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Abstract

Strategic Behavior and Manipulation in

Gender-Neutral Matching Algorithms

Sanjay Varma Rudraraju, M.S.

Rochester Institute of Technology, 2018

Supervisor: Dr. Hadi Hosseini and Dr. Ivona Bezáková

Within artificial intelligence, the sub-field of multi-agent systems studies the

foundations of agent interactions and strategic behavior. Two-sided match-

ing is one of the most fundamental problems in this field with applications in

matching residents to hospitals, kidney donors to receivers and students to high

schools. The earliest algorithm that solved this problem is the Gale-Shapley

algorithm which guarantees a stable matching based on the preferences of both

sides but has a drawback of favoring one side over the other, that is, proposers

always get their most optimal stable partner.

We consider the design and analysis of gender-neutral stable matching algo-

rithms where the proposing side from both sides is randomly chosen thereby

giving an equal probability for both sides to get their most optimal stable part-

ner (ex-ante). Later, we focus on investigating if an agent can exhibit strategic
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behavior i.e., whether it is possible for an agent to manipulate so that he/she

improve the partner obtained when on the proposed side while retaining the

partner obtained when on the proposing side.

The results obtained showed that for some manipulation algorithms, agents

can still manipulate the outcome even when the decision of which side is

proposing is unknown. Also, empirical evaluations were performed to un-

derstand and solidify the results.
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Chapter 1

Introduction

Two-sided matching is an area of interest for both computer scientists

and economists due to the various real-world applications. A problem in the

two-sided matching domain is the stable marriage problem which poses the

following question: How do we match two sides of a market who have pref-

erences over the members of the other side?. It is traditionally known as the

stable matching problem because the two sides of a market are represented

using men and women. The seminal algorithm that solved this problem is

the Gale-Shapley algorithm. This algorithm has various applications such as

matching residents to hospitals in the US - National Resident Matching Pro-

gram (NRMP) [5] and several other nations such as Canada, Japan, and the

UK [6]. The algorithm is also used for public school admissions in Boston and

New York [1, 2], recruiting university faculty in France [5], online matrimony

in India and auction mechanisms for sponsored search in Internet search en-

gines [5].

The Gale-Shapley algorithm, hereafter referred to as the GS algorithm,
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works by one side proposing to the other and finds a stable matching where

every man and woman on both sides are matched to someone on the other side

and no man and woman prefer each other over their current partners. The GS

algorithm favors one side over the other by assigning optimal stable partners

for the proposing side and pessimal stable partners for the proposed side [4].

This creates a bias in the matching and is the basis for our first problem state-

ment: Can an algorithm be designed that will not have this bias and still result

in a stable matching?. In our investigation, we found that the design of such

an algorithm is possible but made us question if an agent participating in the

matching can manipulate to improve their outcome. This led us to another

interesting problem that we decided to tackle i.e., Can an agent manipulate

his/her preferences to get a more preferred partner than their assigned partner

if they are on the proposed side?.

Chapter 2 introduces the stable marriage problem and also discusses

the various notations along with the definitions properties used throughout

the thesis. Chapter 3 talks about the various real world applications of the GS

algorithm. Chapter 4 discusses the related work in the sub-domain of stable

matching and unbiased matching algorithms. Chapter 5 has the design of the

gender-neutral algorithm along with the theorems and proofs that have been

written based on the gender-neutral algorithm manipulation results. Chapter
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6 discusses the empirical evaluations performed to corroborate the results.

Finally, Chapter 7 speaks about the conclusions that we arrived at and the

future directions.
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Chapter 2

Preliminaries

The Stable Marriage Problem (SMP) is the problem of finding a stable

matching between two equal sized disjoint sets of elements given a strict or-

dering of preferences over the members of the opposite side. Let men M and

women W be two equal sized disjoint sets where an agent from M be mi and

from W be wj. Let �ai denote agent ai’s strict ordering of preferences, referred

hereafter as a preference list over the other set, and �C denote a complete set

of preference lists (referred to hereafter as a preference profile) for the SMP.

For example, if agent mi strictly prefers wj over wk we write wj �mi
wk. A

Matching is a one to one mapping µ : M ∪ W → M ∪ W such that µ(mi) =

wj and µ(wj) = mi if the agents (mi,wj) are matched to each other.

The seminal algorithm to solve the SMP is the Gale-Shapley [4] al-

gorithm in which each unmatched man in a iterative manner proposes to each

woman on his ordered preference list. If the woman is single, she immediately

accepts the proposal and if not, she compares the proposer with her current
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partner and matches with her most preferred partner as submitted in her pref-

erence list. The pseudo-code for the Gale-Shapley algorithm is as follows:

Algorithm 1: The Gale-Shapley Algorithm

Data: M , W , �C

Result: µ - final matching

begin

initialize all men and women on both sides to unmatched and

set men to proposers

while ∃ some man mi is unmatched and hasn’t proposed to

every woman on the other side do

wj ←− most preferred agent on proposer list to whom

proposer hasn’t yet proposed

if wj is unmatched then

mark mi and wj as matched

else if wj prefers mi to current partner mk then

mark mi and wj as matched and mk as unmatched

else

wj rejects mi and mark wj proposed to mi

Example: Given an instance, M = {m1, m2, m3} and W = {w1, w2, w3}.
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�m1 : w1 w2 w3

�m2 : w2 w1 w3

�m3 : w2 w3 w1

�w1 : m2 m3 m1

�w2 : m1 m2 m3

�w3 : m1 m2 m3

Applying the Gale-Shapley algorithm where men propose to the women, we

have:

• Step 1: m1 proposes to his top choice w1 and since w1 is unmatched, a

pair (m1, w1) is formed.

• Step 2: m2 proposes to his top choice w2 and since w2 is unmatched, a

pair (m2, w2) is formed.

• Step 3: m3 proposes to his top choice w2 and since w2 is matched to m2,

w2 compares m2 and m3 based on her preferences and rejects m3.

• Step 4: Next, m3 proposes to his next choice w3 and since w3 is un-

matched, a pair (m3, w3) is formed.

• Step 5: The algorithm terminates since all the agents have been matched.

The stable matching of the above instance obtained by using the GS

algorithm is µ = {(m1,w1),(m2,w2),(m3,w3)}

Stability is where no participant would leave their match to form a
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better matching along with another agent who he/she prefers more over the

matched partner (blocking pair). The outcome should therefore be a desirable

outcome for every participant such that no blocking pair is formed.

Definition 1. Given a matching pair µ, a pair (mi,wj) is called a block-

ing pair if wj �mi
µ(mi) and mi �wj

µ(wj). A matching is said to be stable

if it contains no blocking pair.

Example: Given an instance

M = {m1, m2, m3, m4, m5} and W = {w1, w2, w3, w4, w5}

�m1 : w1 w5 w4 w2 w3

�m2 : w5 w1 w2 w3 w4

�m3 : w2 w3 w1 w4 w5

�m4 : w5 w1 w2 w3 w4

�m5 : w4 w5 w1 w2 w3

�w1 : m5 m2 m3 m1 m4

�w2 : m4 m2 m3 m1 m5

�w3 : m5 m3 m2 m1 m4

�w4 : m4 m1 m2 m5 m3

�w5 : m1 m5 m2 m4 m3

The stable matching obtained using the Gale-Shapley algorithm (which we will

discuss later) for above example is µm = {(m1,w1), (m2,w5), (m3,w3), (m4,w2),

(m5,w4)}.

In this instance, woman w1 prefers m5 over her partner m1 but m5

is matched to w4 who according to w5 is a better partner than w1. Hence
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(m5,w1) is not a blocking pair and similarly other pairs of men and women

can also be verified to show that there is no blocking pair this matching, there-

fore the matching is stable.

In the stable marriage problem, strategy-proofness is very desired as

there should be no incentive for any participant to act in a strategic manner

such as by manipulating his/her preference list and improve his/her matching.

If the matching algorithm is strategy-proof then every agent would be truth-

ful in submitting their preference list and would not try to misreport his/her

preference list.

Definition 2. A matching algorithm is strategy-proof when truthful report-

ing is the dominant strategy for every agent. That is, no man or woman

can improve their matching by manipulating their preference ranking while

the preference ranking stays the same for the other agents. A matching algo-

rithm is said to be strategy-proof for men if any woman can manipulate her

preference list to improve her partner outcome but no man can improve his

partner outcome by manipulating. Similarly, a matching algorithm is said to

be strategy-proof for women if there exists a man that can manipulate and

improve his match but no woman can manipulate to improve partner outcome.
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Roth proved that the Gale-Shapley algorithm is strategy-proof for men

but not for women [10]. In the above example, woman w1 submits her true

preference list as �w1 = m5 � m2 � m3 � m1 � m4 and gets partner m1

upon using the Gale-Shapley algorithm. If instead she submits a manipulated

preference list �′
w1 = m5 � m2 � m4 � m3 � m1 she would get the man m2,

who is better than m1, as her partner upon using the Gale-Shapley algorithm.

Hence, .

The Gale-Shapley algorithm is one of the most popular algorithms used

to solve the stable matching problem and the matching that is produced us-

ing this algorithm can be shown stable for both sides and strategy-proof for

men. The algorithm results in matching men to their best possible partner i.e.,

man-optimal partner and women to their worst partner i.e., woman-pessimal

partner [4]. The man-optimal partner is a partner of man mi such that the

partner is the best woman he can receive in any possible stable matches that

can be obtained in a given instance. Similarly, woman-optimal partner refers

to the best man a woman can receive in any possible stable matches. On the

contrary, man-pessimal partner and woman-pessimal partner refer to the worst

partner that can be obtained by any man or woman respectively, participating

in the stable marriage problem.
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Strategy-proofness is another important property sought after in any

matching algorithm. The Gale-Shapley algorithm isn’t strategy-proof for both

sides but is strategy-proof for men (to be specific, proposers) but not the

women (proposed to). The side which is proposed in the Gale-Shapley al-

gorithm can manipulate their preference list to improve their outcomes by

changing the order of partners ranked in true preference list. Manipulation

algorithms can be developed to find optimal manipulation strategy in order to

get a better partner than the partner received while submitting true preference

lists.

Definition 3. A matching algorithm is said to be manipulable by an agent ai

if there exists preference profiles �′
C and �C which only differ in the preference

list of the agent ai such that µ′(ai) � µ(ai) where µ and µ′ are the matching

before and after manipulation respectively obtained using the Gale-Shapley

algorithm.

In the above example, woman w1 submits her true preference list as

�w1 = m5 � m2 � m3 � m1 � m4 and gets partner m1 upon using the Gale-

Shapley algorithm. If instead she submits a manipulated preference list �′
w1

= m2 � m4 � m5 � m3 � m1 she would get the man m2 as her partner
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upon using the Gale-Shapley algorithm. This manipulation is obtained using

a manipulation algorithm designed by Teo and Sethuraman, hereafter referred

to as the TS manipulation algorithm, (which will be discussed in the Chapter

4) and shows that the Gale-Shapley algorithm is manipulable [13].

An algorithm is said to be Gender-Neutral if both men and women

have equal probability of getting their optimal partner.

The matching obtained when men are the proposers in the gender-

neutral algorithm is represented by µm and when women are the proposers

by µw. We use µ′
m and µ′

w to denote the matching obtained using TS ma-

nipulated preference when men and women propose respectively. Similarly,

µ′′
m and µ′′

w are used when the matching are obtained using inconspicuous

manipulated preference list (which will be discussed in Chapter 4).

The term rank of an agent with respect to other agent’s preferences

is used extensively in this research which refers to the position of partner ob-

tained by agent in the submitted preference list of the other agent. It can be

simply viewed as, if there are a list of agents, the partner that is most liked is

ranked 1 and then partners are ranked in the order of natural numbers.
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The rank of the partner of agent ai is the position of µ(ai) in the

preference list of ai where if ai ranks ‘k’ agents in its preference list the most

preferred agent’s rank is 1 and the least preferred agent’s rank is k.

In the above previous example, man m1 is matched to w1 so rank of

the partner of m1 according to his preference list is 1 whereas the rank of the

partner of w1 according to her preference list if 4.

Any agent that is on the proposed to side might receive more than

one proposal in the running of the Gale-Shapley algorithm or gender-neutral

matching algorithm so the notation Prop(ai, �ai , k) is used to denote the kth

best proposer ranked according to �ai i.e., the preference list of ai.
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Chapter 3

Applications

David Gale and Lloyd Shapley studied the problem of college admission

where colleges have a quota of seats and students apply for them [4]. After

evaluating their applications based on the preference rankings of students, col-

leges have to roll out admissions. Gale and Shapley developed an algorithm

which results in stable matches for the SMP.

The New York City High School Match is one of the examples of the

application of the Gale-Shapley algorithm. Abdulkadiroğlu et al., (2005) have

proposed an algorithm to match students to schools [1]. This has been done

by considering schools and students as two different sides of the market who

provide their preference over the other side. The primary difference between

the Gale-Shapley algorithm and NYC high school matching algorithm is that

in the NYC high school matching algorithm no student would receive more

than one offer. Also, the NYC high school match accommodates the rules set

forth by NYC Department of Education (NYCDOE) such as forcing students

13



to give preference lists for both specialized schools and non-specialized schools.

The algorithm goes as follows:

• Step 1: Every student ranks all the schools in the market and then

applies to the most preferred school.

• Step 2: Every school rejects unranked applicants and ranks its most

preferred students based on the number of available seats.

• Step 3: If at any step a student gets rejected to the school he applied to,

then his application will automatically be sent to the next school on his

application.

• Step 4: The algorithm ends when all the students are matched to some

school and there are no more rejects.
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Algorithm 2: The NYC High School Match Algorithm

Data: Students (S) , High Schools (H), �C

Result: µ - final matching

begin

initialize all students to not rejected

while ∃ student who is not matched to a school do

every school rejects unranked applicants and ranks its most

preferred students based on the number of available seats

if student is rejected by a school he/she applied then

student application sent to the next school on his/her

application

Following, the success with NYC High School Match, the authors were

approached by Boston City to modify their existing algorithm to match stu-

dents. The early algorithm that was used by Boston to match their students

to schools goes as follows:

• Step 1: For each school, the students who have listed it as their first

choice, assign students based on the preference of the school until all

the seats in the school are filled or there are no more students who have

listed the school as their first choice.

.
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.

.

• Step k: For each school that still have available seats, consider students

who have listed the school as their kth choice and accept the students

until either they run out of seats or there are no more students who have

listed the school as their kth choice.

Abdulkadiroğlu et al., suggested the same algorithm used by NYC High

School Match and also offered a variant of the Top Trading Cycle algorithm

for them to implement. The Boston Public School system chose the later and

the algorithm [2] goes as follows:

• Step 1: Every school submits the number of seats that are available.

Each student points to their favorite school and schools point to their

favorite student. For the algorithm to work, there must be at least one

cycle like a student si points to school ci, school ci points to student sj,

student sj points to school cj and cj points to si. The cycles are resolved

by exchanging the assignments where students get the school they point

to in the step. As each student is matched the school seat count is re-

duced and also the student is removed from the further rounds.

.

.
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.

• Step k: Similar to the first step, students and schools point to their top

available choice and if a cycle exists, it is resolved.

The algorithm terminates when there are no more cycles or all the students

have been placed. The difference between the GS algorithm and Boston match-

ing algorithm is that the GS algorithm results in a stable matching but match-

ing is not Pareto-efficient whereas the Boston algorithm is Pareto-efficient but

not stable. Pareto-efficiency is the state of allocation where no individual’s

outcome can be improved without worsening at-least one other individual out-

come.
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Algorithm 3: The Boston Public School Match Algorithm

Data: Students (S) , High Schools (H), �C

Result: µ - final matching

begin

initialize all students to unmatched

while ∃ cycles or unmatched student do

schools and students point to their most preferred partner

if ∃ cycle i.e., student si points to ci, ci points to student

sj, sj points to school cj and cj points to si then

resolve cycle by assigning students to the school they

point to in cycle

The Gale-Shapley algorithm is the basis for the algorithmic match-

ing of residents to hospitals - National Resident Matching Program [11]. The

algorithm begins with matching applicants to the program most preferred ac-

cording to the resident’s preference list or Rank Order List (ROL) as called

by NRMP. If a resident is not matched then the algorithm moves on to the

second preferred program and finally ends when everyone is matched.

18



Chapter 4

Related Works

Unbiased Mechanisms are mechanisms that make sure there is no bias

towards one side. Various researchers in this domain look at unbiasedness

in different ways. While one researcher speaks of unbiasedness by finding

a stable matching that is center of all the stable matchings when arranged

as a distributive lattice, another researcher speaks of mechanisms as unbiased

calling them gender neutral if the matching outcome doesn’t change, no matter

if you are on the proposing or proposed side. This chapter discusses some of

the concepts of unbiasedness established by various prominent researchers.

4.1 Median and Center Stable Matching

Teo and Sethuraman came up with a concept of generalized median

stable matching [12]. Let I be an instance of Stable Marriage and M be the

set of its stable matchings where cardinality of M is n. For every agent in

Men set, order his multiset of partners in M from his most preferred to least

preferred. The ith woman in the sorted list is denoted by Mi(m) for each agent
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m in M and set αi = {(m,Mi(m))} for each man. Similarly we set βi for each

woman. Teo and Sethuraman proved that for i = {1, 2,...,n} αi and βi are

stable matchings and αi = βn-i+1 and αi is said to be the ith generalized me-

dian stable matching of I. The main important result is the stable matching

in middle: αn+1
2

when n is odd and αn
2
, αn

2
+1 when n is even as all the agents

are matched to their lower or upper median stable partners. They proved that

this stable marriage is locally fair but Cheng proved that the stable marriages

are also globally fair by imposing a graph structure for M [3]. In her work,

Cheng constructs G(I) which is the cover graph of (M,�). The relation � on

M is such that µ � µ′ where µ and µ′ are the two matchings in M. Conway

noticed that (M,�) forms a distributive lattice [7] so Cheng took the cover

graph of (M,�) i.e., undirected version of its Hasse diagram, to prove that the

median stable matching is globally fair but the drawback is that computing a

median stable marriage is #P-hard [3].

Example: Given an instance I, where M = {m1, m2, m3, m4} and W =

{w1, w2, w3, w4}.

�m1 : w1 w2 w3 w4

�m2 : w2 w1 w4 w3

�m3 : w3 w4 w1 w2

�m4 : w4 w3 w2 w1

�w1 : m4 m3 m2 m1

�w2 : m3 m4 m1 m2

�w3 : m2 m1 m4 m3

�w4 : m1 m2 m3 m4

20



The set of stable matchings obtained using brute force M in this in-

stance are:

µ1 = {(m1,w1),(m2,w2),(m3,w3), (m4,w4)}

µ2 = {(m2,w1),(m1,w2),(m3,w3), (m4,w4)}

µ3 = {(m1,w1),(m2,w2),(m4,w3), (m3,w4)}

µ4 = {(m2,w1),(m1,w2),(m4,w3), (m3,w4)}

µ5 = {(m3,w1),(m1,w2),(m4,w3), (m2,w4)}

µ6 = {(m2,w1),(m4,w2),(m1,w3), (m3,w4)}

µ7 = {(m3,w1),(m4,w2),(m1,w3), (m2,w4)}

µ8 = {(m4,w1),(m3,w2),(m1,w3), (m2,w4)}

µ9 = {(m3,w1),(m4,w2),(m2,w3), (m1,w4)}

µ10 = {(m4,w1),(m3,w2),(m2,w3), (m1,w4)}

The lattice formed by (M,�) where 1, 2, 3, .., 10 correspond to the above

stable matches is:
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Figure 4.1: Lattice Ordered Set (M,�)

Cheng et al. inspired from the work on median stable matching studied another

class of fair stable matchings called center stable matchings where the fairness

is based on central vertices of G(I). They identified center set of G, which has

all the centers of the cover graph i.e., vertices whose distance to other vertices

is the smallest.

4.2 Gender-Neutrality

Pini et al. (2011) define gender neutrality as mechanism in which the

matching obtained is same even if we change the proposing side and proposed

side [8]. In order to achieve this the authors add a preprocessing round to any

given instance. This is achieved by computing signature for each gender where

signature is a vector of numbers that is built by adding each of preference lists.
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From the list of vectors, signature is the lexicographically smallest vector after

reordering of the members of one gender and renumbering of the members of

other. This vector can be computed in O(n2). Later, the authors propose a

rule called gn-rule [8] which is:

(i) If male signature is smaller than female then we swap men with women

(ii) Else no swap.

After the gn-rule, stable matching procedure can be applied to get a matching.

Example: Given an instance, M = {m1, m2, m3} and W = {w1, w2, w3}.

�m1 : w2 w1 w3

�m2 : w3 w2 w1

�m3 : w2 w1 w3

�w1 : m1 m2 m3

�w2 : m3 m1 m2

�w3 : m2 m1 m3

Applying the pre-processing round on the given instance, the smallest vector

can be obtained by:

1. Swapping men m2 and m3

2. Swapping women w1 and w2

The signature of men is 123123312 and women is 123213312. According to the

gn-rule, we swap men with women as male signature is smaller than female.

The instance obtained is:
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�m1 : w1 w2 w3

�m2 : w2 w1 w3

�m3 : w3 w1 w3

�w1 : m1 m2 m3

�w2 : m1 m2 m3

�w3 : m3 m1 m2

The above discussed is one of the many ways that researchers define gender-

neutrality as in their work.

4.3 Manipulation

The Gale-Shapley algorithm has a proposing and a proposed side where

the proposing side gets most optimal partners and proposed side gets most pes-

simal partners [9]. But the proposed side can manipulate their preference list

to obtain a better partner than the partner obtained when they give their true

preferences. Alvin E. Roth [10] showed that no mechanism exists in which

truth-telling is a dominant strategy for all agents and the proposing side have

no incentive in stating false preferences because they get no better than the

most optimal solution that they get when they give their true preferences.

For simplicity, consider men are on the proposing side and women are

on the proposed side. In this case, the partners of any agent are called the

men-optimal partners but in the case that women are on the proposing side

and men are on the proposed side, the partners of any agent are called the

women-optimal partners.
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Let us assume we have an instance I where woman wi wants to ma-

nipulate in order to get a better partner. Let mi be the men-optimal of wi

and mj be her women-optimal partner. Pini et al., (2011) [8] established con-

ditions to check if a woman can manipulate her preference list to obtain her

women-optimal partner, the following conditions have to be satisfied:

1. In the men proposing Gale-Shapley algorithm she has to receive more

than one proposal.

2. There exists a woman wj whose men-optimal partner is mj

3. wj prefers mi to mj

4. mj prefers wj to wi

5. mi prefers wi to wj

Teo et al., (2001) [13] devised an algorithm for agents on the proposed

side to manipulate to get a better partner (not necessarily partner obtained

when on the proposing side) than her partner (if any). Let wi be the woman

who wants to manipulate with preference list �wi
and we use the TS manip-

ulation algorithm to find a manipulation strategy in order to obtain a better

men-optimal partner.
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• Step 1. Run the men propose algorithm and keep a list of all the men

who propose to wi. Let mi be the men-optimal partner of wi.

• Step 2. Suppose mj is a man who is one of the proposers. Obtain a

modified preference list �wi
(1) by moving mj to the top of �wi

.

• Step 3. Repeat Step 2 on modified preference list to next man who

proposed in the proposer list except mi. After this, we put mi to a list

called Exhausted Men List.

• Step 4. If mj is not in the exhausted men list then run the men propose

algorithm to add any new proposers as long as they are not in exhausted

men list. Repeat Step 2 and Step 3 with mj instead of mi.

• Step 5. Repeat Step 4 till all proposers from the proposer list are moved

to the exhausted men list.

• Step 6. Choose the modified preference list (if any) which results in a

partner who is better than the men-optimal partner while using true

preference list.
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Algorithm 4: The TS Manipulation Algorithm

Data: M , W , �C ←− complete set of preference lists of men and

women

Result: �′
wj

- optimal manipulated preference list

begin

�wj
←− true preference list of wj

N ←− set of proposers

E ←− set of exhausted

�wj
C ←− set of manipulated preference lists

run the Gale-Shapley algorithm using �wj
add men who

propose to wj in N

repeat

Pick man mi from N such that mi @ E

�wj
(1) ←− preference list obtained by moving man to top

of wj’s last generated preference list

add �wj
(1) to �wj

C

add man to E

run the Gale-Shapley algorithm using �wj
(1)

add proposer to wj in N such that proposer @ N

until N = E

Set �′
wj
←− preference list where µ′(wj) is most preferred

partner according to �′
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Example: Given an instance, M = {m1, m2, m3} and W = {w1, w2, w3}

�m1 : w4 w1 w3 w2

�m2 : w1 w3 w2 w4

�m3 : w3 w4 w1 w2

�m4 : w4 w2 w1 w3

�w1 : m3 m1 m4 m2

�w2 : m4 m2 m3 m1

�w3 : m1 m2 m3 m4

�w4 : m2 m3 m1 m4

The woman w4 in above example has more than one proposal while

running the men propose algorithm so we apply the above algorithm to find a

modified preference list that results in a better partner.

• Step 1. Run the men propose algorithm and keep a list of all the men

who propose to wi. Let mi be the men-optimal partner of wi.

So, µ = (m1,w4), (m2,w1), (m3,w3), (m4,w2) and Proposer List = {m3,

m4}

• Step 2. Taking the proposer m4 we obtain a modified preference list

�w4
(1) by moving m4 to the top of �w4 . Therefore, �w4

(1) = m4 � m2

� m3 � m1

• Step 3. Run the men propose algorithm using �w4
(1) and the new ob-

tained partner of w4 is m4 and add the man m1 and m4 to the exhausted

men list. Also, there are no new proposers added to the proposer list.
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Exhausted Men List = {m1, m4}

Proposer List = {m3}

• Step 4. Repeat Step 2 for man m3 and obtain another modified prefer-

ence list �w4
(2) by moving m3 to the top of �w4 .

�w4
(2) = m3 � m4 � m2 � m1

• Step 5. Run the men propose algorithm using �w4
(2) and the new ob-

tained partner of w3 is m3 and add m3 to the exhausted men list. Also,

there are no new proposers added to the proposer list.

Exhausted Men List = {m1, m4, m3}

Proposer List = {}

• Step 6. From the above two strategies available�w4
(2) is the best strategy

since m3 � m1 � m4 according to �w4 .

Hence, manipulated preference list of w4 is m3 � m4 � m2 � m1

Although the manipulation algorithm returns a modified preference list it is

completely different from the true preference list. Vaish and Garg (2017) [14]

proposed an algorithm that rearranges the modified preference list in order

to look like the true preference with at most only one man moved and the

authors call this inconspicuous manipulation. The algorithm is as follows:
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• Step 1. Identify p and q: Let �wi
(1) be the optimal manipulated prefer-

ence list of woman wi. Obtain p and q who are the top 2 proposers from

the proposer list that is ordered according to the �wi
(1) i.e., modified

preference list of wi.

• Step 2. Promoting q: Obtain preference list �wi
(2) from �wi

(1) by placing

q right after p.

• Step 3. Fixing part above p in the list: Identify the non-proposers above

p in �wi
and place them above p in �wi

(2) to obtain �wi
(3).

• Step 4. Fixing part below q in the list below q: Final step where a list

of preference lists {�wi
(4), �wi

(5), ...} are created. The preference list

�wi
(k+1) is obtained from �wi

(k) by swapping two men {mi, mj} if

(i) q � mi and mj in �wi
(k)

(ii) mi � mj in �wi
and mj � mi in �wi

(k)
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Algorithm 5: Inconspicuous Manipulation

Data: M , W , �C ←− complete set of preference lists of men and

women, �′
wj
←− manipulated preference list

Result: �′′
wj

- inconspicuous manipulated preference list

begin

�wj
←− true preference list of wj

�′
wj
←− manipulated preference list of wj

Run the Gale-Shapley algorithm when men propose using �′
wj

and record set P of proposals made to wj

Set Prop(wj, �′
wj

, 1) = ‘p’ and Prop(wj, �′
wj

, 2) = ‘q’

Create �wj
(1) by moving ‘q’ to position right after ‘p’ in �′

wj

Place M -P agents above ‘p’ in same order as �wj
to create

�wj
(2)

repeat

Take a pair of adjacent men (mi,mj) below q in �wj
(2)

if Prop(wj, �′
wj

(k), 2) �′
wj

(k) mi and Prop(wj, �′
wj

(k),2)

�′
wj

(k) mj then

if mi �wj
mj and mj �′

wj
(k) mi then

Create �wj
(k+1) from �wj

(k) by swapping (mi,mj)

until �wj
(k) = �wj

(k+1)

Set �wj
(k) as �′′

wj
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Example: Given an instance, M = {m1, m2, m3, m4} and W = {w1, w2, w3,

w4}

�m1 : w4 w1 w3 w2

�m2 : w1 w3 w2 w4

�m3 : w3 w4 w1 w2

�m4 : w4 w2 w1 w3

�w1 : m3 m1 m4 m2

�w2 : m4 m2 m3 m1

�w3 : m1 m2 m3 m4

�w4 : m2 m3 m1 m4

In the above instance,

True preference list of w4 is �w4 = m2 � m3 � m1 � m4

men-optimal partner of m4 is µ(w4) = m1

Manipulated preference list of w4 is �w4
(1) = m3 � m4 � m2 � m1

New men-optimal partner of w4 is µ(w4) = m3

Applying the inconspicuous manipulation algorithm to the above ma-

nipulated preference:

• Step 1. Identifying p and q: We obtain proposer list ordered according

to �w4
(1)

Proposer List = {m3, m4, m1}

p = m3
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q = m4

• Step 2. Promoting q: In this example q is right after p, so �w4
(2) = m3

� m4 � m2 � m1

• Step 3. Fixing part above p in the list: Identify non-proposers above p

in �w4 and place them above p in �w4
(2).

Non-Proposers = {m2}

�w4
(3) = m2 � m3 � m4 � m1

• Step 4. Fixing part below q in the list below q: Final step where a list

of preference lists {�w4
(4), �w4

(5), ...} are created. The preference list

�w4
(k+1) is obtained from �w4

(k) by swapping two men {mi, mj} if

(i) q � mi and mj in �wi
(k)

(ii) mi � mj in �w4 and mj � mi in �w4
(k)

There are no men to swap in this example but post swapping the obtained

inconspicuous preference list is

�w4
(4) = m2 � m3 � m4 � m1

Comparing �w4 and �w4
(3), it can be seen that only man m4 has been moved

and the men-optimal partner doesn’t change from the optimal manipulated

preference list.
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Chapter 5

Results

This chapter will discuss the design and implementation of the gender-

neutral matching algorithm for two-sided matching. Later, the algorithm is

analyzed to see if agents participating in the algorithm can manipulate it to

obtain a better outcome.

5.1 Gender-Neutral Algorithm

Let men M and women W be the two disjoint sets of the stable mar-

riage problem and �C be the complete set of preference lists of all agents

participating in the problem. The gender-neutral algorithm begins with us-

ing the proposer function P (M,W ), which is a fair coin toss with p = 0.5,

that decides which side gets to be the proposing side. For the sake of con-

venience, let us assume that the proposer function decides to put the women

on the proposing side which in turn implies that the men are on the proposed

side. Then in the first round, each unmatched woman proposes to the man

she prefers most and if the man is unmatched, he is matched to that woman.
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But if the man is matched to another woman, he evaluates the woman he

is matched to currently, with the woman who proposed to him and matches

according to his preference list to the most preferred partner. In each sub-

sequent round, the unmatched women repeat the process of proposing to her

most preferred man whom she has not yet proposed. The process is repeated

until everyone is matched to a partner from the other side. The distinction

between the Gale-Shapley algorithm and the gender-neutral algorithm is that

in the Gale-Shapley algorithm the men are always proposers whereas in the

gender-neutral algorithm both sides have an equal probability of being the

proposers.
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Algorithm 6: The Gender-Neutral Algorithm

Data: M , W , �C

Result: µ - final matching

begin

P (M,W ) ←− proposer function that decides proposing side

/* Let us assume the proposer function outputs women

as the proposers */

initialize all men and women on both sides to unmatched and

set women to proposers

while ∃ some woman wj is unmatched and hasn’t proposed to

every man on other side do

mi ←− most preferred agent on proposer list to whom

proposer hasn’t yet proposed

if mi is unmatched then

mark mi and wj as matched

else if mi prefers wj to current partner wk then

mark mi and wj as matched and wk as unmatched

else

mi rejects wj and mark wj proposed to mi

/* If the men are shown as proposers by the proposer

function then flip men and women in the algorithm

*/
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In this research, the proposer function ensures that both the men and

women have equal probability of being on the proposing side. This gender-

neutral algorithm fixes the problem of bias while returning the stable matches

as required.

Example: Given an instance, M = {m1, m2, m3, m4, m5} and W = {w1,

w2, w3, w4, w5}

�m1 : w1 w5 w4 w2 w3

�m2 : w5 w1 w2 w3 w4

�m3 : w2 w3 w1 w4 w5

�m4 : w5 w1 w2 w3 w4

�m5 : w4 w5 w1 w2 w3

�w1 : m5 m2 m3 m1 m4

�w2 : m4 m2 m3 m1 m5

�w3 : m5 m3 m2 m1 m4

�w4 : m4 m1 m2 m5 m3

�w5 : m1 m5 m2 m4 m3

In order to find the stable matches in the given instance, we apply

the gender-neutral algorithm.

• Step 1: Run the proposer function and decide the proposer. For now

assume the proposer function decides that the women are proposers i.e.,

P (M,W ) = W

• Step 2: Take an unmatched woman from W and propose to most pre-

ferred agent i.e., w1 proposes to m5 and since m5 is unmatched (m5,w1)

are matched and w1 is set to matched.
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• Step 3: Next, w2 proposes to m4 and since m4 is unmatched (m4,w2) are

matched and w2 is set to matched.

• Step 4: w3 proposes to m5 but since m5 is matched he evaluates between

his current partner and proposer i.e., w1 and w3. In the preference list

of m5 since w1 ranks better than w3 the proposal by w3 is rejected.

• Step 5: w3 now proposes to next man m3 and since m3 is unmatched

(m3,w3) are matched and w3 is set to matched.

• Step 6: w4 proposes to m4 and since m4 is matched and m4 prefers w2

over w4 the proposal is rejected.

• Step 7. w4 proposes to next man m1 and since m1 is unmatched (m1,w4)

are matched and w4 is set to matched.

• Step 8. w5 proposes to m1 and m1 prefers w5 over current partner w4

so (m1,w5) are matched and w4 is set back to unmatched.

• Step 9. w4 proposes to most preferred man who she hasn’t proposed yet

i.e., m2 and since w2 is unmatched (m2,w4) are matched and w4 is set to

matched.

• Step 10. The algorithm terminates as all women are matched.
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The matching obtained when women propose above is µw = {(w1,m5),

(w2,m4), (w3,m3), (w4,m2), (w5,m1)}.

In the above example if the proposer function decides that men are the

proposers then the matching obtained is µm = {(m1,w1), (m2,w5), (m3,w3),

(m4,w2), (m5,w4)}.

The following is a comparison of the properties of the Gale-Shapley

algorithm and the gender-neutral algorithm:

Table 5.1: Comparison of the Gale-Shapley (Men Propose) and the Gender-

Neutral algorithm

Gale-Shapley Algorithm Gender-Neutral Algorithm

Stable Matching Yes Yes

Men Optimal Yes Yes (If Proposer)

Women Optimal No Yes (If Proposer)

Men Manipulable No ?

Women Manipulable Yes ?

It is known that in the Gale-Shapley algorithm, women can manipulate

to receive better outcomes so we sought after the question “Although no agent

from either set knows which side they are going to be on, is it possible for an

agent to manipulate their preferences such that he/she improves their outcome
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if on the proposed side since the proposing side always receives their optimal

partner?”

5.2 Manipulation using TS Manipulation

In order to investigate the above problem, the works of Teo et al., (Re-

fer 4.3 - TS manipulation algorithm) have been applied to the gender-neutral

algorithm [13]. In the TS manipulation algorithm, the agent who wishes to

manipulate must have more than one proposal in the series of proposals made

during the gender-neutral algorithm. Since both men and women have an

equal probability of being on the proposed side, we investigate the possibility

of manipulation, assuming women as the manipulators for convenience.

In the TS manipulation, it is assumed that the manipulator is on the

proposed side when using the Gale-Shapley algorithm and the rank of the

partner obtained is improved but there is an equal probability that the ma-

nipulator can also be on the proposing side when using the gender-neutral

algorithm. So the newly obtained preference list has been used to obtain the

matching when manipulator is on the proposing side and this showed that

although the partner of manipulator improves if, on the proposed side, the

partner of manipulator worsens if on the proposing side. Also, the partner

obtained when on proposing and proposed side is same for the manipulator.
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The matching obtained when men are the proposers in the gender-neutral al-

gorithm is represented by µm and when women are the proposers by µw. The

notations µ′
m and µ′

w are used to denote the matchings obtained using the

gender-neutral algorithm when manipulators use TS manipulation when men

and women propose respectively.

Theorem 1 (Teo et al., 2001). Let wj be a manipulator using TS manipulation.

If wj is on the proposed side in the gender-neutral algorithm, her partner

improves compared to using her true preferences. Formally, µ′
m(wj) � µm(wj).

Later, we observed that the partner obtained by manipulator when

he/she is on proposing side or proposed side is same and we prove this in

Theorem 2.

Theorem 2. Let wj be a manipulator using TS manipulation. Let mr be the

partner obtained by wj if women are on the proposed side and ms be the

partner obtained by wj if women are on the proposing side then, mr = ms.

Formally, µ′
m(wj) = µ′

w(wj)

Proof. Gale and Shapley have proven that an agent receives better partner if

on the proposing side than if on the proposed side [4]. So,

(i) µw(wj) � µm(wj)
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(ii) µ′
w(wj) � µ′

m(wj) or ms �wj
mr

The TS manipulation algorithm iterates the manipulator preference

list such that the partner obtained when on the proposed side is at the top of

the manipulator preference list, in other words, mr is placed at the top of the

manipulator preference list.

(iii) �′
wj

= mr � (M - mr)

(iv) r(mr) = 1

From (ii) we know that, r(ms) should be lower than or equal to r(mr)

but a rank lower than 1 is not possible therefore, ms = mr.

Based on the above result, it can be inferred that the partner might

worsen if the manipulator is on the proposing side in the gender-neutral algo-

rithm and we prove this result in Theorem 3.

Theorem 3. Let wj be manipulator using TS manipulation, if wj is on the

proposing side in the gender-neutral algorithm, her partner might worsen com-

pared to using her true preferences. Formally, µw(wj) � µ′
w(wj).

Proof. It is known that the Gale-Shapley algorithm is strategy-proof for pro-

posers and the gender-neutral algorithm has same properties as Gale-Shapley
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as the matching iterations are the same [4,10]. So woman wj can’t improve her

partner by manipulating as proposer receives his/her most optimal partner.

Therefore, µw(wj) � µ′
w(wj).

Example: Given an instance

M = {m1, m2, m3, m4, m5} and W = {w1, w2, w3, w4, w5}

�m1 : w1 w5 w4 w2 w3

�m2 : w5 w1 w2 w3 w4

�m3 : w2 w3 w1 w4 w5

�m4 : w5 w1 w2 w3 w4

�m5 : w4 w5 w1 w2 w3

�w1 : m5 m2 m3 m1 m4

�w2 : m4 m2 m3 m1 m5

�w3 : m5 m3 m2 m1 m4

�w4 : m4 m1 m2 m5 m3

�w5 : m1 m5 m2 m4 m3

The matching obtained when men propose is µm = {(m1,w1), (m2,w5), (m3,w3),

(m4,w2), (m5,w4)}

The matching obtained when women propose is µw = {(w1,m5), (w2,m4),

(w3,m3), (w4,m2), (w5,m1)}

Let us assume w1 is the woman manipulating using the TS manipu-

lation algorithm.

• Step 1. Run the men propose gender-neutral algorithm. The matching
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obtained is {(m1,w1), (m2,w5), (m3,w3), (m4,w2), (m5,w4)}.

• Step 2. The men proposing to w1 in the matching are m1 and m4.Add

m4 and m1 to N and since the preference list already matched m1 to w1

add man m1 to E.

• Step 3. The men in N -E are {m4} so move man m4 to the top of �wj

to generate �wj
(1) = and add �wj

(1) to �wj
C.

• Step 4. Run the men propose gender-neutral algorithm. The matching

obtained is {(m1,w5), (m2,w3), (m3,w2), (m4,w1), (m5,w4)}.

• Step 5. The men proposing to w1 in the above step are m1, m4 and m2

so add m2 to N and m4 to E.

• Step 6. Next move man m2 to the top of �wj
(1) to generate �wj

(2) =

{m2 � m4 � m5 � m3 � m1} and add �wj
(2) to �wj

C.

• Step 7. Run the men propose gender-neutral algorithm. The matching

obtained is {(m1,w5), (m2,w1), (m3,w3), (m4,w2), (m5,w4)}.

• Step 8. The men proposing to w1 in the above step are m1, m4 and m2

so add m2 to E.

• Step 9. Since N = E the process is stopped.
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• Step 10. Set �wj
(2) as �′

wj
since w2 is the most preferred partner ac-

cording to �wj
and the algorithm terminates.

The optimal manipulated preference list obtained using the TS manip-

ulation algorithm is �′
w1 = m2 � m4 � m5 � m3 � m1.

The matching obtained when men propose when w1 manipulates is µ′
m =

{(m1,w5), (m2,w1), (m3,w3), (m4,w2), (m5,w4)}

The matching obtained when women propose is µ′
w = {(w1,m2), (w2,m3),

(w3,m5), (w4,m5), (w5,m1)}

The partner obtained by w1 when men propose with true preference

list is m1 so rank of partner r(µm(w1)) = 4 and the partner obtained by w1

when women propose with true preference list is m5 so r(µw(w1)) = 1. But the

partner obtained by w1 when men propose with the manipulated preference

list is m2 so r(µ′
m(w1)) and the partner obtained by w1 when women propose

with the manipulated preference list is w2 so r(µ′
w(w1)) = 2. So, if p × (ma-

nipulated partner - true partner, proposing) + (1−p) × (manipulated partner

- true partner, proposed) is greater that zero, expected gain of manipulation

is positive, meaning that it’s beneficial to manipulation. If negative, means

that expected gain from manipulation is negative...So here, you would say ex-
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pected gain = .5 * 1 - .5*2 = -0.5, meaning that manipulation is not beneficial.

Table 5.2: Rank of the partners obtained using the Gender-Neutral Algorithm

with true preference list and TS manipulated preference list

Manipulator : w1

Partner Rank

(Men Propose)

Partner Rank

(Women Propose)

True Preference List

(�w1)
4 1

TS Manipulated Preference List

(�′
w1)

2 2

Note: The rank of the partner obtained by w1 under various cases is based

on the true preference list of w1.

The stable matching obtained by the use of TS manipulation in the

gender-neutral algorithm did improve the partner when participant is proposed

to but there is a risk of getting a worse partner using manipulated preference

list than the partner obtained using true preference list when proposing. So

the question in front of us now is “Can a participant in this gender-neutral

algorithm manipulate such that he/she improves their partner when on pro-

posed side but doesn’t want to get a worse partner if they happen to be on the

proposing side?”.
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5.3 Matching using Inconspicuous Manipulation

To answer the above question, the works of Vaish and Garg (2017) [14]

(Refer 4.3 - Inconspicuous manipulation algorithm) has been applied to ma-

nipulate the gender-neutral algorithm.

The preference list �′′
wj

obtained using the inconspicuous manipulation algo-

rithm is set as the manipulated preference of manipulator and upon running

the gender-neutral matching algorithm it was seen that when the manipulator

is on the proposed side the partner obtained is improved whereas the part-

ner obtained if on the proposing side is the same partner obtained using true

preference list by manipulator when proposing. The matching obtained when

men are the proposers in the gender-neutral algorithm is represented by µm

and when women are the proposers by µw. The notations µ′′
m and µ′′

w are

used to denote the matching obtained using gender-neutral algorithm when

manipulators use inconspicuous manipulation when men and women propose

respectively.

Theorem 4 (Vaish and Garg 2017). Let wj be a manipulator using incon-

spicuous manipulation. If wj is on the proposed side in the gender-neutral

algorithm, her parter improves compared to her true preferences and is the

same partner obtained when using TS manipulation. Formally, µ′′
m(wj) �
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µm(wj) and µ′′
m(wj) � µ′

m(wj)

Theorem 5. Let wj be a manipulator using inconspicuous manipulation. If wj

is on the proposing side in the gender-neutral algorithm, the partner obtained

by manipulating is same as partner obtained using true preferences. Formally,

µ′′
w(wj) = µw(wj).

Proof. Let mq be wj partner when on proposed side and mp partner when

on proposing side obtained using true preferences in the gender-neutral algo-

rithm. Let ms be wj partner when on proposed side and mr partner when

on proposing side obtained using inconspicuous manipulation in the gender-

neutral algorithm.

According, to the inconspicuous manipulation algorithm, the non proposers

above ms are placed in same order as true preference list.

(i) �wj
= ... mp .... mq ....

(ii) �′′
wj

= ... mp .. ms ....

In the gender-neutral algorithm wj doesn’t propose to men beyond mp as

he is the most optimal partner of wj under true preferences. All the men until

mp are non proposers in both �wj
and �′′

wj
. So, mp is the partner obtained
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by wj using manipulated preference list and mp = mr. Therefore, µ′′
w(wj) =

µw(wj).

Example: Given same instance as above

M = {m1, m2, m3, m4, m5} and W = {w1, w2, w3, w4, w5}

�m1 : w1 w5 w4 w2 w3

�m2 : w5 w1 w2 w3 w4

�m3 : w2 w3 w1 w4 w5

�m4 : w5 w1 w2 w3 w4

�m5 : w4 w5 w1 w2 w3

�w1 : m5 m2 m3 m1 m4

�w2 : m4 m2 m3 m1 m5

�w3 : m5 m3 m2 m1 m4

�w4 : m4 m1 m2 m5 m3

�w5 : m1 m5 m2 m4 m3

The matching obtained when men propose is µm = {(m1,w1), (m2,w5), (m3,w3),

(m4,w2), (m5,w4)}

The matching obtained when women propose is µw = {(w1,m5), (w2,m4),

(w3,m3), (w4,m2), (w5,m1)}

Since w1 is the woman who manipulated using the TS manipulation

algorithm, we take the optimal manipulated preference list obtained and ap-

ply the inconspicuous algorithm.

• Step 1. Run the men propose gender-neutral algorithm using �′
w1 and

record the proposals made to w1 in P . P = {m1, m2, m4}.
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• Step 2. Identify Prop(w1, �′
w1 , 1) and Prop(w1, �′

w1 , 2) as ‘p’ and ‘q’

respectively. Therefore, ‘p’ = m2 and ‘q’ = m1.

• Step 3. Create �w1
(1) by moving ‘q’ right after ‘p’ in �′

w1 . �w1
(1) = {m2

� m1 � m4 � m5 � m3 }

• Step 5. Place M -P agents above ‘p’ in same order as �w1 to create

�w1
(2) = {m5 � m3 � m2 � m1 � m4 }

• Step 6. Take a pair of adjacent men below ‘q’ i.e., {m1,m4} and check to

see if they need to be swapped but since they don’t satisfy the conditions,

there will be no swapping done.

• Step 7. Set �w1
(2) as �′′

w1 and the algorithm terminates.

The preference list that is obtained after applying the inconspicuous

algorithm is �′′
w1 = m5 � m2 � m4 � m3 � m1.

The matching obtained when men propose when w1 manipulates is µ′′
m =

{(m1,w5), (m2,w1), (m3,w3), (m4,w2), (m5,w4)}

The matching obtained when women propose is µ′′
w = {(w1,m5), (w2,m4),

(w3,m3), (w4,m2), (w5,m1)}
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Here, µw and µ′′
w are the same matching outcome which means that

the partner obtained by w1 upon using the inconspicuous manipulation algo-

rithm is same as partner obtained using true preference list so the rank of

partner doesn’t get any worse when she manipulates whereas in the case of TS

manipulation it did get worse. In the case of men proposing when woman w1

doesn’t manipulate, the rank of partner obtained is r(µm(w1)) = 4 but when

she manipulates using the inconspicuous manipulation the rank of partner ob-

tained is r(µ′′
m(w1)) = 2. Hence, the woman w1 is better off if she manipulates

using the inconspicuous algorithm.

Table 5.3: Ranks of partner obtained using the Gender-Neutral Algorithm with

true preference list, TS manipulated and inconspicuous manipulated preference

list

Manipulator : w1

Partner Rank

(Men Propose)

Partner Rank

(Women Propose)

True Preference List

(�w1)
4 1

TS Manipulated Preference List

(�′
w1)

2 2

Inconspicuous Manipulated Preference List

(�′′
w1)

2 1
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Hence, when using the gender-neutral algorithm, it is beneficial to use

the inconspicuous manipulation algorithm unlike the TS manipulation algo-

rithm.
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Chapter 6

Empirical Evaluations

We conducted empirical evaluations in order to corroborate our results.

We generated a preference list for each agent in the stable marriage problem

by initializing the list of agents on other side and shuffling them using the

shuffle function in Python. The instance size is equal to the total number of

agents on both sides. For each size, we took 1,000 example instances in order

to verify the results accurately.

6.1 Manipulators

Initially, we ran evaluations to check the manipulators who can manip-

ulate using inconspicuous manipulation in every instant size. For each of the

instance size, we generated 1,000 instances and then ran the gender-neutral

algorithm to find the stable matching for each instance. Later, we used the

inconspicuous manipulation algorithm to find all the individual manipulators

across the instance. It is important to note that we assume that manipulator

believes that he/she is the sole manipulator and manipulates his/her preference
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list. Finally, we averaged the total number of manipulators per instance size

and plotted the average percentage of manipulators per instance size (Figure

6.1) and the average number of manipulators per instance size (Figure 6.2).
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Figure 6.1: Avg. percentage of manipulators per instance size
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Figure 6.2: Avg. number of manipulators per instant size

It can be seen that, as the instance size increases from 10 to 50, the

average percentage of manipulators increases rapidly but from 50 to 200 is

around 9%. This shows that there are agents who can successfully manipulate

the gender-neutral algorithm to improve their outcome. But it has to be

noted that if more than one agent manipulates at the same time, the outcome

of manipulation might not remain same as each manipulator improves his

outcome based on the true preference list of the other manipulator.
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6.2 Expected Rank Gain (ERG)

In this section, we evaluated the expected rank gain for manipulators

using the TS manipulation algorithm. The expected rank gain for manipula-

tor has been computed by multiplying the probability of agent being on the

proposing side with the difference between partner rank obtained from manip-

ulation and partner rank obtained without manipulation and then multiplying

the probability of agents being on the proposed side with the difference be-

tween partner rank from manipulation and partner rank obtained without

manipulation. The probabilities have been set from 0 to 1 with an increment

of 0.25.

ERG = p × (manipulated partner - true partner, proposing) + (1 − p) ×

(manipulated partner - true partner, proposed)

where p = probability of being on the proposing side
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Figure 6.3: Expected rank gain for manipulators

It can be seen that as the proposing probability of women increases

from 0 to 1 the expected rank gain reduces drastically. This implies that upon

manipulation, the agent rank improves if he/she is on the proposed side but

worsens if on the proposing side. This corroborates Theorem 3 which has been

proved in Chapter 5.
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Chapter 7

Conclusion

The results that have been obtained, help us understand that adding a

probability in deciding the proposers will never truly make the Gale-Shapley

algorithm fair as agents can still manipulate. It can be clearly seen that

although agents could either be on the proposing or proposed side, they can

always manipulate in such a way that they improve their partner if on the

proposed side while retaining the same partner if on the proposing side. This

proves there is an incentive for agents to manipulate which leads to strategic

behavior of the agents. The future work lies in taking multiple mechanisms in

two-sided matching and applying the different manipulation algorithms if there

is a mechanism which is not manipulable and if there is such a mechanism it

would be interesting to design a manipulation algorithm for it. Also, another

direction would be to design a matching algorithm where instead of setting all

agents on one side to proposers, we could flip a coin for every agent to decide

whether he/she is a proposer or not.
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