 ' b0 ;

i n t c _ f l a g = 1 ' b0 ;

s i m p l e _ s e q u e n c e _ i t e m s e q _ i t e m ;

f o r e v e r

b e g i n

s e q _ i t e m _ p o r t . g e t _ n e x t _ i t e m ( s e q _ i t e m ) ;

i f ( f _ f l a g == 1 ' b1 )

b e g i n

e_1 = s e q _ i t e m . e [ s e q _ i t e m . i n d e x ] ;
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n_1 = s e q _ i t e m . n [ s e q _ i t e m . i n d e x ] ;

d_1 = s e q _ i t e m . d [ s e q _ i t e m . i n d e x ] ;

uvm_conf ig_db #( l o n g i n t ) : : s e t ( n u l l ,

" " , " n " , n_1 ) ; / / / send t h e n and d

v a l u e t o c o n f i g _ d b t o be used by

m o n i t o r l a t e r

uvm_conf ig_db #( l o n g i n t ) : : s e t ( n u l l ,

" " , " d " , d_1 ) ;

e n c r y p t ( s e q _ i t e m . a r r [ s e q _ i t e m . i n d e x ] ,

e_1 , n_1 , d_1 ) ;

f _ f l a g = 1 ' b0 ;

end

@( posedge v i f . c l k )

b e g i n

c a s e ( s t a t e )

`EXPONENT :

b e g i n

v i f . c h i p _ s e l e c t = 3 ' b001 ;

#10

v i f . w r_ s tb = 1 ' b1 ;

v i f . a d d r e s s = 3 ' b000 ;

v i f . wr_da ta = s e q _ i t e m . e [ s e q _ i t e m .

i n d e x ] ;

s t a t e =`MODULUS;

f l a g = 1 ' b1 ;
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cov_1 . sample ( ) ;

/ / u v m _ r e p o r t _ i n f o ( g e t _ f u l l _ n a m e

( ) , " Send ing e x p o n e n t d a t a " ,UVM_LOW)

;

end

`MODULUS:

b e g i n

v i f . c h i p _ s e l e c t = 3 ' b010 ;

#10

v i f . w r_ s tb = 1 ' b1 ;

v i f . a d d r e s s = 3 ' b001 ;

v i f . wr_da ta = s e q _ i t e m . n [ s e q _ i t e m .

i n d e x ] ;

s t a t e =`MESSAGE ;

cov_1 . sample ( ) ;

cov_2 . sample ( ) ;

f l a g = 1 ' b1 ;

/ / u v m _ r e p o r t _ i n f o ( g e t _ f u l l _ n a m e

( ) , " Send ing Modulus d a t a " ,UVM_LOW)

;

end

`MESSAGE :

b e g i n

v i f . c h i p _ s e l e c t = 3 ' b011 ;

#10
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v i f . w r_ s tb = 1 ' b1 ;

v i f . a d d r e s s = 3 ' b010 ;

v i f . msg = s e q _ i t e m . a r r [ s e q _ i t e m . i n d e x

] ;

v i f . s t r _ l e n = s e q _ i t e m . s t r _ l e n [

s e q _ i t e m . i n d e x ] ;

cov_1 . sample ( ) ;

/ / u v m _ r e p o r t _ i n f o ( g e t _ f u l l _ n a m e

( ) , " Send ing Message d a t a " ,UVM_LOW)

;

c _ f l a g = 1 ' b1 ;

/ / s t a t e = `WAIT_FOR_DONE ;

c o u n t e r = 1 ' b1 ;

end

e n d c a s e

/ / end

end

@( posedge v i f . wr_ack )

b e g i n

v i f . c h i p _ s e l e c t = 3 ' b000 ;

#10

v i f . w r_s tb = 1 ' b0 ;

s e q _ i t e m _ p o r t . i t em_done ( ) ;
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/ / u v m _ r e p o r t _ i n f o ( g e t _ f u l l _ n a m e ( ) , " Done

Sending d a t a " ,UVM_LOW) ;

end

i f ( f l a g )

b e g i n

f l a g = 1 ' b0 ;

s e q _ i t e m _ p o r t . p u t ( s e q _ i t e m ) ;

end

i f ( c _ f l a g )

b e g i n

c _ f l a g = 1 ' b0 ;

@( posedge v i f . done )

b e g i n

/ / u v m _ r e p o r t _ i n f o ( g e t _ f u l l _ n a m e ( ) , "

S t a r t Next s e q u e n c e " ,UVM_LOW) ;

f _ f l a g = 1 ' b1 ;

s e q _ i t e m _ p o r t . p u t ( s e q _ i t e m ) ;

end

end

e l s e

b e g i n

/ / u v m _ r e p o r t _ i n f o ( g e t _ f u l l _ n a m e ( ) , " O u t s i d e C−

f l a g " ,UVM_LOW) ;

end
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i f ( c o u n t e r ==1 ' b1 )

b e g i n

r e p e a t ( 1 0 0 0 )

@( posedge v i f . c l k ) ;

c o u n t e r = 1 ' b0 ;

s t a t e = `EXPONENT ;

end

end

e n d t a s k

e n d c l a s s
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A.8 Monitor

i m p o r t " DPI " f u n c t i o n vo id d e c r y p t ( i n p u t l o n g i n t n_1 , d_1 ) ;

c l a s s m o n i t o r e x t e n d s uvm_monitor ;

i n t b a r ;

s t r i n g name ;

` u v m _ c o m p o n e n t _ u t i l s ( m o n i t o r )

v i r t u a l i n t f _ c n t v i f ;

l o n g i n t d_1 , n_1 ;

s i m p l e _ s e q u e n c e _ i t e m seq_i tem_mon ;

u v m _ a n a l y s i s _ p o r t # ( s i m p l e _ s e q u e n c e _ i t e m )

c o l l e c t _ m o n _ p o r t ;

/ / −−−−−−−−−−−−−−−−−Covergroup 3−−−−−−−−−−−−−−−−−//

c o v e r g r o u p cov_3 ;

o u t p u t _ d a t a : c o v e r p o i n t v i f . o _ d a t a {

}

/ / c r o s s v i f . wr_data , v i f . o _ d a t a ;

endgroup : cov_3

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

f u n c t i o n new ( s t r i n g name = " m o n i t o r " , uvm_component

p a r e n t = n u l l ) ;
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s u p e r . new ( name , p a r e n t ) ;

cov_3 = new ( ) ;

e n d f u n c t i o n

f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

s u p e r . b u i l d _ p h a s e ( phase ) ;

void ' ( uvm_config_db #( v i r t u a l i n t f _ c n t ) : : g e t (

t h i s , " * " , " i n t f _ v i " , v i f ) ) ;

c o l l e c t _ m o n _ p o r t = new ( . name ( " c o l l e c t _ m o n _ p o r t

" ) , . p a r e n t ( t h i s ) ) ;

e n d f u n c t i o n

t a s k r u n _ p h a s e ( uvm_phase phase ) ;

i n t e g e r s t r _ l e n [ 1 0 2 3 ] ;

i n t e g e r c o u n t e r = 0 ;

i n t e g e r e x p o n e n t , modulus ;

s u p e r . r u n _ p h a s e ( phase ) ;

seq_i tem_mon = s i m p l e _ s e q u e n c e _ i t e m : : t y p e _ i d : : c r e a t e ( . name ( "

seq_i tem_mon " ) , . c o n t x t ( g e t _ f u l l _ n a m e ( ) ) ) ;

f o r e v e r

b e g i n

@( posedge v i f . c l k )

b e g i n

i f ( v i f . d iv_done == 1 ' b1 )

b e g i n
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seq_i tem_mon . o _ d a t a [ c o u n t e r ] =

v i f . o _ d a t a ;

/ / cov_2 . sample ( ) ;

/ / $ d i s p l a y ( "DUT v a l u e i s : %d

" , seq_i tem_mon . o _ d a t a [

c o u n t e r ] ) ;

/ / $ d i s p l a y ( " Coun te r v a l u e i s :

%d " , c o u n t e r ) ;

c o u n t e r = c o u n t e r + 1 ' b1 ;

end

i f ( v i f . done == 1 ' b1 )

b e g i n

s t a r t _ c o m p a r e ( ) ;

cov_3 . sample ( ) ;

c o u n t e r = 1 ' b0 ;

end

end

end

e n d t a s k

f u n c t i o n vo id s t a r t _ c o m p a r e ( ) ;

b i t [ 0 : 2 0 4 7 ] w;

b i t [ 0 : 2 0 4 7 ] mem [ 1 0 2 4 ] ;

i n t e g e r f i l e ;

i n t e g e r fp ;

i n t e g e r c o u n t e r = 0 ;
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i n t e g e r f l a g ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / g e t p r i v a t e modulus and

e x p o n e n t

i f ( uvm_conf ig_db #( l o n g i n t ) : : g e t ( n u l l , " " , " n " , n_1 ) )

b e g i n

/ / $ d i s p l a y ( " n i s %d " , n_1 ) ;

/ / `uvm_info ( "ENV" , $ s f o r m a t f ( " Found %d " , n_1 ) ,

UVM_MEDIUM)

end

i f ( uvm_conf ig_db #( l o n g i n t ) : : g e t ( n u l l , " " , " d " , d_1 ) )

b e g i n

/ / $ d i s p l a y ( " d i s %d " , d_1 ) ;

/ / `uvm_info ( "ENV" , $ s f o r m a t f ( " Found %d " , d_1 ) ,

UVM_MEDIUM)

end

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / w r i t e e n c r y p t

key

f i l e = $fopen ( " e n c r y p t _ k e y . t x t " , " r " ) ;

w h i l e ( ! $ f e o f ( f i l e ) )

b e g i n

fp = $ f s c a n f ( f i l e , "%d \ n " ,w) ;

/ / $ d i s p l a y ( " Model d a t a i s %" ,w) ;

mem[ c o u n t e r ] = w;

c o u n t e r = c o u n t e r + 1 ' b1 ;
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/ / $ d i s p l a y ( " Model d a t a i s %d " ,mem[ c o u n t e r ] ) ;

end

$ f c l o s e ( f i l e ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / compar ing d u t

and model v a l u e

f o r ( i n t i = 0 ; i < c o u n t e r ; i = i +1)

b e g i n

i f (mem[ i ] == seq_i tem_mon . o _ d a t a [ i ] )

b e g i n

f l a g = 1 ' b1 ;

/ / $ d i s p l a y ( " Model d a t a i s %d " ,

mem[ i ] ) ;

/ / $ d i s p l a y ( " Dut d a t a i s %d " ,

seq_i tem_mon . o _ d a t a [ 0 ] ) ;

end

e l s e

b e g i n

/ / $ d i s p l a y ( " Model d a t a and d u t

n o t ma tch ing " ) ;

/ / $ d i s p l a y ( " Model d a t a i s %d " ,

mem [ 0 ] ) ;
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/ / $ d i s p l a y ( " Dut d a t a i s %d " ,

seq_i tem_mon . o _ d a t a [ 0 ] ) ;

end

end

i f ( f l a g == 1 ' b1 )

b e g i n

$ d i s p l a y ( " Model d a t a and d u t ma tch ing "

) ;

d e c r y p t ( n_1 , d_1 ) ;

f l a g = 1 ' b0 ;

end

e l s e

b e g i n

$ d i s p l a y ( " Model d a t a and d u t n o t

ma tch ing " ) ;

end

e n d f u n c t i o n

e n d c l a s s
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A.9 Agent

c l a s s a g e n t _ 1 e x t e n d s uvm_agent ;

r s a _ s e q u e n c e r seq ;

d r i v e r drv ;

m o n i t o r mon ;

` u v m _ c o m p o n e n t _ u t i l s ( a g e n t _ 1 )

u v m _ a n a l y s i s _ p o r t # ( s i m p l e _ s e q u e n c e _ i t e m )

c o l l e c t _ a g n t _ p o r t ;

f u n c t i o n new ( s t r i n g name = " a g e n t _ 1 " , uvm_component

p a r e n t = n u l l ) ;

s u p e r . new ( name , p a r e n t ) ;

e n d f u n c t i o n

f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

s u p e r . b u i l d _ p h a s e ( phase ) ;

d rv = d r i v e r : : t y p e _ i d : : c r e a t e ( . name ( " drv " ) , .

p a r e n t ( t h i s ) ) ;

seq = r s a _ s e q u e n c e r : : t y p e _ i d : : c r e a t e ( . name ( "

seq " ) , . p a r e n t ( t h i s ) ) ;

mon = m o n i t o r : : t y p e _ i d : : c r e a t e ( . name ( "mon" ) , .

p a r e n t ( t h i s ) ) ;
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c o l l e c t _ a g n t _ p o r t = new ( . name ( "

c o l l e c t _ a g n t _ p o r t " ) , . p a r e n t ( t h i s ) ) ;

e n d f u n c t i o n

f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

s u p e r . c o n n e c t _ p h a s e ( phase ) ;

d rv . s e q _ i t e m _ p o r t . c o n n e c t ( seq . s e q _ i t e m _ e x p o r t )

; / / c o n n e c t i n g s e q u e n c e r and d r i v e r

mon . c o l l e c t _ m o n _ p o r t . c o n n e c t ( c o l l e c t _ a g n t _ p o r t

) ;

e n d f u n c t i o n

e n d c l a s s
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A.10 Scoreboard

c l a s s s c o r e b o a r d e x t e n d s uvm_scoreboard ;

` u v m _ c o m p o n e n t _ u t i l s ( s c o r e b o a r d )

u v m _ a n a l y s i s _ e x p o r t # ( s i m p l e _ s e q u e n c e _ i t e m )

c o l l e c t _ s b _ p o r t ;

u v m _ t l m _ a n a l y s i s _ f i f o # ( s i m p l e _ s e q u e n c e _ i t e m ) f i f o ;

f u n c t i o n new ( s t r i n g name = " s c o r e b o a r d " ,

uvm_component p a r e n t = n u l l ) ;

s u p e r . new ( name , p a r e n t ) ;

e n d f u n c t i o n

f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

s u p e r . b u i l d _ p h a s e ( phase ) ;

c o l l e c t _ s b _ p o r t = new ( . name ( " c o l l e c t _ s b _ p o r t " )

, . p a r e n t ( t h i s ) ) ;

f i f o = new ( . name ( " f i f o " ) , . p a r e n t ( t h i s ) ) ;

e n d f u n c t i o n

f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

s u p e r . c o n n e c t _ p h a s e ( phase ) ;

c o l l e c t _ s b _ p o r t . c o n n e c t ( f i f o . a n a l y s i s _ e x p o r t ) ;
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e n d f u n c t i o n

e n d c l a s s
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A.11 Environment

c l a s s r s a _ e n v e x t e n d s uvm_env ;

` u v m _ c o m p o n e n t _ u t i l s ( r s a _ e n v )

a g e n t _ 1 a g n t ;

s c o r e b o a r d sb ;

f u n c t i o n new ( s t r i n g name = " r s a _ e n v " , uvm_component

p a r e n t = n u l l ) ;

s u p e r . new ( name , p a r e n t ) ;

e n d f u n c t i o n

f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

s u p e r . b u i l d _ p h a s e ( phase ) ;

a g n t = a g e n t _ 1 : : t y p e _ i d : : c r e a t e ( . name ( " a g n t " ) ,

. p a r e n t ( t h i s ) ) ;

sb = s c o r e b o a r d : : t y p e _ i d : : c r e a t e ( . name ( " sb " ) ,

. p a r e n t ( t h i s ) ) ;

e n d f u n c t i o n

f u n c t i o n vo id c o n n e c t _ p h a s e ( uvm_phase phase ) ;

s u p e r . c o n n e c t _ p h a s e ( phase ) ;

a g n t . mon . c o l l e c t _ m o n _ p o r t . c o n n e c t ( sb .

c o l l e c t _ s b _ p o r t ) ;
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e n d f u n c t i o n

e n d c l a s s
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A.12 Test

c l a s s r s a _ t e s t e x t e n d s u v m _ te s t ;

/ / R e g i s t r a t i o n

` u v m _ c o m p o n e n t _ u t i l s ( r s a _ t e s t )

r s a _ e n v env ;

/ / C o n s t r u c t i o n

f u n c t i o n new ( s t r i n g name = " r s a _ t e s t " , uvm_component

p a r e n t = n u l l ) ;

s u p e r . new ( name , p a r e n t ) ;

e n d f u n c t i o n

f u n c t i o n vo id b u i l d _ p h a s e ( uvm_phase phase ) ;

s u p e r . b u i l d _ p h a s e ( phase ) ;

env = r s a _ e n v : : t y p e _ i d : : c r e a t e ( . name ( " env " ) , .

p a r e n t ( t h i s ) ) ;

e n d f u n c t i o n

/ / e x e c u t i o n

t a s k r u n _ p h a s e ( uvm_phase phase ) ;

/ / s u p e r . r u n _ p h a s e ;

r s a _ s e q u e n c e seq ;

seq = r s a _ s e q u e n c e : : t y p e _ i d : : c r e a t e ( . name ( " seq

" ) , . p a r e n t ( t h i s ) ) ;

phase . r a i s e _ o b j e c t i o n ( t h i s ) ;
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seq . s t a r t ( env . a g n t . seq ) ; / / / s t a r t t h e s e q u e n c e r

phase . d r o p _ o b j e c t i o n ( t h i s ) ;

e n d t a s k

e n d c l a s s
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A.13 Top

i m p o r t uvm_pkg : : * ;

` i n c l u d e " uvm_macros . svh "

` i n c l u d e " . / i n t e r f a c e . sv "

` i n c l u d e " . / s e q u e n c e . sv "

` i n c l u d e " . / s e q u e n c e r . sv "

` i n c l u d e " . / d r i v e r . sv "

` i n c l u d e " . / m o n i t o r . sv "

` i n c l u d e " . / s c o r e b o a r d . sv "

` i n c l u d e " . / a g e n t . sv "

` i n c l u d e " . / env . sv "

` i n c l u d e " . / a s s e r t i o n s . sv "

` i n c l u d e " . / t e s t . sv "

module t e s t ;

b i t c l k ;

b i t r e s e t ;

i n i t i a l

b e g i n

c l k = 1 ' b0 ;
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r e s e t = 1 ' b0 ;

#10

r e s e t = 1 ' b1 ;

#10

r e s e t = 1 ' b0 ;

end

/ / 50 MHz c l o c k

a lways

#10 c l k = ~ c l k ;

/ / D e c l a r e I n t e r f a c e

i n t f _ c n t i n t f ( c lk , r e s e t ) ;

/ / D e c l a r e DUT and c o n n e c t i n t e r f a c e

r s a t o p (

. r e s e t ( r e s e t ) ,

. c l k ( c l k ) ,

. a d d r e s s ( i n t f . a d d r e s s ) ,

. w r_ s t b ( i n t f . w r_ s t b ) ,

. c h i p _ s e l e c t ( i n t f . c h i p _ s e l e c t ) ,

. wr_da t a ( i n t f . wr_da t a ) ,
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. msg ( i n t f . msg ) ,

` i f d e f NETLIST

. s c a n _ i n 0 ( i n t f . s c a n _ i n 0 ) ,

. s can_en ( i n t f . s can_en ) ,

. t e s t _ m o d e ( i n t f . t e s t _ m o d e ) ,

. s c a n _ o u t 0 ( i n t f . s c a n _ o u t 0 ) ,

` e l s e

. wr_ack ( i n t f . wr_ack ) ,

. done ( i n t f . done ) ,

. o _ d a t a ( i n t f . o _ d a t a ) ,

. s t r _ l e n ( i n t f . s t r _ l e n ) ,

. d iv_done ( i n t f . d iv_done )

` e n d i f

) ;

r s a _ a s s e r t i o n s a s s ( i n t f ) ;

i n i t i a l

b e g i n

uvm_config_db #( v i r t u a l i n t f _ c n t ) : : s e t ( uvm_root : : g e t

( ) , " * " , " i n t f _ v i " , i n t f ) ;

r u n _ t e s t ( " r s a _ t e s t " ) ;

/ / $ d i s p l a y ( " Data i s %h " , i n t f . wr_da ta ) ;

end
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i n i t i a l

b e g i n

$ t i m e f o r m a t ( −9 ,2 , " ns " , 16) ;

$ se t_cove rage_db_name ( " r s a " ) ;

` i f d e f SDFSCAN

$ s d f _ a n n o t a t e ( " s d f / r s a _ s c a n . s d f " , t e s t . t o p ) ;

` e n d i f

end

endmodule

A.14 Defines

` d e f i n e ENC_32

` i f d e f ENC_64

` d e f i n e DATA_WIDTH 64

` d e f i n e MODULUS_WIDTH 64

` e n d i f
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` i f d e f ENC_32

` d e f i n e DATA_WIDTH 32

` d e f i n e MODULUS_WIDTH 32

` e n d i f

` d e f i n e EXP_WIDTH 10

` d e f i n e STR_LEN 8

` d e f i n e BRAM_ADDR_SIZE 2

` d e f i n e A_DATA_WIDTH 100

` d e f i n e B_DATA_WIDTH 8

` d e f i n e MSG_WIDTH 800

` d e f i n e MEMORY_SIZE 8

` d e f i n e STATE_SIZE_1 3

` d e f i n e STATE_SIZE_2 2

` d e f i n e IDLE 3 ' b000

` d e f i n e EXPONENT_BRAM_EN_WR 3 ' b001

` d e f i n e MODULUS_BRAM_EN_WR 3 ' b010

` d e f i n e MESSAGE_BRAM_EN_WR 3 ' b011

` d e f i n e ACK 3 ' b100

` d e f i n e MUL_DONE 3 ' b101

` d e f i n e DIV_DONE 3 ' b110

` d e f i n e S0 3 ' b000
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` d e f i n e S1 3 ' b001

` d e f i n e S2 3 ' b010

` d e f i n e S3 3 ' b011

` d e f i n e S4 3 ' b100

` d e f i n e S5 3 ' b101

` d e f i n e EXPONENT_BASE_ADDRESS 3 ' b001

` d e f i n e MODULUS_BASE_ADDRESS 3 ' b010

` d e f i n e MESSAGE_BASE_ADDRESS 3 ' b011

` d e f i n e MUL 3 ' b001

` d e f i n e ADD 3 ' b010

` d e f i n e DONE 3 ' b011

` d e f i n e RESET 3 ' b000

` d e f i n e EXPONENT 3 ' b001

` d e f i n e MODULUS 3 ' b010

` d e f i n e MESSAGE 3 ' b011

` d e f i n e A 8 ' h41

` d e f i n e B 8 ' h42

` d e f i n e C 8 ' h43

` d e f i n e D 8 ' h44

` d e f i n e E 8 ' h45

` d e f i n e F 8 ' h46

` d e f i n e G 8 ' h47

` d e f i n e H 8 ' h48

` d e f i n e I 8 ' h49

` d e f i n e J 8 ' h4A
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` d e f i n e K 8 ' h4B

` d e f i n e L 8 ' h4C

` d e f i n e M 8 ' h4D

` d e f i n e N 8 ' h4E

` d e f i n e O 8 ' h4F

` d e f i n e P 8 ' h50

` d e f i n e Q 8 ' h51

` d e f i n e R 8 ' h52

` d e f i n e S 8 ' h53

` d e f i n e T 8 ' h54

` d e f i n e U 8 ' h55

` d e f i n e V 8 ' h56

` d e f i n e W 8 ' h57

` d e f i n e X 8 ' h58

` d e f i n e Y 8 ' h59

` d e f i n e Z 8 ' h5A

` d e f i n e a 8 ' h61

` d e f i n e b 8 ' h62

` d e f i n e c 8 ' h63

` d e f i n e d 8 ' h64

` d e f i n e e 8 ' h65

` d e f i n e f 8 ' h66

` d e f i n e g 8 ' h67

` d e f i n e h 8 ' h68

` d e f i n e i 8 ' h69
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` d e f i n e j 8 ' h6A

` d e f i n e k 8 ' h6B

` d e f i n e l 8 ' h6C

` d e f i n e m 8 ' h6D

` d e f i n e n 8 ' h6E

` d e f i n e o 8 ' h6F

` d e f i n e p 8 ' h70

` d e f i n e q 8 ' h71

` d e f i n e r 8 ' h72

` d e f i n e s 8 ' h73

` d e f i n e t 8 ' h74

` d e f i n e u 8 ' h75

` d e f i n e v 8 ' h76

` d e f i n e w 8 ' h77

` d e f i n e x 8 ' h78

` d e f i n e y 8 ' h79

` d e f i n e z 8 ' h7A


