
Rochester Institute of Technology
RIT Scholar Works

Theses Thesis/Dissertation Collections

8-2018

An Empirical Evaluation of the Indicators for
Performance Regression Test Selection
Kevin Hannigan
kph1958@rit.edu

Follow this and additional works at: https://scholarworks.rit.edu/theses

This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion
in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.

Recommended Citation
Hannigan, Kevin, "An Empirical Evaluation of the Indicators for Performance Regression Test Selection" (2018). Thesis. Rochester
Institute of Technology. Accessed from

https://scholarworks.rit.edu?utm_source=scholarworks.rit.edu%2Ftheses%2F9862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F9862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/etd_collections?utm_source=scholarworks.rit.edu%2Ftheses%2F9862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses?utm_source=scholarworks.rit.edu%2Ftheses%2F9862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.rit.edu/theses/9862?utm_source=scholarworks.rit.edu%2Ftheses%2F9862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ritscholarworks@rit.edu


An Empirical Evaluation of the
Indicators for Performance Regression

Test Selection

by

Kevin Hannigan

A Thesis Submitted in Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Software Engineering

Supervised by
Dr. Mohamed Wiem Mkaouer

Department of Software Engineering
B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Rochester, New York

August 2018



The thesis “An Empirical Evaluation of the Indicators for Performance Regression Test

Selection” by Kevin Hannigan has been examined and approved by the following Exami-

nation Committee:

Dr. Mohamed Wiem Mkaouer
Assistant Professor
Thesis Committee Chair

Dr. Christian D. Newman
Assistant Professor

Dr. J. Scott Hawker
Associate Professor
Graduate Program Director



Abstract
As a software application is developed and maintained, changes to the source code may

cause unintentional slowdowns in functionality. These slowdowns are known as perfor-

mance regressions. Projects which are concerned about performance oftentimes create

performance regression tests, which can be run to detect performance regressions. Ideally

we would run these tests on every commit, however, these tests usually need a large amount

of time or resources in order to simulate realistic scenarios.

The paper entitled ”Perphecy: Performance Regression Test Selection Made Simple but

Effective” presents a technique to solve this problem by attempting to predict the likelihood

that a commit will cause a performance regression. They use static and dynamic analysis to

gather several metrics for their prediction, and then they evaluate those metrics on several

projects. This thesis seeks to replicate and expand on their work.

This thesis aims in revisiting the above-mentioned research paper by replicating its

experiments and extending it by including a larger set of code changes to better understand

how several metrics can be combined to approximate a better prediction of any code change

that may potentially introduce deterioration at the performance of the software execution.

This thesis has successfully replicated the existing study along with generating more

insights related to the approach, and provides an open-source tool that can help developers

with detecting any performance regression within code changes as software evolves.
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Chapter 1

Introduction

For many software projects, performance is a critical requirement. Such projects often

create performance tests alongside their other tests which specifically test for performance

bugs. Performance bugs are often problems with slow execution time, though other quali-

ties like memory usage can be considered too [10].

Performance tests come with some unique constraints as opposed to automated unit

testing. For performance tests to work, they typically need to use many resources, run for a

long time, or execute demanding functionality, because they require a realistic scenario in

order to operate. Ideally performance tests could be run for every commit, perhaps as part

of a continuous integration system, similar to having your unit tests run on every commit.

However, this is usually too expensive and time consuming to implement [2, 3].

Practically, as software evolves, a continuous set of code changes is being introduced,

within each, one or few changes may be responsible for introducing slowdowns or speedups

to the current system’s execution. This is known as a performance regression. Performance

regression defines any unexpected system performance in terms of runtime, when compared

to its previous state, before the change, for the same set of input values, and for the same

type of behavior (functional scenarios). Thus, developers are eager to detect any code

changes that accidentally introduces such significant slower runtime.

Detecting code changes responsible for performance regression is challenging due to

the rapidity of software evolution i.e., the number of committed changes is increasing on

a daily basis [4]. And so, it is hard to individually monitor these changes while being

committed to the main branch. According the recent studies [8, 11], it is impractical to
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separately test each code change for all possible functional test cases. Furthermore, some

changes may not directly reflect performance issues since they may be only triggered by

special cases (for specific type of users or workloads) and so, they may be detected later

in the testing process once other changes have been also committed. So, there is a need

of introducing better techniques in predicting whether a given change can be potentially

hazardous to the system’s performance [12].

Existing studies try to solve this issue by predicting whether or not a commit will cause

a regression to occur. The hope is that by creating a system that can successfully evaluate

the need to run the performance tests on a change, we can reduce the number of times

we run the tests, and thus save cost. The paper ”Perphecy: Performance Regression Test

Selection Made Simple but Effective” [9] presents a system that predicts whether or not a

commit will cause a performance regression. Their system works by looking at 8 metrics,

to predict for each benchmark whether or not a significant performance change will occur.

They look at 4 different projects, for a total of 429 commits. They use metrics called hit

rate (the percent of correct predictions of a performance regression) and dismiss rate (the

percent of correct predictions that a regression will not occur) to evaluate their system’s

performance.

The 8 indicators are discussed in detail in Chapter 4, Perphecy. However, to help il-

lustrate this, consider the following example. In listing 1.1, two excerpts from a diff are

shown. One of the metrics used in the study is based on the percent function length change.

In the first block in the example, we see that three lines from the function are deleted. The

percent static function length change, therefore, is 50%. In the second block, one line of

code is changed, but not added or removed. In this case, the static function length change

is 0%. However, a different metric could be affected, such as ”Highest percent overhead

function changed”, if this one line edit happened in a frequently called function.

Perphecy takes the calculated metrics and compares them to a predetermined threshold

value. The metrics and their thresholds are called an ”indicator” in the Perphecy paper. As

part of determining thresholds, the Perphecy paper selects a subset of the 8 indicators to



3

consider. The collection of indicators is called a predictor. If any of the thresholds of the

indicators in the predictor are exceeded, Perphecy predicts that a regression will occur. So,

in this example, if we had these two blocks edited between commits, If the predictor that

Perphecy had determined included ”static function length change”, and the threshold was

40%, Perphecy would predict a regression. Contrarily, if the threshold was 60%, it would

not predict a regression unless one of the other indicators in the predictor was affected.

Listing 1.1: Descriptive Caption Text
static int gitdiff_oldname(const char *line, struct patch *patch)
{
- char *orig = patch->old_name;

patch->old_name = gitdiff_verify_name(line, patch->is_new, patch->old_name,
DIFF_OLD_NAME);

- if (orig != patch->old_name)
- free(orig);

return 0;
}

@@ -459,7 +462,7 @@ static int get_urlmatch(const char *var, const char *url)
free(config.url.url);
free((void *)config.section);

- return 0;
+ return ret;
}

The Perphecy paper, however, has a few limitations. First, their dataset was fairly small.

As an example, one of the projects they ran on was git. They ran 5 tests on approximately

200 commits, and found 13 cases of regressions. This is a small sample size to base con-

clusions off of. Second, they did not show the final set of indicators that were used to give

their results. They only show the method of how they obtained them.

In this paper, we attempt to replicate this study. We look at one of the studied projects:

Git. We study 8596 of the more recent commits from the project, significantly more than

the 201 studied in the paper. We present insights about the original study, such as a flaw in

the original threshold selection algorithm and our mitigation, a more thorough analysis of

the potential of each individual indicator, and the results of the predictor that was generated

using the Perphecy method.
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Chapter 2

Research Objective

2.1 Motivation

Executing tests on every software change is a popular practice in Continuous Integration,

with numerous benefits, namely the fast and continual detection of bugs throughout the

development lifecycle. Performance tests, however, can not practically be run this way

because it would be too expensive. The goal of this area of research is to develop techniques

which decrease the cost of performance testing, while still decreasing the time it takes for

developers to get feedback about whether their code has performance bugs or not.

The Perphecy study makes steps towards building a system that can predict whether

a change will cause a performance regression or not. A system like that can help limit

which commits need to be tested, which can save cost. If a system could be created which

very reliably could predict whether a performance bug would occur or not, it could be used

entirely in place of running the tests periodically, and would spend an optimal amount of

time running performance tests.

A performance regression, in the context of this paper, is defined as anytime a test’s

execution time is longer than for the previous commit’s in a statistically significant way.

In the original paper, and in this one, we identify statistically significant regressions by

taking 5 samples of the execution times for each commit and performing a t-test between

every two commits. In figure 2.1, we show an example of these execution times. In this

case, though it may be small, the t-test determined that there was a regression from commit

2d3926 to commit fd9dbd.
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Figure 2.1: Example execution times

2.2 Contribution

Our main contribution is to replicate and extend the Perphecy paper. Our main contributions

are:

1. Scalability. Since performance regression can be linked to various aspects of code

changes, it is important to diversify the set of possible types of changes that may

trigger situations in which the software performance deteriorates. For that reason,

we examine, in this thesis, a larger dataset compared to the original study.

2. Prediction. The original study outcome was the generation of a predictor that accu-

rately predicts the occurrence of a performance regression, for a given set of code

changes. This predictor is constructed using an automatically generated combination

of tuned indicators and metrics. This generation of the combination of indicators rep-

resents the main contribution of the paper, yet, the authors didn’t expose any of the
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generated predictors. Thus, we explore the combination of indicators for a different

set of changes in order to demonstrate how the predictor is generated and provide

more details about its combination.

3. Indicators. The indicators represent the building block of the predictor and so they

are important in providing good prediction results, if the set of used indicators can

cover all the possible performance aspects. In this context, we explore the statically

and dynamically calculated indicators in terms of their performance in constructing

good indicators.

2.3 Research Questions

We revisit the Perphecy experiment to further elaborate on these questions:

• RQ1: What predictors does the Perphecy approach generate when used on a larger

dataset? In the Perphecy paper, they don’t give the actual predictors (combination of

indicators and thresholds) that were generated, only the hit and dismiss rates that the

predictor gave.

• RQ2: What are the most useful indicators when considered independently? For

our dataset, which of the indicators has the best combination of hit and dismiss rates

for the best threshold option?
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Chapter 3

Related Work

Regression Test Selection has been studied previously in many different papers . The most

relevant work is the study of regression test selection. However, this research has usually

been focused on correctness tests, like unit tests, rather than performance.

A study by Luo et al, ”Mining Performance Regression Inducing Code Changes in

Evolving Software”, [6] investigates how to identify the code changes that induced a per-

formance regression. The tool they create, PerfImpact, works by searching for input combi-

nations to a program which are likely to lead to a performance regression, and then profiling

the execution trace when using those inputs to estimate the impact of past code changes on

the detected regression. Using execution traces / dynamic profile information as they do in

this paper is a key part of the indicators used in the Perphecy study.

Alcocer et al [1] study what kinds of source code changes are responsible for perfor-

mance regressions in open source software. They determine if a commit causes a perfor-

mance variation with static analysis and dynamic analysis. They also show that they can

get good results without running dynamic profiling for every change.

One similar study by Huang et al. [5] looks into what they call Performance Risk

Analysis, or PRA. They use static analysis to estimate how expensive each function is

by looking at function length, loops, and known expensive functions. Through this static

analysis of a function’s ”expensiveness”, they predict the risk that a change will cause a

regression. Their analysis showed they could catch 87%-95% of regressions by testing

only 14%-22% of the commits.
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Chapter 4

Perphecy

4.1 Summary

Perphecy is a system which ”predicts if a code commit will affect the performance of a

benchmark in a benchmark suite”. Given a ”before” commit, an ”after” commit, and a

performance test (also called a benchmark), Perphecy will predict whether or not that test

will experience a performance regression from one commit to the other. By collecting

metrics about the source code through both static and dynamic analysis, the authors of

Perphecy found they were able to save as much as 83% of benchmarking time while still

detecting 85% of performance affecting code changes.

Perphecy uses 8 metrics which they distill into what they call ”Indicators”. The indi-

cators are determined to be true or false by comparing to a static threshold, which they

determined using a greedy algorithm that I will explain later. Each indicator is calculated

specifically for each ”old commit, new commit, benchmark” triplet that needs to be con-

sidered. These indicators, along with the rationale for each, are included below, in Table

4.1.

In order to calculate the metrics, both static and dynamic analysis is needed. Perphecy’s

solution for getting the dynamic results is to do a separate run of the performance tests with

the dynamic analysis tool active, anytime it predicts a regression. When calculating the

metrics, the most recent available dynamic analysis data for the benchmarks is used. Over

time though, it is certainly possible for this information to get out of date.

Note that we did not gather indicator 6 in our study. It was unclear exactly what was
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Table 4.1: Indicator Descriptions and Rationales

# Description Rationale

1 Number of Deleted Functions Deleted functions indicate refactoring, which
may lead to performance changes

2 Number of New Functions Added functions indicate new functionality,
which may lead to performance changes

3 Number of Deleted Functions
reached by the benchmark

Deleting a function which was part of the
benchmark execution could lead to a perfor-
mance change

4 The percent overhead of the top
most called function that was
changed

Altering a function that takes up a large por-
tion of the processing time of a benchmark has
a high risk of causing a performance regression
because it is such a large portion of the test

5 The percent overhead of the top
most called function that was
changed by more than 10% of its
static instruction length

Similar to indicator 4, however this takes into
account that the change affects a reasonable
portion of the function in question. Bigger
changes may mean higher risk.

6 The longest running function in
terms of total dynamic instructions

Similar to the rationale behind indicators 4 and
5, the longest running functions likely have the
highest impact on the performance of a bench-
mark

7 The highest percent static function
length change

Large changes to functions are more likely to
cause regressions than small ones

8 The highest percent static function
length change that is called by the
benchmark

The same as for indicator 7, but here we guaran-
tee that the functions are actually called by the
benchmark in question.

meant by ”longest running function by total dynamic instructions”, but we could interpret

it two ways. Either they were referring to the total number of instructions executed in that

function over the course of the entire benchmark, or they were referring to the average

number of instructions executed by the function each time it was called - the average dy-

namic instruction length. If the former was true, this is effectively the same as indicator

4. Multiplying the percent overhead by the total number of instructions executed in the

program would give you a count of dynamic instructions executed by the function. This
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number would be in perfect ratio relative to the other functions in the benchmark, and we

only compare the functions to each other, so there would be no effective difference between

these indicators. On the other hand, if the latter interpretation is true, it was unclear to us

how to determine the average dynamic instruction length using the tool recommended -

perf. Indicator 8 is similar, but it uses static function length instead of average dynamic

function instruction count. While it is a limitation that we were unable to replicate the

results of indicator 6, we believe that the other indicators provide sufficient coverage to

replicate the rest of the experiment.
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Chapter 5

Methodology

5.1 Data Collection

Replicating the study required first collecting all of the necessary data. There were three

kinds of data needed: - Results of running each performance test - Static information for

the indicators - List of functions and their start and end line in the source code - Dynamic

information for the indicators - Function overhead percentage for each benchmark

We collected data for 8798 commits originally. Those commits were chosen by exe-

cuting the ‘git rev-parse‘ command from the master branch at the time and going back to

the first commit we could find which had performance tests. Across that range of commits,

there were were 202 commits which, for various reasons, did not have any tests, so we

removed them. Thus in total we considered 8596 commits.

Running all of the performance tests for a single commit takes a long time (hence the

need for this study) so we parallelized the task across many machines. The results of the

git performance tests are reported in wall time, which can be impacted by using different

machines with different clock speeds, RAM, and such, so to mitigate this we used identical

DigitalOcean virtual machine servers. These virtual servers were the standard DigitalOcean

Ubuntu 16.04 x64 droplets with 1 CPU clocked at 2.2GHz and 1GB of RAM. Even after

taking these precautions, there can be noise in the data. To deal with this, we ran each test

five times, which is the same number of runs used in the original study.

The dynamic information was collected using linux perf which was used for some of

the projects in the original paper. This was also run using DigitalOcean servers. In this
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case though, the similarity of the machines is not very important because we only look at

which instructions are executed, which should be largely identical, especially if run on the

same operating system.

The static info - the list of functions and their location in the source code - was collected

by using the python lizard tool. While intended for calculating cyclomatic complexity, it

easily gave us a full list of functions identified in all of the source files in the repo for that

commit.

Note that all the data we gathered here is independent of the order of the commits. At

this point we did not calculate the number of functions deleted between two commits, but

rather the list of functions that existed in each commit. Because of this, and because of how

git source control works, we could technically compare commits which were not actually

developed one after the other and see whether or not the tool could predict a regression,

and validate whether the performance was in fact different from commit to commit. We

did not take advantage of this for the most part, but we discuss why this property is useful

in the Threats and Limitations section of the paper.

5.2 Data Analysis

Analyzing the data happened in several stages. First, we determined which commits and

tests experienced a performance regression. Second, we calculated the indicator metrics

for each test in each pair of commits. Once we had that data, we determined the optimal

thresholds for each metric using the greedy algorithm given in the original paper.

5.2.1 Determining Significant Changes

The first step was to determine the truth values for the experiment. If our tool worked

perfectly, what should it predict? For the 8596 commits that we ran on, we went through

each consecutive pair and for each pair, we performed a t-test with an alpha value of 0.05

between the two sets of results. If the t test showed a significant difference between the

two distributions, and the mean of the old times was lower than the mean of the new times,
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then we declared that to be a regression for that benchmark.

5.2.2 Determining the Indicator Metrics

The indicator metrics are the numbers that matter for each of the 8 indicators used in the

original paper. Unfortunately, we were unable to collect the data needed to replicate the

6th indicator from the original paper, ”Top Chg by Instruction”, using the perf tool.

As mentioned before, the values were calculated for every (commit, commit, bench-

mark) triplet that we ran. We used all of the data from the Data Collection stage to calculate

these numbers.

The metrics for each indicator are given below:

1. Number of deleted functions

2. Number of new functions

3. Number of deleted functions reached by the benchmark

4. The highest percent called function for the benchmark that was changed

5. The highest percent called function for the benchmark that was changed by more

than 10% of its static length

6. Not Collected

7. The highest percent of static function length change across all functions

8. The highest percent static function length change for all functions called by the

benchmark

This resulted in 176,667 results in a csv file which looked like the results in Table 5.1:

Table 5.1: Example indicator results

Commit A Commit B Benchmark Indicator 1 Indicator 2 Indicator 3 ...

d9545c7f 8f449614 p0000-perf-lib-sanity 983 515 7 ...
d9545c7f 8f449614 p0001-rev-list 983 515 16 ...
... ... ... ... ... ... ...
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Note that these metrics are calculated assuming that dynamic profile data is available for

every commit. This is the optimal situation because it has up to date data for every commit

pair and benchmark. However, as described in the original paper, a dynamic profile would

only be run if a hit was predicted. This would mean the dynamic data slowly becomes out

of date as dismisses are accumulated.

Also note that when considering the dynamic profiling data for indicators 4 and 5, we

disregarded any functions with less than 0.01% overhead.



15

5.2.3 Determining Thresholds

Once we had the indicator metrics calculated, we analyzed them to find thresholds using

the approach in the paper. We sampled different threshold values in the range of 0 - 100

for each metric, and generated some graphs showing the hit and dismiss rates for each

threshold value. We show one of these graphs for each indicator in our Analysis Section

for Research Question 2.

Figure 5.1: Perphecy Threshold Algorithm
Our next step was to repli-

cate the algorithm which the orig-

inal paper used to determine the

thresholds. The original algorithm

is shown in Figure 5.1.

We did so, and realized that

there is in fact a problem with the

algorithm the paper used. The au-

thors wrote a basic greedy algo-

rithm which, to summarize in one

sentence, looks at each of the hits,

and finds the minimum disjunc-

tion of indicators which would

have a hit rate of 1.0 with the best

dismiss rate.

However, if a single hit entry

has zero values for all indicators,

due to how the algorithm is writ-

ten, the first indicator it chooses

while trying to create a predictor

will be any indicator with a threshold of 0. A threshold of 0 trivially marks all commits as

hits, and the predictor that is generated will simply be one indicator with a threshold of 0.
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Thus, with this algorithm and our data as is, the system marks every commit as a hit, which

is essentially the same as if the system had never been run in the first place.

The basic issue with the greedy approach still applies if only some of the indicators are

zero and one of the indicators is very small. If for example, you have a row where every

indicator metric value is set to 0, except for ”Del Func” which is set to 1, then the algorithm

will pick that Del Func indicator and will wind up hitting a very large number of commits.

Due to this issue, we experiment with filtering out results with all-zero values and result

with any-zero values. We show a comparison of the generated predictors in the next section.

It may seem potentially unlikely for a regression to occur when all of the indicators

are zero values, but one theoretical example would be if a development team updated the

version of a third party framework in a commit. If the framework caused a regression, the

indicators may still be 0.
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Chapter 6

Analysis & Discussion

In this chapter, we discuss the results of the study and the answers to our research questions.

6.1 RQ1: What predictors does the Perphecy approach
generate when used on a larger dataset?

6.1.1 What is the potential for any test selection technique?

Before we talk about the performance of the predictors that Perphecy generates, we should

put down a few statistics about the gathered data, to help characterize the data and manage

our expectations.

We ran on 8596 commits. Over time, tests were added and removed to the suite of

performance tests, but in general our range of commits begins with 11 tests and ends with

29 commits. Those tests are broken up into subtests, and the test result data is reported for

each subtest in terms of minutes, seconds, and milliseconds it took to complete the tasks.

We summed the subtest times to get a time duration for the test itself.

In all, looking at every combination of commit, commit, benchmark, we had 176,667

”commit, commit, benchmark” results to consider. Of those, 171,656 were dismisses, ap-

proximately 97%. Thus, there were 5011 hits, or 2.84%. This seems to be in line with the

results of the paper - there are proportionally very few commits that involve a significant

performance regression.

Additionally worth note, there were 152,110 rows which contained an indicator metric

with a value of 0, and there were 97,420 rows for which ALL of the indicator metrics had
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a value of 0. This means that for more than half of our ”commit, commit, benchmark”

changes, no functions were added or deleted, the static instruction length of any function

was unchanged, and no function that was more than .01% of the overhead for the bench-

mark was changed. This seemed surprisingly large, but the vast majority of these commits

were either documentation changes, updates to unit tests, or involved things like changing

indentation or tweaking function calls, which do not impact static function length. These

findings tell us that not only do most commits not contain contain a performance regres-

sion, many are trivial changes that have no way of impacting performance tests, and many

are small enough edits in non-critical sections of code that our indicators cannot pick them

up.

Within the 97,420 results which had indicator metric values of all zeros, 1184 rows

(approx. 1.2% of the ”all-zero” rows, and approx. 0.6% of all the rows) were actually

registered as hits! Most of these changes were still of the trivial type - documentation

changes, small one line edits, and the like. We attribute most of these results to noise in

our data collection, however we keep them as part of our dataset because it is perfectly

plausible for changes with no effect on our indicators to impact performance - for example,

if a 3rd party library was updated, and the new version of that library causes a performance

regression.

6.1.2 Generating and Evaluating the Predictors

In order to generate the predictor, we calculated the metrics for the indicators for each

of our commit, commit, benchmark results, then ran the Perphecy threshold algorithm to

output a predictor. As discussed in the Methodology section, we uncovered a problem with

the original algorithm as written. So, when we ran our implementation on the 176,667

”commit, commit, benchmark” rows, the predictor was { Del Func ≥ X: 0 } . This will

trivially mark every commit as a hit, giving a Hit Rate of 1.0 and a Dismiss Rate of 0.

To get around this, we tried two changes. First, we tried removing all the entries from

our results for which every value for the indicators was 0. This gave us a predictor of {
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Del Func ≥ X: 1, New Func ≥ X: 1 } (Still fairly trivial). Second, we tried removing

all entries for which any value for the indicators was 0. This gave us the most interesting

predictor: { New Func ≥ X: 44, Top Chg by Call ≥ X%: 8%, Reached Del Func ≥ X: 2,

Top Reached Chg Len ≥ X%: 14%, Top Chg Len ≥ X%: 500% } . Remember that these

different values are handled as a disjunction; if any of these thresholds are met, we predict

a hit for a performance regression.

We evaluated each of these predictors on the three different subsets of our data (the one

with all values, the one with the rows with only zero values removed, and the one with any

rows that had a single zero value removed). The results are shown in Table 6.1.

Table 6.1: Hit and Dismiss Rates for the three different predictors

Predictor All Values No Zero Rows No Zero Values
(Hit, Dismiss) (Hit, Dismiss) (Hit, Dismiss)

{ Del Func ≥ X: 0 } (1, 0) (1, 0) (1, 0)
{ Del Func ≥ X: 1, ... } (.764, .561) (1, 0) (1, 0)
{ New Func ≥ X: 44, ...} (.645, .804) (.844, .553) (1, .007)

Some interesting things to point out about these results:

• The predictor generated with all the values is, of course, trivial for all subsets

• The other two predictors have hit rates of 1 for their training set and any subsets of

their training set. However, they also have dismiss rates equal or close to 0 for their

training sets / subsets, which is much different than the results in the paper. When

evaluating their predictor for git on the Full set of their data, they had a hit rate of 1

and a dismiss rate of .83.

• For the other two predictors, their performance on the sets that include data not

trained on shows that the hit rate drops noticeably, but the dismiss rate increases

dramatically.
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In the original paper, they evaluate their results using K-fold cross validation - they

trained their indicators on 90% of the data, then evaluated on the remaining 10%, and did

that 10 times, each time for a different 10%. To gain further insight, we also tried training

on a different 90% of the data, looking at just the subset of values without any zero values

for any indicators. However, the predictors generated using this method were all exactly

the same, except for three folds: One where Top Chg by call was 6% instead of 7%, one

where Top Chg by Call was 8% instead of 7%, and one where the ”New Func” indicator

was gone altogether, but ”Del Func ≥ 121” was added.

6.2 RQ2: What are the most useful indicators when con-
sidered independently?

In order to answer the question of which indicators perform the best, we plotted the hit and

dismiss rate for each indicator for many different thresholds, on our full dataset of results.

We evaluated Indicators 1, 2, and 3 with threshold values from 0-1000, incrementing

by 1. We evaluated Indicators 4, 5, 7, and 8 with threshold values from 0-1 (0% - 100%)

incrementing by 0.01. As you can see, for each of these values the hit rate drops and the

dismiss rate spikes right at the first non-zero value. For your convenience, those first points

are:

Table 6.2: Hit and dismiss rates for specific indicators

Indicator Hit Rate Dismiss Rate

1 .728 .634
2 .749 .573
3 .553 .848
4 .597 .823
5 .555 .853
7 .682 .729
8 .600 .832
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Beyond this first point, the hit rate decreases and the dismiss rate increases, and tends

to level out at a certain threshold. If we define the best values for the indicators as the

values that give the highest hit rate while still actually dismissing some results, then the

threshold of 1 or 1% appears to be the best threshold for each of these values individually.

Furthermore, the best indicator, by that definition, would be indicator 2 - New Func ≥

X. Del Func is close, but it dismisses about 6% more at the cost of about 2% of the hits.

Indicator 8 dismisses about 23% more commits at that first threshold, but hits around 10%

fewer regressions.

Some other observations are that indicator 3 seems to have very little room between

hitting all the commits and hitting none of the commits, and that indicators 4, 5, 7, and 8

seem to quickly level out to a constant hit and dismiss rate, while for indicators 1 and 2 the

hit rate seems to decrease almost linearly as the threshold increases. Also, no matter what

threshold you pick, if you are using one indicator the best you can do for a hit rate with this

data is 74.9%.

Figure 6.1: Indicator 1 - Del Func ≥ X
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Figure 6.2: Indicator 2 - New Func ≥ X

Figure 6.3: Indicator 3 - Reached Del Func ≥ X
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Figure 6.4: Indicator 4 - Top Chg by Call ≥ X%

Figure 6.5: Indicator 5 - Top ≥ X% by Call Chg by ≥ 10%
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Figure 6.6: Indicator 7 - Top Chg Len ≥ X%

Figure 6.7: Indicator 8 - Top Reached Chg Len ≥ X%
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Chapter 7

Threats to Validity

In this chapter, we present factors that may impact the applicability of our observations in

real-life situations. We classify these factors into three categories [13].

Internal Validity. We report on the uncontrolled factors that interfere with causes and

effects, and may impact the experimental results.

Commits not necessarily sequential: The git project itself uses git as source control, and

employs a branching strategy with merges. If the project history branched and then merged,

when you view the history linearly you might have two commits next to each other which

technically were not developed sequentially when originally committed by the developer.

However, none of our metrics are dependent on that ordering. So, even if commit A is not

a direct parent to commit B in terms of how the development team wrote the code, our

system can still consider them as such because it makes no difference. In fact, if desired

we could jumble up the order of all the commits studied, and see if the system still works.

This would not be practical, because the amount of change between commits would likely

be dramatically higher, however for all our system knows the development team is just very

active and makes huge changes all the time.

Neither our study nor the original study consider accumulated change over time. Both

studies consider commits in pairs as they come in. If you have commits A, B, C, and D

pushed, in that order, Perphecy will evaluate the changes from A to B, then B to C, then C

to D. However, it may be more prudent to consider the accumulated change over time, until

a hit occurs and we run our test again. In other words, assuming that the system predicts

a dismiss for these commits, the system would consider the difference from A to B, then
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after marking it as a dismiss, it would consider from A to C, then again after marking it

a dismiss, it would consider from A to D. With the way Perphecy works with thresholds,

if the predictor was, for example, ”Del Func ≥ 3”, and each commit involved deleting

one line, the first approach would not detect a performance hit, but the second approach

would, because the accumulated change would be marked as risky. In an extreme case

where a development team always limits commits to a single line of code, Perphecy would

likely not function properly. Considering accumulated change would fix this issue, and

may naturally decrease the need for periodic testing external to what Perphecy predicts.

Construct Validity. Herewith we report on certain challenges that validate whether the

findings of our study reflect real-world conditions.

Certain git code is platform dependent. We did not perform any testing on Windows

operating systems, so Windows specific code would not be executed during our dynamic

profiling, and thus any indicators depending on that profiling have no chance of activating

due to Windows specific changes.

The results of our experiments are influenced heavily by the definition of a performance

regression. We used the same definition as in the original paper, however this definition has

its limitations. For example, simply performing a t-test between two commits does not

consider the history of times. One could try performing a t-test between the samples of all

of the last X commits and the samples from the new commit. In a more realistic scenario,

running tests more than once would be unreasonable, so another approach could be keeping

a circular buffer of the last ten execution times and defining a regression as being a certain

number of standard deviations away from the mean. However, evaluating different methods

of defining performance regression is outside the scope of this work.

Using different computers for running performance tests: In order to execute the per-

formance tests for over 8000 commits in a timely manner, the task was parallelized across

multiple machines. This could become a threat because the results for the performance

tests are given as a time duration, which can vary based on CPU speed, number of cores,
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and other random variables between machines. To mitigate this, identical digitalocean (ci-

tation?) VMs were used for all performance test results, which means CPU speed, RAM,

and so on were identical. Additionally, we ran each test 5 separate times, such that each

execution was at a different time of day on a different VM. This helps mitigate other un-

controllable random noise in the results of the testing.

External Validity. The prediction of performance regression was limited only to one

project. The generated predictor does not necessarily give the best results for other projects

[7]. This is due to the nature of changes performed by the developers, and so, for each set

of changes, there is eventually a need to refine the predictor. We mitigate this limitation

by simply re-executing our approach for the new system’s changes as input and update the

predictor.

Also, the diverse nature of commits may bias our results, we tired to address this lim-

itation by analyzing a large number of diverse commits written by multiple developers to

make the changes more representative. Similarly, not all projects utilize GitHub to track

and manage changes; and not all projects provide a performance testing set in the publicly

available source base. This may reduce the usability of our approach since is relies on

executing pre-written test cases to detect any regression.
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Chapter 8

Conclusion & Future Work

The goal of this work is to create a system which can accurately predict performance test

regressions. We have replicated the Perphecy paper on 8596 commits of the git project and

have found that the Perphecy approach does not perform as well as reported in the original

paper. The original paper found that for the same project on less commits, they were able to

correctly predict 85% of commits with regressions while correctly dismissing 83% of other

commits. In our study, we found that with our least aggressive cleaning of the training data

and our most realistic evaluation data set, a 76% hit rate with a 56% dismiss rate was more

realistic. We also identify and discuss a flaw in the original paper’s threshold selection

algorithm, and a larger dataset with further analysis on the individual indicators used in the

original study.

We plan to extend this study by adding additional indicators not considered in the orig-

inal paper. We plan to add five indicators based on 3 metrics - Flux, or the number of added

lines plus the number of deleted lines between two commits, Cyclomatic Complexity, and

Coupling between objects. Flux would provide a similar kind of indicator as number of

added functions or number of deleted functions, but it is based on lines rather than func-

tions. Some of the results we found that had only zero values for all the indicators would

have a non-zero value for flux. For cyclomatic complexity and coupling between objects,

we would look at the highest changed value between two commits, and also look at the

highest changed value that is also reached by the given benchmark. Though these are typ-

ically metrics used for correctness bugs, we wish to examine their impact on performance

bugs as well.
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This study can also be expanded to consider accumulated change, as discussed in the

Threats chapter. One last extension can be to experiment with different ways of using

the raw metric data other than determining static thresholds as is done in this study. For

instance, the values of the metrics could be fed directly into a neural network. Depending

on how the network is set up, this could lead to usage of conjunction between indicators as

well as disjunction.
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