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Abstract

Improving Developer Profiling and Ranking to Enhance Bug Report
Assignment

Andrew DiStasi

Supervising Professor: Dr. Mohamed Wiem Mkaouer

Bug assignment plays a critical role in the bug fixing process. However, bug assignment

can be a burden for projects receiving a large number of bug reports. If a bug is assigned to

a developer who lacks sufficient expertise to appropriately address it, the software project

can be adversely impacted in terms of quality, developer hours, and aggregate cost. An

automated strategy that provides a list of developers ranked by suitability based on their de-

velopment history and the development history of the project can help teams more quickly

and more accurately identify the appropriate developer for a bug report, potentially result-

ing in an increase in productivity. To automate the process of assigning bug reports to

the appropriate developer, several studies have employed an approach that combines nat-

ural language processing and information retrieval techniques to extract two categories of

features: one targeting developers who have fixed similar bugs before and one targeting

developers who have worked on source files similar to the description of the bug. As de-

velopers document their changes through their commit messages it represents another rich

resource for profiling their expertise, as the language used in commit messages typically

more closely matches the language used in bug reports. In this study, we have replicated

the approach presented in [32] that applies a learning-to-rank technique to rank appropriate
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developers for each bug report. Additionally, we have extended the study by proposing an

additional set of features to better profile a developer through their commit logs and through

the API project descriptions referenced in their code changes. Furthermore, we explore the

appropriateness of a joint recommendation approach employing a learning-to-rank tech-

nique and an ordinal regression technique. To evaluate our model, we have considered

more than 10,000 bug reports with their appropriate assignees. The experimental results

demonstrate the efficiency of our model in comparison with the state-of-the-art methods in

recommending developers for open bug reports.
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Chapter 1

Introduction

Bug report assignment, the art of matching an open bug report to the developer best suited

to process it, is a critical step towards localizing and fixing a bug. Bug assignees typically

perform a variety of code reviews and changes to replicate the bug and verify the reported

issue with the purpose of localizing it. With the explosion of the number of open bug reports

and the natural increase in the number of teams and developers, matching bug reports to

suitable developers has become challenging, especially because an incorrect assignment

not only incurs a waste of a developer’s time, but also adds the overhead of re-assigning

the bug again. Compounding this problem is the rate at which bugs are reported. In 2013

alone, 3,389 bug reports were created for the Eclipse Platform product [40].

To cope with this expense, several studies have explored the design of automated tech-

niques to recommend which developer should be processing a given bug report by mining

and combining relevant information related to bug reports and the history of code changes

[11], [12], [20]. Previous studies were clustered by Shokripour [28] according to the na-

ture of information retrieved. Studies analyzing a developer’s activities and experience are

considered activity-based, while studies linking bug reports to a specific location in the

code, and so to a potential developer, are considered location-based. A recent study by

Tian et al. [32] presented a unified model that merges these activity-based and location-

based features to benefit from their advantages, at the expense of increasing complexity

through their combination. This approach utilizes a learning-to-rank algorithm for feature

combination to generate a final ranking score. Another recent study by Lam et al. [16]

used Deep Neural Networks (DNN) combined with a revised Vector Space Model (rVSM)
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in a joint recommendation approach to combine activity-based and location-based features

for the purpose of localizing bugs in the source code. Since learning-to-rank has shown

promising results in comparison with state-of-the-art approaches for both bug localization

and bug assignment [32], [41], and since a joint-recommendation approach outperformed

learning-to-rank for the problem of bug localization at low k-values [16], a study apply-

ing these considerations to the problem of automated bug assignment could offer valuable

insight and significant improvement over existing approaches.

In an effort to more completely profile the developers working on a project, we con-

sider additional activity-based features. Activity-based features heavily rely on profiling

developers using their contributions to the project in terms of code changes and previously

handled bug reports. As the majority of developers’ contributions are represented by their

code changes, and as code changes represent the largest source of bugs, linking developers’

code changes to the open bug reports has been proven to be a critical feature to improve the

bug assignment process [1]. However, bug report descriptions are written in natural lan-

guage, while the source code is represented by some programming language. As these two

languages differ in context, representation and expression, this creates a lexical mismatch,

hindering the efficiency of existing bug assignment approaches. Furthermore, developer

commit messages for bug fixing activity have been used as a feature with positive results

when addressing the problem of bug localization [26] [33], [37]. Therefore, we propose

the use of developers commit messages as a new set of features for the problem of bug

assignment. As shown in Chapter 5, commit messages are able to bridge the lexical gap as

they are written using the same natural language of bug reports, besides containing valuable

information that may not be captured by commit code changes.

To summarize, our key contributions are:

1. We reproduce the study of Tian et al. [32]. and perform a comparative study between

this approach and an approach that encompasses an increased set of developer fea-

tures. We also perform a comparative study between several ranking algorithms to

identify the method of feature combination resulting in the highest accuracy.
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2. We enrich activity-based features by using the information extracted from commit

messages, as well as the Project API descriptions related to code developers have

interacted with, as part of the domain knowledge that can be used to better profile

developers for the purpose of bridging the lexical gap to enhance automated assign-

ment for open bug reports.

3. We explore a joint recommendation technique combining Ordinal Regression and

Learning to Rank in an effort to increase the accuracy of these ranking algorithms at

low k-values.

The rest of this paper is organized as follows. Chapter 2 describes key information

about the bug lifecycle, projects used, linking heuristics employed, and other import back-

ground knowledge to better understand this paper. Chapter 3 discusses related studies that

have motivated our study. Chapter 4 formally describes our problem statement. Chapter

5 reviews the process in which we prepare our textual data as well as how we mathemati-

cally define and calculate our feature scores. Next, we examine the four methods of feature

combination used in Chapter 6. We review our experimental setup, research questions, and

evaluation metrics in Chapter 7. We then discuss our empirical evaluation and findings in

Chapter 8. We examine threats to the validity of the study and motivate future work in

Chapter 9, before concluding in Chapter 10.
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Chapter 2

Background

In this chapter we review key information about software bugs, the bug lifecycle, and other

information central to a thorough understanding of the problem space.

2.1 Bug Lifecycle Overview

Bruegge and Dutoit, in their textbook Object-Oriented Software Engineering Using UML,

Patterns, and Java, define a software bug or defect as ”a coding mistake that may cause

an unintended or unexpected behavior of the software component” [3]. Bugs can be unin-

tentionally introduced into a project for a variety of reasons, including project deadlines,

lack of communication, simple programming errors, unclear requirements, and many oth-

ers. One of the ways in which developers manage and track bugs is through the use of Issue

Tracking Systems (ITS) such as BugZilla, Mantis, and JIRA. For the purposes of this study,

we consider BugZilla to be our defining example of an ITS. BugZilla is a free and open

source web-based bug tracking software available for most operating systems that has been

utilized by thousands of projects and companies around the world, both as an out-of-the-

box solution and as the framework for a personalized bug repository. It allows developers

to track outstanding bugs, problems, issues, and change requests for many different types

of software products. Figure 2.1 shows a bug report from the Eclipse Platform UI project

that is being managed through BugZilla. In this view, we can see critical information re-

garding the bug’s description, as well as when it was reported, its importance, and who is

responsible for correcting the bug.
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Figure 2.1: Bug Report #384108 from Eclipse Platform UI as reported in BugZilla.

To better define and model the passage of a bug and its corresponding bug report

through the different stages of being identified and corrected, a bug lifecycle, with dif-

ferent states and transitions, serves as a guideline to a project team working to correct these

bugs [8]. The bug lifecycle tracks the progress of the bug through several steps across three

broad phases: Initial Bug Management, Bug Triage, and Bug Localization and Correction.

The default bug lifecycle model used by BugZilla sees the bug begin as an unconfirmed bug

report. If a developer can confirm the bug’s existence or if the bug receives enough public

votes, an official bug report is created and assigned to a developer. That developer fixes the
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Figure 2.2: Lifecycle of a Bug

faulty code and submits their updates for testing. If the tests pass verification, the bug is

marked as closed. If they fail the testing phase, the bug is reopened and the developer will

repeat the bug fixing process. This process is represented in figure 2.2

Bug Localization is a software maintenance task in which a developer uses information

from the bug report to identify and locate some section of the source code that is responsible

for the generation of the bug. When approaching this as an Information Retrieval problem,

we can consider extracted information from the bug report to be a query and the software

project to be a problem space that contains the desired search result [21]. Likewise, Bug

Triage is a software maintenance task where a bug report is assigned to a relevant developer

who is suited to fix the bug. In traditional bug repositories, these bugs are manually triaged

by a specialized developer or project manager. When approaching this as an Information

Retrieval problem, we can consider extracted information from the bug report to be a query

and the profiles and previous bodies of work of each developer with respect to the software
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project to be the problem space that contains the desired search result [39].

2.2 Version Control Overview

A version control system enables multiple developers to work simultaneously on a single

project. Each developer maintains their own copy of the files, and can make changes to

these local files at their discretion. In this form, these changes do not affect the version

of the code used for production (e.g. the code end users of the system interact with), nor

do they impact the code that other developers are working with. When developers choose

to share their changes with other members of their team, they ”commit” their code to a

centralized repository that other members of the development team have access to, along

with a descriptive message summarizing any changes they have made. These changes can

then be downloaded by other developers for incorporation into their local copy. Addition-

ally, these changes can be added to the production version of the code, meaning that the

developer’s changes are now available to end users.

Version Control also enables multiple developers to simultaneously work on the same

file. If different team members edit and commit different lines within the same file, the

version control system will automatically integrate the most recent updates by each devel-

oper into that file in the centralized repository. In the event that users edit the same line and

the updates are conflicting (e.g. each commit would overwrite changes made by the other),

the system requests human assistance in reconciling the differences. Finally, the version

control system maintains a log of changes and historical versions of a project. All changes

made to the centralized repository, as well as the resultant state of the project, are saved

and accessible at any time. Furthermore, these saved changes relay information about who

edited a file, when they edited the file, and why they edited the file (per their descriptive

commit message).
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2.3 Project API Documentation Overview

Application Programming Interface (API) Documentation is a set of technically written de-

scriptions and instructions containing information about a given project. These documents

detail information about functions, classes, return types, arguments, and other code tokens

present in a project. This documentation, while technical in nature, is generally written in

a natural language, such as English, and is designed to be human-readable, with the aim of

empowering developers to better understand and utilize the project. Providing appropriate

documentation is commonly considered a best practice for software engineering and can

play a large role in making code more maintainable and reusable.
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Chapter 3

Related Work

In this chapter, we highlight several approaches on bug triage and localization that pro-

foundly influenced our approach. We have identified three previous studies as particularly

relevant in guiding the direction of our approach. Tian et al. [32] and Ye et al. [41] offer

exploratory studies into recommending developers to be assigned to a bug report. Lam et

al. [16] introduce the use of Deep Learning in combination with Information Retrieval (IR)

techniques to improve the accuracy of Bug Localization activities. A summary of each

study is shown in Table 3.1.

Table 3.1: Feature Types Considered in Related Works
Study Feature # Feature Type

Ye et al. [41] (2014) 5 Code (& API) Similarity, Metadata
Tian et al. [32] (2016) 16 Code Similarity, Bug Report Similarity, Local-

ization results, Metadata
Lam et al. [16] (2017) 6 DNN Relevancy, Code Similarity, Metadata

Ye et al. [41] implement an IR approach for bug localization that uses adaptive learning

to derive weighted features based on the source files, bug history, and API descriptions.

Using a learning to rank approach, the authors combine features to generate a list of scores

indicating the likelihood that the code responsible for the bug exists in the given file. They

employ a Vector Space Model and Cosine Similarity for ranking measures of textual sim-

ilarity, extracting features similar to those used in this study. They calculate the similarity

between a bug report and source code file, as well as between a bug report and source code
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file enriched with API specifications for the classes and interfaces. The inclusion of API-

enriched source code better allows the study to bridge the lexical gap, by annotating the

source code (written in a programming language) with API descriptions written in natural

language. The inclusion of natural language-based annotations allows for a more effective

cosine similarity comparison between the annotated source code and the natural language

text found in the bug report. They also implement four metadata features about the bug

fixing history of the project. First, a collaborative filtering score that measures the textual

similarity of a bug report to previous bug reports that have resulted in changes to a given

file. Next, the similarity of class names mentioned in the bug report to class names in the

source code file. Finally, the Bug Fixing Recency and Frequency for a file, measuring how

recently (in months) a file has been changed and how many times within the last year a file

has been changed as a result of bug fixing activity.

The model used in [41] is evaluated on the same dataset as used in this study. They

compare their novel approach against four baselines: a standard VSM method based solely

on textual similarity between bug reports and source code, the Usual Suspects method that

recommends the top k most frequently fixed files [15], the BugLocator ranking tool [23],

and the BugScout classifier tool [42]. They offer an empirical evaluation of their classifier

as compared to these methods, as well as explore issues of future utility, training size and

fold count impact, and runtime performance. Specifically, Ye et al. identify that as long as

the most recent data was included in the training set, a larger training set did not have any

positive impact on the accuracy of the classifier.

Tian et al. [32] introduce the current state-of-the-art approach for generating bug re-

port assignee recommendations. They offer a novel unified learning to rank approach that

leverages information from both developer activities and bug localization to capture 16 fea-

tures representing a developer’s suitability to fix a bug identified in a bug report. They then

evaluate their results on over 11,000 bugs across three open source projects. Their assignee

recommendation features are split into two domains: activity-based features and location-

based features. They combine these features in a unified learning-to-rank approach that
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generates a ranked list of the most suited developers to solve a bug report. They focus

on evaluating their approach against existing activity-based [1], and location-based [29]

approaches.

Activity-based approaches recommend a developer for a particular bug report based on

how closely the developer’s expertise aligns with the information identified in the report.

We infer the developer’s expertise based on previous developer activities within the project

[1], [31]. Activity-based approaches consider information revolving around source code

previously altered by the developer and bug reports previously completed by the developer.

While mining this information offers valuable insight into the suitability of a developer to

address a bug report, it fails to consider information linking a bug report to specific source

code files [32]. Location-based approaches focus on identifying which source code file is

most similar to the bug report and then inferring which developer is best suited to alter that

source code file [28], [20], [11]. This approach relies on the completion of bug localiza-

tion to match an incoming bug report to several potential buggy locations and assumes that

developers who have recently touched or modified that code have substantial expertise in

addressing that bug [32]. This approach more completely considers information correlat-

ing source code files and bug reports, but is heavily reliant on the implementation of an

underlying localization technique and does not fully consider developer expertise based on

the topic of the bug report [32].

Tian et al. created disjoint test and training sets out of 10 equally sized folds of bug

reports (sorted temporally, with the oldest reports first) for each project. The ranking model

was trained on the five folds prior to a test fold, and then evaluated on a test fold to generate

a top-k ranking of developer recommendations. Results showed that their unified approach

consistently outperformed the existing activity-based and location-based baselines. For

top-1 accuracy, their model outperformed the activity-based baseline by 50.0% - 100.0%

and location-based baseline by 11.1% - 27.0%. The average weight of each feature returned

by the rankSVM tool was used to approximate the relative importance of each feature.

However, this study does not identify if using a smaller training set comprised of recent
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data is viable as explored in [41].

Lam et al. [16] implemented a joint-recommendation method employing a Deep Neural

Network (DNN) along with a revised Vector Space Model (rVSM), a form of Information

Retrieval (IR), to bridge the lexical gap and more accurately recommend files as potential

locations for bugs, especially at lower k-values. Their approach, DNNLOC, extracts textual

data from bug report and source code pairings, using the same features as [41]. They also

add a DNN-based relevancy score that learns to semantically relate terms in a bug report

and code or comment text without a reliance on measures of textual similarity, computing

how semantically and contextually relevant a source code file might be to a bug report.

Once a vector of features has been built, the features are fed through a separate multi-

layered Deep Neural Network to generate a single combined score that can be used to

rank the candidate source files in order of likelihood that they contain the relevant buggy

code. This approach was evaluated against the same dataset used by [41] and this paper.

Their results indicated a universally higher accuracy at all k-values between 1 - 20 than all

previously identified approaches, including [1], [15], [29], [41], and [42].

They also explore the impact of various components and parameters on the overall ac-

curacy of the application. Varying the size of the DNN Relevancy Estimator showed that a

hidden layer with over 1,000 nodes contributed to a higher and more stable accuracy. Ad-

ditionally, they explored the effects of training data size on the accuracy of the application.

The training dataset was split into 10 equally sized folds, with fold10 containing the most

recent bug reports that were used for testing. Initially, only fold9 was used for training,

with an additional fold being added to the training set for each test. This study revealed

that increasing the size of the training set offered no benefit to the accuracy of the model,

and that the most recent bug report data was the most useful for training.
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Chapter 4

Problem Statement

As software programs become more pervasive and ubiquitous, the reliability requirements

imposed upon a software system grow increasingly stringent. Continuous systems mandate

a high percentage of system uptime, necessitating systems that can continue to function in

the face of hardware or software errors as well as necessitating constant monitoring, rapid

debugging, and potentially live patching. Even more dangerous are undetected bugs that

incorrectly alter the results of a system. Historically, the use of incorrect results caused by

undetected bugs has led to catastrophes in mission-critical [5] and safety-critical systems

[18].

In any software project of sufficient size and complexity, bugs are inevitable. Project

deadlines, ignorance of best coding practices, and developer turnover can all increase the

likelihood that a bug is created. Furthermore, software documentation is frequently incom-

plete or out of date, as systems can be complex structures assembled by different compo-

nents, and projects can grow so large or complex that any one developer rarely has knowl-

edge of the entire system [9]. As a result, software development teams can be required

to spend a great deal of time and effort fixing bugs. Hill et al. report that a large major-

ity of software cost comes exclusively from activities related to the evolution and system

maintenance of existing source code [10]. Specifically, the process of identifying, localiz-

ing, and correcting software defects is an expensive, time consuming, and labor-intensive

task. Bug Localization and Bug Triage are two critical components of this process, but

are themselves manual, labor intensive, and require a great deal of expertise with regards

to both the software project and the software team. Additionally, the varying quality of
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bug reports submitted during the development lifecycle of a project can make efficiently

locating, assigning, and addressing these bugs even more difficult.

In order to lessen the cost of these processes and reduce human debugging time, sev-

eral studies have attempted to automate bug triage and localization [16], [32], [40], [41].

However, these studies have historically lacked the accuracy necessary for wide-spread

commercial adoption. Adapting these existing approaches to more completely consider the

information available to connect a bug report and the developer most suited to address it,

as well as exploring recommendation techniques to increase accuracy at lower k-values,

offers the potential to improve the accuracy and usability of the approach to a satisfactory

level.
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Chapter 5

Feature Engineering

In this chapter, the preprocessing and feature extraction approach is detailed. First, we

introduce our overall approach to generating developer rankings. We then review all pre-

processing work performed on the text and explore the text comparison algorithm used,

before introducing all features used to connect a developer with a bug report and the man-

ner in which we normalize variance in data ranges.

5.1 Feature Use Overview

Figure 5.1: Approach Overview.

Figure 5.1 provides an overview of the process used to create our ranking models and

generate a ranked list of developers for a given bug report. In this process, a set of developer

profiles, composed of previous source code touched, previously fixed bug reports, previ-

ous commit messages, and other bug fixing metadata, are created and mined to generate

a set of 22 features that can be used to rank developers in order of suitability for working
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on a bug report. For the learning-to-rank, ordinal regression, and joint-recommendation

approaches described in Chapter 6, feature scores are extracted from each historical Bug

Report-Developer Profile pairing and used to train the ranking model (this training does

not occur in the Naive Aggregation approach). When a new Bug Report enters the system,

its feature data is extracted and is ranked either by the trained ranking model or via naive

aggregation. This creates a list of developers ranked in order of suitability to work on that

bug report. The remainder of this chapter will describe the manner in which we extract

information from the project materials to create developer profiles and how we mathemat-

ically define the features used in our ranking models. Chapter 6 describes the methods in

which we combine these features to create and train the models used to generate rankings

for each developer.

5.2 Text Preprocessing

Before feature extraction, all textual data was preprocessed using standard steps to tok-

enize, cast to lowercase, remove stop words from, and stem the input. Tokenizing is the

process of parsing natural text data into tokens - a series of delimited strings that contain no

white spaces, punctuation marks, and other non-alphanumeric characters. Casting the text

to lowercase allows for more effective comparison of text by removing any case-specific

considerations. Stop Words are a set of commonly used words that have no value in IR or

search queries. Most search engines, for example, are programmed to ignore such words.

We employed the Python NLTK standard English stopword list, which includes common

pronouns such as ”I”, ”our”, and ”their”, as well as other non-descriptive words such as

”are”, ”these”, and ”the.” Stemming is the process of reducing inflected or derived words

to their base form. As an example, both ”fixed” and ”fixing” can be stemmed to ”fix.” The

standard Porter stemming algorithm [14] in Python’s NLTK package was used to perform

this process.

Additionally, code entities in the Bug Report text that were written in camel case were

split into their component words based on their capitalization. These tokens were also
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tokenized, cast to lowercase, and stemmed, or discarded if they were present in the list of

stop words. These tokens were appended to the end of the bug report description. For

example, the code token ValuePropertyDetailMap would be split into ”value”, ”property”,

detail”, and ”map” (which are each then stemmed and appended). The initial token is not

removed from the bug report. This allows the text comparison algorithm detailed in section

5.3 to recognize components within similar code tokens that are not expressed in natural

language.

5.3 Text Comparison Algorithm

In order to numerically measure the similarity between two text documents, we must con-

sider the cosine similarity score. This study utilizes the same cosine similarity metric as

defined in [32]. The similarity between a given bug report, Br, and a given developer, D,

(i.e. φ(Br, D)) is calculated through a series of cosine similarity comparisons between two

documents - Cosine(f1, f2), where f1 and f2 are both text-based files. These files could

include bug reports, source code, or commit messages. This function transforms each doc-

ument into a vector of weight, where each word is an element of the vector. We calculate the

weight of a word using TF-IDF, or term frequency-inverse document frequency, a common

method of assigning weights in IR [22]. TF-IDF essentially measures how ”important” a

word is to a given document and is computed as:

wterm,doc = TFterm,doc × IDFterm (5.1)

In this equation, the Term Frequency, the number of times the term appears in the doc-

ument, is multiplied by the inverse of the Document Frequency, the number of documents

that contain the term. We then use the weight vectors, w, of each document to compute

their cosine similarity:

Cosine(f1, f2) =
~f1 · ~f2

||~f1|| ||~f2||
(5.2)

In this equation, ~f1 and ~f2 are the vectors obtained from each compared file, · is the

vector dot operation, and ||~f1|| and ||~f2|| are the size of each vector.
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5.4 Feature Extraction

This section presents how features are extracted from the combination of source files, bug

reports and commit messages. Both activity-based and location-based features are used

based on Tian et al. [32] as discussed in section 3. However, we also include a comparison

based on the bug report and the developers’ previous commit messages to capture an added

dimension of developer suitability. See table 5.1 for a grouping and overview of all features

used to generate bug report assignee recommendations.

Table 5.1: Features used in the Ranking Model
Feature Group Formula
φ1

Bug Report-Code
Similarity

max(Cosine(Br, s)|sεDCodeCorpus)

φ2 avg(Cosine(Br, s)|sεDCodeCorpus)

φ3 sum(Cosine(Br, s)|sεDCodeCorpus)

φ4 Cosine(Br,DMergedCode)

φ5 max(Cosine(Br, a)|aεDAPICorpus)

φ6 avg(Cosine(Br, a)|aεDAPICorpus)

φ7 sum(Cosine(Br, a)|aεDAPICorpus)

φ8 Cosine(Br,DMergedAPI)

φ9

Bug Report-Bug Report
Similarity

max(Cosine(Br, b)|bεDBugCorpus)

φ10 avg(Cosine(Br, b)|bεDBugCorpus)

φ11 sum(Cosine(Br, b)|bεDBugCorpus)

φ12 Cosine(Br,DMergedBugs)

φ13 Bug Fixing Metadata
|brOneyear(Br,D)|

φ14 (diffMTH(Br.date, last(Br,D).date) + 1)−1

φ15

Location-Based Features

MaxCiεTopK(Cosine(Ci, DMergedCode))

φ16 AvgCiεTopK(Cosine(Ci, DMergedCode))

φ17

{
1, if D has touched Ci ε TopK

0, otherwise

φ18 |Br.files ∩DCodeCorpus|
φ19

Bug Report-Commit
Similarity

max(Cosine(Br, r)|rεDCommitCorpus)

φ20 avg(Cosine(Br, r)|rεDCommitCorpus)

φ21 sum(Cosine(Br, r)|rεDCommitCorpus)

φ22 Cosine(Br,DMergedCommits)
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5.4.1 Activity-Based Features

This subsection includes features that are calculated based on the bug fixing activities of

developers, including previously touched code and any relevant API descriptions, as well

as previously solved bug reports.

Bug Report-Code Similarity

Bug Report-Code Similarity refers to features that measure the similarity between a bug

report and code that a developer has interacted with in the past year. We limit the code

considered to the past year to compare the bug report to more relevant code changes from

the developer. Changes made by a developer over one year ago are likely to be far less

relevant to the developer’s expertise than more recent changes. Furthermore, if a developer

has not interacted with some file in over a year, it is likely that the source file may have been

significantly altered since the developer last interacted with it. If the bug report is similar

to code that the developer has interacted with, they are more likely to be familiar with

the programming terms and entities referenced in the bug report, as well as the code that

would require alterations to satisfy the bug report. For the purposes of this study, we define

developer interaction as any action resulting in that file’s inclusion in a commit, including

editing, addition, or deletion. For comparison, we aggregate the summary and description

into one document for each bug report, Br. The first four features are defined as follows:

φ1(Br,D) = max(Cosine(Br, s)|sεDCodeCorpus)

φ2(Br,D) = avg(Cosine(Br, s)|sεDCodeCorpus)

φ3(Br,D) = sum(Cosine(Br, s)|sεDCodeCorpus)

φ4(Br,D) = Cosine(Br,DMergedCode)

In the above equations, Br is the summary and description of the bug report. s is each

source file withinDCodeCorpus whereDCodeCorpus is the set of source code files in the project

touched by the developer, D, during any development activity. For φ1−3 we calculate the

cosine similarity for each source file and compute the Maximum, Mean, and Sum as feature
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values. To align the range of φ3 with the other features used in this study, we implement

feature scaling as detailed in section 5.5. For φ4, we merge all touched source code for the

developer, D, into one document, DMergedCode, and compute its cosine similarity with Br

as a feature.

Bug Report-API Similarity

Bug Report-API Similarity refers to features that measure the similarity between a bug

report and the API documentation of classes and interfaces referenced in the source code

that a developer has interacted with in the past year. Typically, the majority of text in a

bug report is expressed in natural language (e.g., English), whereas most of the content in

source code files is expressed in a programming language (e.g., Java). Cosine similarity

functions only return non-zero values for tokens that are explicitly present in both docu-

ments, meaning that comparing two documents expressed in different forms or languages

may not result in a valuable feature. This challenge in comparing bug report text and source

code has been termed the lexical gap. In this scenario, bug reports and source code are only

considered capable of bridging the lexical gap when the source code is annotated with ex-

tensive, comprehensive comments or the bug report contains fragments of code matching

the source file, such as class names, method names, or a stack trace. However, ”in practice,

it is often the case that the bug report and a relevant buggy file share very few tokens, if

any” [40].

To help bridge the lexical gap, we consider a feature set that measures the similarity

between a bug report and the natural language-based API specifications of the classes and

interfaces used in the source code that a developer has interacted with in the past year.

For each source file, we extract references to classes and interfaces from ”import” state-

ments and in-line references. Using the project API specification, we extract the natural

language descriptions of the referenced classes to create a document for each source file in
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the project. This technique has been previously employed in [41] to better connect bug re-

ports and source files to address the problem of bug localization. These features are defined

as follows:

φ5(Br,D) = max(Cosine(Br, a)|aεDAPICorpus)

φ6(Br,D) = avg(Cosine(Br, a)|aεDAPICorpus)

φ7(Br,D) = sum(Cosine(Br, a)|aεDAPICorpus)

φ8(Br,D) = Cosine(Br,DMergedAPI)

In the above equations, Br and D are defined as previously described in Bug Report-

Code Similarity. a is each set of API documentation for a source file within DAPICorpus

where DAPICorpus is the set of all API documentations for each source file touched by the

developer with in the past year. To align the range of φ7 with the other features used in

this study, we implement feature scaling as detailed in Section 5.5. For φ8, we merge all

referenced API documentation for the developer, D, into one document, DMergedAPI , and

compute its cosine similarity with Br as a feature. These features are calculated in the

same manner as φ1−4.

Bug Report-Bug Report Similarity

Bug Report-Bug Report Similarity refers to features related to the similarity between a

given bug report and any bug reports that the developer has fixed prior to the bug report

being filed. Tokens appearing in bug reports that have been historically fixed by a developer

may offer insight into their areas of expertise. If the tokens in the current bug report are

similar to the historical tokens, the bug in question may fall within the developer’s areas of

expertise. These features are calculated in the same manner as φ1−8. Again, the summary

and description of the bug report are combined into one document for textual similarity
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computation. These features are defined as follows:

φ9(Br,D) = max(Cosine(Br, b)|bεDBugCorpus)

φ10(Br,D) = avg(Cosine(Br, b)|bεDBugCorpus)

φ11(Br,D) = sum(Cosine(Br, b)|bεDBugCorpus)

φ12(Br,D) = Cosine(Br,DMergedBugs)

In the above equations, Br and D are the same as for Bug Report-Code Similarity. b

is each bug report within DBugCorpus where DBugCorpus is the set of bug reports marked as

”RESOLVED FIXED”, ”VERIFIED FIXED”, or ”CLOSED FIXED” that list that devel-

oper as the author of the commit that resolved the bug report. To align the range of φ11 with

the other features used in this study, we implement feature scaling as detailed in Section

5.5. For φ12, we merge all previous bug reports for the developer, D, into one document,

DMergedBugs, and compute its cosine similarity with Br as a feature.

Bug Fixing Metadata

Bug Fixing Metadata refers to two features related to the bug fixing history of a project

- bug fixing frequency and bug fixing recency. Tian et al. assume that a developer that

has fixed a large number of bugs is typically knowledgeable about the project and could

potentially be more suitable for fixing a bug than a less experienced developer [32]. To

quantify this, we include bug fixing frequency as a feature that aggregates the count of

Bug Reports a developer has completed for a project over the past year. To align the range

of this feature with the other features used in this study, we implement feature scaling as

detailed in Section 5.5. This is defined below:

φ13(Br,D) = |brOneyear(Br,D)|

Similarly, a developer who has fixed bugs recently is also typically knowledgeable

about the current state of the project and could be more suited for fixing a bug than a de-

veloper who has not interacted with the project for some time. To quantify this, we include
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bug fixing frequency as a feature that calculates the inverse of the difference between the

dates of the given bug report and the developer’s most recently fixed bug report in months

(rounded down). In this equation we use an inverse to more harshly penalize developers

that have not interacted with the project in a longer span of time. This is defined below:

φ14(Br,D) = (diffMTH(Br.date, last(Br,D).date) + 1)−1

5.4.2 Location-Based Features

This subsection includes features that are calculated based on the location of the code that

likely contains the bug identified in the bug report. To perform this bug localization process,

we use the learning to rank approach employed in [41]. While the DNN-based localiza-

tion approach used in [16] has offered higher accuracy in identifying potentially buggy

files, we elected to match the approach used in [32] to allow for a more valid comparison.

Implementing Lam et al.’s Localization approach has been left as a future work for this

study.

Potential Buggy Code-Related Code Similarity

To calculate these features, we perform bug localization to generate a list of the 10 source

code files that are most likely to contain code relevant to the submitted bug report. If the

developer has worked on the files where the bug is most likely to be or has worked on other

similar files, they may be well suited to addressing the bug. We then perform additional

cosine similarity calculations to identify the similarity between code the developer has

worked on within the past year and the likely buggy locations. These functions are defined

below:
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φ15(Br,D) =MAXCiεTopK(Cosine(Ci, DMergedCode))

φ16(Br,D) = AV GCiεTopK(Cosine(Ci, DMergedCode))

In the above equations, TopK is the top-k source code files identified by the bug lo-

calization technique to be most likely to contain the code causing the bug described in Br.

For this study, K is set to 10. Ci is each of the top-k most likely source files to contain the

bug and DMergedCode is one document containing all touched source code for the developer

within the past year. We compute the cosine similarity between each file from the localiza-

tion and the merged corpus of all code touched by a developer. We return the maximum

and average value as features.

Touched Potential Buggy Files

This feature is a simple indication of whether or not the developer has touched a file within

the top 10 files returned from bug localization used in φ15 and φ16. The feature is defined

below:

φ17(Br,D) =

 1, if developer D has touched Ci ε TopK

0, otherwise

Touched Mentioned Files

For some bug reports, developers include the names of some classes or files, either within

text or within the form of a stack trace. To capture this, we include the count of files

mentioned in the bug report that a developer has previously touched as a feature, defined

below:

φ18(Br,D) = |Br.files ∩DCodeCorpus|
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In the above equation, Br.files is the set of source code file names appearing in the

Bug Report, Br, and DCodeCorpus is the set of source code files touched by the developer,

D to fix previous bugs. To align the range of this feature with the other features used in this

study, we implement feature scaling as detailed in section 5.5.

5.4.3 Developer Profile-Based Features

This subsection introduces the rationale behind using commit messages as a potential

source of information for recommending developer assignment and then details how this

information is calculated and represented as features.

A typical bug report contains a mix of structured information, composed of a natural

language text describing the observed anomaly and potential code elements that are in-

volved, (e.g. method calls, identifiers, file names, and stack traces). As a bug-fixing commit

typically contains a similar description, relevant properties can be extracted to characterize

how the bug was processed. These properties may not necessarily be reflected in the source

code classes and methods being updated by the bug-fixing commit. To give an illustrative

example, we consider the following bug report and its fixing-commit in Figure 5.2.

As shown in Figure 5.2, the developer describes the bug using natural language along

with mentioning classes and software versions. Various features correlate this bug report

to file changed in its fix-commit. However, in this example the changed class is only in-

novating the method with the violated property, and thus its similarity with the bug report

would be relatively low. Whereas, the examination of the commit message log reveals a

stronger connection between the bug report and the message’s description. For instance

both texts contain similar repeated keywords such as extension and disabled icons, increas-

ing their similarity, which enhances the effectiveness of any IR-based approaches [34], [36].

Therefore, we propose features capturing the similarity between bug reports and commit

messages in the following subsection.
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Figure 5.2: Bug Report #384056 from Eclipse UI.

Bug Report-Commit Log Similarity

Version history and commit logs have frequently been used in development activity-related

data mining and several previous studies have used them in relating bug reports to devel-

opers [2], [30], [35], [38]. As stated above, a developer’s commit message text can offer a

brief summary of the code written or work performed. As a result, these logs can contain

text that may be valuable in matching developers with a bug report. To accommodate this

extra dimension of developer suitability, we have introduced four additional cosine similar-

ity features comparing a bug report with documents composed of the developer’s commit

messages. These features are calculated identically to φ1−4, φ5−8, and φ9−12, using the

commit logs associated with commits submitted by the developer prior to the creation of

the Bug Report as the document. To avoid falsely inflating similarity measures, any refer-

ences to the corrected bug in the commit text (e.g. ”Bug 384056” or ”Fix for Bug 384056”)

were stripped from the text prior to any comparison. Commits submitted without a sum-

marizing commit message were not included in this document. These features are defined
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as follows:

φ19(Br,D) = max(Cosine(Br, r)|rεDCommitCorpus)

φ20(Br,D) = avg(Cosine(Br, r)|rεDCommitCorpus)

φ21(Br,D) = sum(Cosine(Br, r)|rεDCommitCorpus)

φ22(Br,D) = Cosine(Br,DMergedCommits)

In the above functions, the Cosine function, Br, and D are identical to φ1−12. r is

each commit message within DCommitCorpus where DCommitCorpus is the set of version con-

trol commit messages previously submitted by the developer during development activity.

DMergedCommits contains every prior commit message for that developer. The Cosine Sim-

ilarities scores are computed in the same way as φ1−12. To align the range of φ21 with the

other features used in this study, we implement feature scaling as detailed in section 5.5.

5.5 Feature Scaling

Features with a wide range of values can be detrimental when training machine learning

algorithms. Many algorithms tend to perform better when there is not a wide variation in

the range of values for a given feature and when most features have a similar range and

scale. Feature scaling normalizes all features to the same scale so that they become more

comparable with each other. For some feature φ, let φmin and φmax be the minimum and

maximum observed values for that feature in the training dataset. A feature may also have

values present in the testing set that are larger than the observed maximum or smaller than

the observed minimum found in the training set. To accommodate these scenarios, we scale

the features in the testing and training dataset as follows:

φScaled =


0, if φ < φmin

φ−φmin

φmax−φmin
, if φmin ≤ φ ≤ φmax

1, if φ > φmax

(5.3)
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Chapter 6

Feature Combination

This chapter reviews the four methods we have chosen to combine the features we have

extracted from the bug fixing data. Choosing the appropriate method of feature combi-

nation can be as important as choosing appropriate features. More sophisticated methods

of feature combination can be trained to identify the importance of certain features and

apply a weighting factor to emphasize the ones that have been identified as important to

the accuracy of the model. We have selected four methods of combination to provide a

more complete analysis of our features - naive aggregation, a learning to rank approach,

an ordinal regression-based approach, and a joint-recommendation approach utilizing both

learning to rank and ordinal regression.

6.1 Naive Aggregation

To illustrate the benefits offered by the use of ranking algorithms, we include a Naive

Aggregation of the features as a baseline for comparison with our other models. Feature

Score aggregation was used in earlier studies [24], [27], [43] where the number of features

is limited, so they are either weighted using trial and error or simply summed to generate a

final ranking value. No weights are applied to any of the features. The bug report/developer

pairings are then ranked in descending order by this final score. This approach is shown

below, where φi(r, s) is each feature score and k is the total number of features:

f(Br,D) = φ(Br,D) =
k∑
i=1

φi(r, s) (6.1)
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6.2 Learning to Rank

We include a learning-to-rank approach for combining features to allow for effective com-

parison with previous results. This approach was used in [32], [40], and [41] to generate

their final ranking score. In this approach, a ranking model is trained using historical data

that is labeled with the correct developer/bug report pairing. The model uses these values to

identify which features are of the most importance to the correct bug report/developer par-

ings and calculates corresponding weights for each feature to emphasize the features that

most contribute to a correct ranking and minimize the ones that do not. Each feature value

in the test set is then multiplied by its corresponding weight to generate a final ranking

value. The bug report/developer parings are then ranked in descending order by this final

score. This approach, as defined by [41], is shown below, where φi(r, s) is each feature

score, wi is that feature’s rank assigned by the learning to rank model, and k is the total

number of features:

f(Br,D) = wTφ(Br,D) =
k∑
i=1

wi ∗ φi(r, s) (6.2)

6.3 Ordinal Regression

To provide an additional dimension of comparison, the features extracted from each dataset

were used as input into an Ordinal Regression model in the Microsoft Azure Machine

Learning Studio. An Ordinal Regression model was selected due to its suitability in prob-

lems involving predicting and ordering ranked values. Predicting an ordinal ranking is a

specialized task differentiated from predicting values on a continuous scale by the lack of

an intrinsic scale in the numbers representing rank order. For example, predicting students’

test scores could be performed by a standard regression model, but a prediction of their

class ranking would require an ordinal regression model. The model treats a ranking prob-

lem as a series of related classification problems. To address this, the algorithm uses an

extended binary classification model for each rank to indicate if the value should be ranked

above or below each rank.
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A Two-Class Boosted Decision Tree classifier is used as the underlying binary classifi-

cation algorithm. This is an ensemble learning method where ensuing trees correct for the

errors of previous trees before using the entire ensemble of trees to make a joint prediction.

Boosted decision trees are typically appropriate in instances where the features are some-

what related and where many more examples are present than features - both conditions

that our dataset meets. Additionally, this algorithm is suited to a wide variety of machine

learning tasks, at the cost of being one of the more memory-intensive approaches. Fur-

thermore, Anvik et al. [1] have used a Decision Tree classifier to address bug localization.

Given this information, we feel this algorithm is the most suitable classifier for this study.

This approach, as defined by [19], is shown below:

r(x) = 1 +
K−1∑
k=1

[[f(x, k) > 0]] (6.3)

6.4 Joint Recommendation

Evaluations of early trials on the Eclipse UI dataset indicated that the Ordinal Regression

approach, while less accurate overall than the learning to rank approach, correctly identified

a noteworthy amount of correct developer-bug report pairings that were missed at low k-

values by the learning to rank approach. In an effort to increase the accuracy of the ranking

algorithm at low k-values, the viability of a joint recommendation technique is explored. In

this technique, the results of the ordinal regression algorithm will be used to create another

feature for use in the learning to rank approach. For a given developer, if the developer is

the top-ranked (k=1) recommendation in the ordinal regression approach, the value will be

1, otherwise the value will be 0. This feature is then used as a component of the learn to

rank approach described in section 6.2. This feature is defined as follows:

φ23(Br,D) =

 1, if developer D is the ranked first by Ordinal Regression

0, otherwise
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Chapter 7

Experimental Methodology

In this chapter, we begin by presenting our research questions. We then introduce the

dataset used and review several corrections and filters applied to the data. Next, we enumer-

ate the database structure and linking heuristic used to connect developer commit messages

with bug reports. Finally, we review the experimental setup and evaluation metrics.

7.1 Research Questions

In attempting to identify if we can more accurately assign bug reports to software develop-

ers for a project, we present the following research questions:

1. Does a model that considers textual similarity between bug reports and version con-

trol commit messages, as well as between bug reports and project API specifications,

achieve higher accuracy than a model without those features for the problem of au-

tomated bug assignee recommendation?

2. Which method of feature combination for our features (between naive aggregation,

learning-to-rank, and ordinal regression) is most suitable for bug triage?

3. Does a joint recommendation approach offer superior accuracy as compared to its

component parts?

4. Which features are most important to the accuracy of our model?

5. Does the size of the training dataset have a significant impact on the accuracy of the

classifier for the problem of automated bug assignee recommendation?
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For RQ1, we compare accuracy results for the most recent fold of bug report data

between a model using just the features used by Tian et al. in [32] and a model using

those features in addition to our new features (i.e. φ5−8 and φ19−22). We use the SVM-

rank tool to implement a learning to rank-based training for our model, as is performed

in [32]. For RQ2, we take the set of features that performs better from RQ1 and apply

the three different methods of feature combination discussed in section 6 and compare

the accuracy results across each of the three approaches. For RQ3, we compare the joint

recommendation approach discussed in section 6.4 to the approaches examined in RQ2.

For RQ4, we measure the relative importance of each feature by comparing the weights

assigned by the learning-to-rank tool to each feature in the model generated for our feature

set. For RQ5, we vary the number of folds used for training for each dataset and examine

the impact of smaller training sizes on overall classifier accuracy. We track the accuracy of

the learning-to-rank model using the best performing feature set from RQ1 at k values of

1, 5, 10, and 20 across increasingly small training datasets. With each iteration, the fold

containing the oldest data will be discarded until fold9 (the most recent bug fixing data

prior to the test set) is the only fold used for training.

7.2 Data Collection and Filtration

To allow for effective comparison, we used the same dataset used by Lam et al. & Ye et

al., and partially overlap with the dataset used by Tian et al. [16], [32], [41]. This dataset

consists of bug reports, commit logs, and project sources of six open source java projects:

AspectJ, Birt, Eclipse UI, JDT, SWT, and Tomcat. A brief description of each project

is available in section 7.3. All the bug reports, source code links and buggy files, API

documentation, and the oracle of bug-to-file mappings are all publicly available1 thanks to

Ye et al.

1http://dx.doi.org/10.6084/m9.figshare.951967
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Table 7.1: Subject Projects Considered for Evaluation.
Subject Projects [41]

Project Time Range # Reports # Files # API entries # Devs # Commits
AspectJ 03/02 - 01/14 659 4,439 54 8 7,608

Birt 06/05 - 12/13 4,691 6,841 957 57 32,210
Eclipse UI 10/01 - 01/14 6,670 3,454 1,314 122 28,621

JDT 10/01 - 01/14 6,528 8,184 1,329 37 27,977
SWT 02/02 - 01/14 4,266 2,056 161 31 27,185

Tomcat 07/02 - 01/14 1,075 1,552 389 18 20,665

For the purposes of this study, we only considered bug reports that were marked ”RE-

SOLVED FIXED”, ”VERIFIED FIXED”, or ”CLOSED FIXED” for both training and

testing. Furthermore, we discard any bug reports that are linked to multiple git commits, as

it is unclear which fixed files and commits are relevant [41]. Additionally, we discard any

bug reports that do not have a java file present in their list of corrected files, as these are

considered to be nonfunctional reports [4].

Manual inspection of the data revealed that several developers had entered code un-

der multiple usernames over the course of several of the projects. These multiple user-

names occurred for several reasons, including switching between a username and a dis-

play name (”obesedin” → ”Oleg Besedin”), adding a middle name to a display name

(”Markus Kuppe”→ ”Markus Alexander Kuppe”), or simple typos (”Chris Goldthorpe”→

”Chris Goldthorep”). Each instance of duplicate usernames was manually verified by en-

suring that each account shared a common username or email address before correction.

These corrections removed one extraneous developer profile from the AspectJ Project, nine

from the BIRT project, and eleven from the Eclipse UI Project.

7.3 Projects Used

For this study, we considered benchmark datasets from six open source Java projects. These

projects offer varying time ranges, file counts, and number of developers working on the

project. Table 7.2 details information about each project. Several studies have previously
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utilized this set of benchmark datasets to address bug localization [40], [41]. This dataset

partially overlaps with the dataset used in [32] to address bug triage. All of these projects

use BugZilla as their issue tracking system and Git as a version control system. The bug

reports, source code, and API specifications for each project are all publicly accessible.

The projects considered are as follows:

• AspectJ2: an aspect-oriented programming extension for Java.

• Birt3: an Eclipse-based business intelligence and reporting tool.

• Eclipse Platform UI4: The user interfaces for the Eclipse integrated development

platform.

• JDT5: A suite of Java development tools for Eclipse.

• SWT6: A widget toolkit for Java.

• Tomcat7: A web application and servlet container.

7.4 Database Structure

BugZilla stores different information relevant to the creation, processing, and completion

of a bug report as it moves through the bug lifecycle. For each of the above projects,

several data points were mined for each bug report to create the benchmark dataset. The

information from BugZilla was augmented by mapping the report to the file changes and

commit that was responsible for their correction. This was performed prior to this study

using heuristics proposed by Dallmeier and Zimmerman in [4] as described in Section 7.5.

The relevant information extracted for each bug report is enumerated below:

2http://eclipse.org/aspectj
3https://www.eclipse.org/birt/
4https://projects.eclipse.org/projects/eclipse.platform.ui
5http://www.eclipse.org/jdt
6http://www.eclipse.org/swt
7http://tomcat.apache.org
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• Bug id: The six digit ID number used to identify the bug in BugZilla

• Summary: A brief message summarizing the detected bug

• Description: A longer message with more specific information about the bug

• Report time: The date and time the bug report was created

• Reporter: The developer or user who reported the bug

• Assignee: The developer who was assigned the task of fixing the bug

• Status: The working status of the bug, indicating where in the bug lifecycle it is

• Commit: The commit hash matching the Git commit that resulted in the bug being

corrected

• Author: The developer who submitted the Git commit that resulted in the bug being

corrected

• Commit time: The time at which the correcting commit was submitted

• Log: The commit message attached to the correcting commit

• Files: The files that were changed in the correcting commit

7.5 Linking Heuristic

In order to establish our ground truth - that is, which developer submitted the commit that

resulted in the correction of the bug identified in a bug report - we employ the linking

heuristic used by Dallmeier and Zimmerman to connect a bug report with the git commit

and file changes that resulted in it being marked as closed. This process is performed

for bug reports with status of ”RESOLVED FIXED”, ”CLOSED FIXED”, or ”VERIFIED

FIXED”. In this process, project change logs are searched for phases such as ”bug 384108”

or ”fix for 384108” to link that commit with the target bug report. The date of the commit
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and the dates where the bug reports changed statuses are also considered. Any reports

that link to multiple git commits or revisions, as well as reports that share a fixing commit

with another report, are ignored because it is not clear which fixed file is relevant. Per

Dallmeier and Zimmerman, bug reports without fixed files are also ignored because they

are considered not functional [4]. Employing this heuristic allows us to identify the ID

(hash), author, submission time, log, and files included for the commit responsible for

submitting the accepted and verified fix to a bug identified in a bug report.

7.6 Experiment Setup and Evaluation Metrics

Our experimental setup includes two sets of comparisons. First, we examine the validity

of our included API features and commit message features by evaluating our feature set

against the feature set used in [32]. Second, we examine the appropriateness of the different

ranking algorithms by evaluating the accuracy and performance of each algorithm on our

feature set. For this study, we consider a simple naive aggregation of feature scores, the

learning-to-rank approach implemented in the rankSVM package used by Tian et al. [17],

an ordinal regression algorithm, and a joint-recommendation approach between ordinal

regression and learning-to-rank. To run this experiment, the bug fixing history of the project

was loaded into a MySQL database. A Python script was created to calculate the features

covered in section 5 and the results were fed into Joachim’s SVM-rank tool [13] and the

Microsoft Azure Machine Learning Studio.

To mitigate the risk of overfitting, we create disjoint training and test sets by sorting the

bug report data chronologically by when they were reported and divided the dataset into 10

equally sized folds where fold 10 is the most recent bug fixing data. The exception to this

rule is the AspectJ dataset. Due to its smaller size, the dataset was split into 3 equally sized

folds, where fold 3 is the most recent bug fixing data. For each bug report, we calculate

the feature scores and aggregate them through one of the mentioned scoring functions for

each pairing of a developer and the bug report. We then rank these files in descending

order based on these results and identify the position in which the correct developer (the
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developer who submitted the code that resulted in the resolution of the bug report) is ranked.

The most recent fold (fold 10, or fold 3 for AspectJ) is used as the test set.

We use Accuracy@K evaluation, as many previous studies have employed this metric

[16], [29], [31], [32], [41]. This metric identifies the proportion of top-K recommendations

that contain the ground truth (the developer that ”fixed” the bug report), where K is the

number of rankings we consider. For example, if a list of ten recommended developers

contained the correct developer in the fifth position, we would record a correct identification

for K values of 5, 6, 7, 8, 9, and 10. We consider K values between 1 - 20.
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Chapter 8

Experimental Results and Evaluation

In this section, we review the results from our experiment, using them to answer each of

our research questions. We conducted several experiments to evaluate the accuracy of our

feature set as compared to the feature set used in [32], the accuracy of different methods of

feature combination, the importance of each feature, and the accuracy of our approach over

different training set sizes. It is worth noting that the AspectJ and Tomcat datasets have less

than 20 developers, meaning that their accuracy results will inevitably converge to 100%,

as our accuracy@K metric shows the top 20 rankings. Based on this, these datasets may

not be wholly suitable for inclusion in this study as discussed in Chapter 9. However, they

have been included in order to fully replicate the dataset utilized in [16] and [41].

8.1 Feature Set Accuracy Evaluation

RQ1: Does a model that considers textual similarity between bug reports and version

control commit messages, as well as between bug reports and project API specifications,

achieve higher accuracy than a model without those features for the problem of automated

bug assignee recommendation?

For the first research question, we measure the accuracy@K on each dataset across four

models.

1. Our baseline model - a recreation of [32], using features φ1−4 and φ9−18

2. The baseline model with the addition of our API similarity features (φ1−18)
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3. The baseline model with the addition our commit similarity features (φ1−4 and φ9−22)

4. A model containing all features listed in Table 5.1 (φ1−22)

Feature combination was performed using a learning-to-rank approach to match the ap-

proach used in [32]. We measure the accuracy of all models using the disjoint test and

training sets as discussed in Section 7.6. These results are shown in Figures 8.1 - 8.6.

The figures referenced in this section only include the results of the baseline and our com-

plete model for better visual distinction, as the API features had little to no impact on the

accuracy of the model (meaning that our first and second models had near identical accu-

racies and our third and fourth models had near identical accuracies). Figures charting the

accuracy of all 4 models can be found in Appendix A.

These Figures show that the accuracy of our model matches or exceeds the accuracy

of the baseline model at all k-values across every project. Statistical Hypothesis testing

shows that our approach significantly outperforms the approach used in [32] (p < 0.05)

across all datasets. Our approach is particularly effective on the larger Eclipse Platform

UI dataset, outperforming the baseline approach by 6 - 17% across all k-values, with our

accuracy being at least 10% higher for all k values of 1 - 10, as shown in figure 8.3. For

the AspectJ and JDT datasets, we outperform the baseline model by up to 2.25%. For

the BIRT dataset, we outperform the baseline by up to 2.5%. For the SWT dataset, we

outperform the baseline by up to 4%. For the Tomcat dataset we outperform the baseline

by up to 1%. These consistently higher accuracies show that the use of commit messages to

profile developers has significantly improved the accuracy of determining the appropriate

developer for a given bug report.
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Figure 8.1: Accuracy Comparison Between Features for AspectJ

Figure 8.2: Accuracy Comparison Between Features for BIRT
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Figure 8.3: Accuracy Comparison Between Features for Eclipse Platform UI

Figure 8.4: Accuracy Comparison Between Features for JDT
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Figure 8.5: Accuracy Comparison Between Features for SWT

Figure 8.6: Accuracy Comparison Between Features for Tomcat

8.2 Feature Combination Accuracy Evaluation

RQ2: Which method of feature combination for our features (between naive aggregation,

learning-to-rank, and ordinal regression) is most suitable for bug triage?



43

For our second research question, we measure the accuracy@K of our feature set, which

has been shown in Section 8.1 to achieve consistently higher or equal accuracy, across three

types of feature combination methods - naive aggregation, learning-to-rank, and ordinal

regression. These results are shown in Figures 8.7 - 8.12.

The learning-to-rank approach matches or exceeds the accuracy of the naive approach

at all K values for the AspectJ, Eclipse Platform UI, and Tomcat datasets. The learning-to-

rank approach matches or exceeds the naive approach for most K values in the BIRT, JDT,

and SWT datasets, but is outperformed across several k values. However, for all k-values

where the naive approach is more accurate, it outperforms the learning-to-rank approach by

only a combined average of 0.5%. The ordinal regression approach yielded significantly

worse results, with an accuracy 20-70% lower than the learning-to-rank approach across

datasets where there were more than 20 developers. Interestingly, the accuracy does not

perceptibly change above K=5 for the ordinal regression approach in datasets with more

than 20 developers. This means that in all predictions, if the ordinal regression approach

identified the correct developer/bug report pairing, it was in the top five results. This sug-

gests that the ordinal regression approach may be more suited for use as a component of a

joint recommendation technique that focuses on improving accuracies at lower K-values.

These results show that the learning-to-rank approach used in [32] is typically the best

suited method of feature combination for bug triage.
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Figure 8.7: Accuracy Comparison Across Feature Combination for AspectJ

Figure 8.8: Accuracy Comparison Across Feature Combination for BIRT



45

Figure 8.9: Accuracy Comparison Across Feature Combination for Eclipse

Figure 8.10: Accuracy Comparison Across Feature Combination for JDT
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Figure 8.11: Accuracy Comparison Across Feature Combination for SWT

Figure 8.12: Accuracy Comparison Across Feature Combination for Tomcat

8.3 Joint-Recommendation Accuracy Evaluation

RQ3: Does a joint recommendation approach offer superior accuracy as compared to its

component parts?
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For our third research question, we measure the accuracy@K of our feature set across

the learning-to-rank method of feature combination and the joint-recommendation tech-

nique described in Section 6.4. Across every dataset, the accuracy of the joint-recommendation

technique was within 0.89% of the learning-to-rank accuracy for all K-values, with the ex-

ception of the JDT Dataset, in which the joint-reccomendation approach outperformed the

learning-to-rank approach at K=1 by 1.25%. Additionally, one approach was not con-

sistently more accurate than the other, with both approaches offering a slightly higher

accuracy at various K-values. Finally, statistical hypothesis testing shows that the joint-

recommendation approach does not significantly outperform the learning-to-rank approach.

Therefore, we can conclude that the joint-recommendation technique does not offer supe-

rior accuracy as compared to its component parts for the problem of bug triage.

8.4 Evaluation of Feature Importance

RQ4: Which features are most important to the accuracy of our model?

To empirically measure the importance of each feature, we can examine the weight

assigned to them during the learning-to-rank process. Features that are assigned a higher

weight are of more importance to the accuracy of the model, while features with a lower

or negative weight are less important to the accuracy of the model. To mitigate the risk of

an overfitted model, we will examine the weights across each individual project, as well as

their average. The top 5 weighted features for each project are shown in Table 8.1. Novel

features implemented by this study are shown in bold. The weights for all 22 features

across each project is shown in Table B.1.

Table 8.1 shows that for the average weight and all projects except Tomcat and JDT, two

of the features proposed by this study are ranked as the two most important features. For

Tomcat and JDT, two of the features proposed by this study are in the top 3 most important

features. Specifically, φ20 (the average cosine similarity between the bug report and each

of the developer’s previous commit messages) has the highest weight across four datasets
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Table 8.1: Top-5 Weighted Features for each project
Feature Weights

Rank AspectJ BIRT Eclipse UI JDT SWT Tomcat Average
1 φ22 φ20 φ20 φ20 φ20 φ16 φ20

2 φ8 φ6 φ22 φ10 φ22 φ22 φ22

3 φ4 φ10 φ10 φ8 φ10 φ19 φ10

4 φ1 φ3 φ7 φ1 φ2 φ9 φ1

5 φ16 φ15 φ1 φ22 φ2 φ13 φ3

and the average. φ22 (the cosine similarity between the bug report and all of the developer’s

previous commit messages) is also ranked first or second in four datasets and the average.

The presence of these features among the top weighted features across all datasets indicates

that our features are both relevant and important to the accuracy of the model. Furthermore,

three of the four commit message related features (φ19−22) were assigned a weight greater

than 1, indicating that this group of features is an important consideration for assigning bug

reports to developers. φ20 and φ22 were weighted notably above 1.0, with average weights

of 8.9 and 3.68, respectively. This shows that these features are considerably important to

the accuracy of the model.

8.5 Training Size Impact Evaluation

RQ5: Does the size of the training dataset have a significant impact on the accuracy of the

classifier for the problem of automated bug assignee recommendation?

To answer our fifth research question, we conducted an experiment to evaluate the im-

pact of training data sizes on the accuracy of our classifier. The data from fold10 was used

as a test set. We initially used all 9 remaining folds as a training set. We then reduced the

number of folds used in the training set, removing the oldest fold for each trial, until we

concluded by just using fold9 (the most recent training data) as the training set.

Figure 8.13 shows the accuracy corresponding to the different numbers of folds used

in training. As seen, accuracy does not substantially change when the number of folds
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Figure 8.13: Top-K Accuracy with Varied Training Data Sizes

is varied. This is consistent with the findings of Lam et al. [16] for the problem of bug

localization. They posit that this is reasonable due to the temporal locality of bug fixing

activity, where the files that were recently fixed are more likely to require similar fixing

again in the near future. This means that developers assigned to work on these bugs would

likely be selected again to work on the new bug. Additionally, this offers the benefit of

achieving near-optimal accuracy with a smaller training dataset, reducing the time and

memory complexity requirements of training the classifier.
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Chapter 9

Threats to Validity and Future Work

In this chapter, we identify several threats to the validity of our study and identify future

work for this topic. We group our threats into Internal Threats, Construct Threats, and

External Threats to validity. We then review a list of potential areas of future work that

could prove valuable to this study going forward.

9.1 Threats to Validity

Internal Threats to validity include potential errors in the implementation of our approach,

using a different language from previous studies (Python was used in our study to obtain

the feature scores, where the previous approach in [32] used Java), and distributing our

data processing across several virtual machines. To mitigate these risks, we reviewed our

code to identify any errors. Additionally, we ensured that the virtual machines had iden-

tical configurations by creating and configuring the first virtual machine and only creating

additional VMs by cloning the first machine. Finally, we feel that the approach itself is

language-agnostic and the language used to create the approach will not impact the mathe-

matical calculations of the features.

Construct Threats to validity include the suitability of our evaluation metrics, the appro-

priateness of the ordinal regression algorithm, the appropriateness of our joint recommen-

dation technique, the appropriateness of our dataset, and our assumption of the correctness

of previous work in [16] and [32]. We use accuracy@K metrics, which have been com-

monly used in previous studies on this problem and other related problems, including [16],
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[29], [31], [32], and [41]. We feel this widespread adoption justifies the use of accuracy@K

as our evaluation metric. With regards to the appropriateness of ordinal regression, previ-

ous studies have shown that ordinal regression is appropriate for ranking problems [7].

Given that this process of bug triage is a ranking problem, ordinal regression is therefore

appropriate. It is possible that our joint recommendation technique is not sufficiently robust

to suitably aggregate results from the learning-to-rank and ordinal regression approaches.

Implementation of a more robust joint recommendation technique has been defined as out

of scope and is left for a future work of this study. The AspectJ and Tomcat datasets may

not be suitable for inclusion in this study, as they both have less than 20 developers who

participated in bug-fixing development activity for the project. However, we include multi-

ple other projects that featured 37 - 122 developers who participated in bug fixing activity.

Finally, we draw heavily from the features and methodology of Tian et al. and rely on the

dataset and findings of Lam et al. [16], [32]. We feel that the approach, evaluation, and

consideration of threats to validity of Tian’s approach are sound, comprehensively docu-

mented, and we accept their findings as valid. The dataset used by Lam et al. has seen

documented use in several previous studies [16], [41].

External Threats to validity relate to the generalizability of our findings for this eval-

uation. We evaluate our findings on the projects listed in table 7.2. The selected subject

projects may not be sufficiently representative of all projects, meaning that our approach is

not sufficiently generalizable. However, these projects have been used in previous studies

as noted above and were selected to represent java projects of varying project duration,

team size, and count of bug reports [16], [41].

9.2 Future Work

There are two main areas of improvements to explore for future work - increasing the

usefulness of our textual data in feature extraction and exploring the suitability of different

algorithms and approaches to aggregating feature scores. To increase the usefulness of our

textual data, there are several alterations we can make. First, there may be words that, while
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not present in the standard list of stop words, are used so frequently in bug reports that they

lose any value in text similarity comparisons (e.g. ”bug” or ”fix”). To resolve this issue,

we plan to identify the 30 most common words used across the bug report data and include

them in the list of stop words removed before cosine similarity calculations.

Another manner in which we can improve our cosine similarity calculations is by nar-

rowing the focus of the touched code for a developer. Previous studies have considered

the entire touched file regardless of what specific contributions the developer made to the

file. Narrowing the focus of these features to the method level or to only include the devel-

oper’s specific contributions could offer a more accurate calculation of relevancy between

a developer and a bug report. Furthermore, the use of a different textual similarity calcu-

lation method, such as Word2vec, could be explored. Word2vec is a group of two-layer

neural networks that reconstruct the linguistic context of a word as a vector and provides

state-of-the-art word embeddings [6].

The low accuracy from using just ordinal regression is consistent with the low accuracy

of the Deep Neural Network-based approach used in [16]. The similarities between these

results motivate the exploration of a joint recommendation technique similar to the one used

by Lam et al., which was shown to offer a higher accuracy than any of its component parts.

Similarly, we plan to implement their DNN-based Localization technique, DNNLOC. This

approach offered a higher accuracy than the learning-to-rank approach used in [41], espe-

cially at low k-values. Tian et al. identify Ye’s localization approach being insufficiently

accurate as a weakness of their approach. While we used that approach in this study to

ensure an accurate replication, we plan to explore an implementation of DNN-based bug

localization.

Recent studies have shown that not all previously closed bug reports are relevant for

a given open report, especially if they contain stack traces that are treated as just natural

text. As a result, these closed reports can represent extraneous noise in the search space

and incur a significant computational overhead for the localization and assignment [26].

We have identified multiple bug reports containing method invocations and stack traces
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in the data used for this study, but define query optimization [25] as out of this study’s

scope. This does not affect the comparison of this study’s algorithms, as this exclusion

is consistent between all algorithms. However, we plan to conduct a future comparative

study to evaluate the impact of query optimization on the performance of each algorithm.

Finally, our model exceeds the accuracy of the previous model used in [32] by the greatest

margin on the Eclipse Platform UI dataset, which has significantly more developers than

the other datasets. A comparative study using other projects with a similar number of

developers could offer insight into if our model is particularly well-suited to projects with

large numbers of developers.

Finally, developer assignment is not always a clear cut case of assigning the bug report

to the best suited developer in every instance. The best suited developer to fix a bug report

may be out of office, busy with other work, or otherwise unavailable. In the event of a

high-priority bug, waiting until that developer is free may not be a viable solution, so the

project manager may consider assigning the bug to the next most suited developer that is

currently available. To address this scenario, we plan to explore, quantify, and implement

an expanded set of developer-profile based features that address issues such as availability,

scheduling conflicts, current workload, and overall developer expertise.
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Chapter 10

Conclusion

This paper presents a new set of features for inclusion in a ranking model for assigning bug

reports to the developer most suited to work on them based on historical bug fixing data.

We conduct a comparative study against the previous model defined in [32] to empirically

validate the appropriateness of our new features. Furthermore, we examine the weights

assigned to our features in the learning-to-rank model as compared to other features in the

model to verify that our proposed features are relevant to the performance of the model.

Results indicate that our model offers higher accuracy than the previous approach and that

our features are relevant to the accuracy of the model. Additionally, we conduct an evalua-

tion of four different feature combination approaches - naive aggregation, learning-to-rank,

ordinal regression, and a joint-recommendation approach. Our evaluation shows that the

learning-to-rank approach generally offers higher accuracy than the other approaches. Fi-

nally, we conduct an experiment to evaluate the impact of training data sizes on our clas-

sifier’s accuracy. Our evaluation shows that training on the most recent fold of bug fixing

data is comparably accurate to training on the entire bug fixing history of the project.
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Appendix A

RQ1 Full Comparisons

Figure A.1: Accuracy Comparison Between All Features for AspectJ
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Figure A.2: Accuracy Comparison Between All Features for BIRT

Figure A.3: Accuracy Comparison Between All Features for Eclipse Platform UI
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Figure A.4: Accuracy Comparison Between All Features for JDT

Figure A.5: Accuracy Comparison Between All Features for SWT
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Figure A.6: Accuracy Comparison Between All Features for Tomcat
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Appendix B

RQ4: All Feature Weights

Table B.1: Weights of all features used in the Ranking Model
Feature Weights

Feature # AspectJ BIRT Eclipse UI JDT SWT Tomcat Average
φ1 1.83 0.32 2.47 4.85 1.91 1.47 2.14
φ2 0.51 -4.59 0.39 -2.41 3.97 0.43 -0.28
φ3 1.03 2.75 0.88 2.78 2.79 0.86 1.85
φ4 2.17 -0.31 1.94 -1.14 -2.36 0.37 0.11
φ5 1.52 -0.63 1.47 2.01 1.99 0.83 1.2
φ6 -2.15 3.52 1.71 -3.03 1.57 -0.37 0.21
φ7 -2.21 0.09 2.66 -1.05 1.43 0.78 0.28
φ8 2.42 0.05 1.57 5.52 -0.38 0.45 1.6
φ9 0.76 1.31 0.84 3.33 2.08 2.27 1.76
φ10 0.58 2.95 2.75 7.53 6.37 1.68 3.64
φ11 1.58 2.2 1.25 0.56 1.98 0.26 1.3
φ12 0.12 -0.74 -1.42 -2.09 -0.85 -1.64 -1.1
φ13 1.16 0.88 2.25 1.27 2.46 1.95 1.66
φ14 0.8 0.69 0.7 0.91 0.78 0.65 0.75
φ15 0.73 2.53 -0.12 1.52 0.31 -0.77 0.7
φ16 1.73 0.85 1.06 -1.05 0.98 3.26 1.14
φ17 0.18 0.87 0.17 0.54 0.36 0.04 0.36
φ18 0.61 -0.2 0.73 0.84 -0.15 -0.54 0.21
φ19 0.31 1.2 2.14 1.94 1.76 2.54 1.65
φ20 1.28 14.62 14.82 12.33 9.04 1.33 8.9
φ21 1.28 -0.38 0.98 -1.56 -3.79 0.32 -0.52
φ22 2.46 0.68 3.52 4.27 8.49 2.69 3.68
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