
Rochester Institute of Technology Rochester Institute of Technology

RIT Digital Institutional Repository RIT Digital Institutional Repository

Theses

1988

CLASS - A Study of methods for coarse phonetic classification CLASS - A Study of methods for coarse phonetic classification

James Delmege

Follow this and additional works at: https://repository.rit.edu/theses

Recommended Citation Recommended Citation
Delmege, James, "CLASS - A Study of methods for coarse phonetic classification" (1988). Thesis.
Rochester Institute of Technology. Accessed from

This Thesis is brought to you for free and open access by the RIT Libraries. For more information, please contact
repository@rit.edu.

https://repository.rit.edu/
https://repository.rit.edu/theses
https://repository.rit.edu/theses?utm_source=repository.rit.edu%2Ftheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.rit.edu/theses/96?utm_source=repository.rit.edu%2Ftheses%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:repository@rit.edu

R. I. T.
Rochester Institute of Technology

School of
Computer Science and Technology

CLASS - A study of methods for

coarse phonetic classification

By

James w. Delmege

A thesis, submitted to the Faculty of the School of
Computer Science and Technology, in partial fulfillment
of the requirements for the degree of Masters of Science
in Computer Science.

Approved by:
Dr. James Hillenbrand (Chairman)
John A. Biles
~eter G. Anderson

September 30, 1988

TABLE OF CONTENTS

Abstract 1

Acknowledgments 2

Introduction 3

CHAPTER 1 PHONETIC CLASSIFICATION

1.1 Phonemes and continuous speech 5

1.2 Spectrogram-reading research 8

1.3 Coarse Classification 9

1.3.1 Feature analysis 10

1.3.2 Segmentation 13

1.3.3 Classification 16

1.4 Structuring the decision-making process 17

1.4.1 Coarse classification for digit recognition . . 18

1.4.2 Coarse classification as a front end to time

alignment 20

1.5 The K-means clustering algorithm 23

1.6 Bayes decision theory 25

CHAPTER 2 THE COARSE CLASSIFIER

2.1 Overview of the RIT Speech Understanding System . 26

2.2 The objectives of this work 28

2.2.1 Feature Extraction 28

2.2.2 Coarse Classification 28

2.2.3 Specific Classification 28

2.3 Training 29

2.3.1 Feature extraction and data preparation 29

2.3.1.1 The CMU data base 31

2.3.1.2 The options file 32

2.3.1.3 The preprocessor 32

2.3.1.4 The feature output files 32

2.3.2 Cluster analysis 34

2.3.2.1 The tree structure 35

2.3.2.1.1 Clustering the data 36

2.3.3 The output from the training phase 39

2.4 The classification of an unknown data sample ... 39

CHAPTER 3 RESULTS

3.1 Training results 41

3.1.1 Cluster analysis 45

3.1.2 Tree structures 46

3.1.3 Feature Utilization 47

3.2 System comparison and evaluation 49

3.3 Speaker independence 54

3.4 Visual Inspection of the Results 55

CHAPTER 4 CONCLUSIONS AND FURTHER STUDY

4

4

4

4

4

4

CHAPTER 5

5,

5,

5,

5,

5.

5,

5.

5.

5.

5.

Tree structure influence 58

K-means vs. maximum Likelihood 59

Normal Distribution 60

Classification probabilities 62

Smoothing the results 63

Summary 6 4

USER DOCUMENTATION

Introduction to the CLASS facilities 66

Detailed discussion of the training process ... 69

Detailed discussion of the classification process 74

Detailed discussion of the each program 76

PRE - The feature extraction program 76

NORM - The data normalizer 79

KTRAIN - K-means training program 81

CLASS - The classifier 83

SD - Maximum likelihood training program 84

CLASSM - Classifier for Maximum Likelihood ... 85

CHAPTER 6

CHAPTER 7

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

REFERENCES 86

GLOSSARY 88

A OPTION FILE FORMAT 90

B PHONEME NAMES 9 5

C SAMPLE OUTPUT 98

D CLASSIFIER RESULTS 105

E UTTERANCE TRAINING SET 108

F CODE FOR FEATURE EXTRACTION 110

G CODE FOR K-MEANS CLUSTERING 117

TABLE OF FIGURES

Figure 1.1 Spectrogram showing variations in continuous speech 7

Figure 1.2 Sample zero crossing graph 12

Figure 1.3 Multi-level Acoustic Segmentation 15

Figure 1.4 Hierarchical structure of the phonetic alphabet . 17

Figure 1.5 Decision tree used by Hewlett-Packard 19

Figure 1.6 Coarse phonetic classification on time alignment . 21

Figure 1.7 Block diagram of the use of a K-means 21

Figure 2.1 Block diagram of the RIT speech project 27

Figure 2.2 A label/vector pair, or LVP 30

Figure 2.3 Feature extraction and data flow diagram 31

Figure 2.4 The three tree structures being evaluated 35

Figure 2.5 Data clusters as they flow through K-means training 38

Figure 3.1 Sample spectrograms of silence and closures ... 42

Figure 3.2 Sample spectrograms of the four coarse classes . . 43

Figure 3.3 Tree structures shown with their final classes . . 46

Figure 3.4 Example frame analysis 50

Figure 3.5 Example segment analysis 51

Figure 3.6 Performance of each of the six classifiers 52

Figure 3.7 Classification results on utterance 1 56

Figure 3.8 Classification results on utterance 2 57

Figure 4.1 The 19 subclasses within 3 broad classes 62

Figure C.l Spectrogram for utterance
"obey"

99

Table 3..1

Table 3,.2

Table 3..3

Table D..1

Table D..2

TABLE OF TABLES

Phoneme cluster analysis results 45

Features to use at each decision point in trees . . 48

Male/female performance evaluation 54

Confussion matricies of frame by frame performance . 106

Segment by segment analysis performance results . . 107

Abstract

The objective of this thesis was to examine computer techniques

for classifying speech signals into four coarse phonetic

classes: vowel-like, strong fricative, weak fricative and

silence. The study compared classification results from the

K-means clustering algorithm using Euclidian distance

measurements with classification using a multivariate maximum

likelihood distance measure. In addition to the comparison of

statistical methods, this study compared classification using

several tree-structured decision making processes. The system

was trained on ten speakers using 98 utterances with both known

and unknown speakers. Results showed very little difference

between the Euclidian distance and maximum likelihood; however,

the introduction of the tree structure on both systems had a

positive influence on their performance.

Keywords :

Artificial Intelligence

Voice Recognition

Speech Recognition

Pattern Recognition

Signal Processing

Speech Analysis

ACM:

Computing Methodologies

Natural Language Processing

Speech recognition and Understanding

1 -

Acknowledgments

I am very grateful to my committee chairman Jim Hillenbrand

for his experience and expertise in guiding me through this

thesis. His encouragement and advice helped keep me on track

through some of the difficult times, particularly during the

writing of the paper.

I would also like to thank Al Biles, my second committee

member, for both his input on the research itself and his advice

on getting through all of the RIT paperwork. Thanks to Rob

Gayvert, who helped out with some support software and explained

to me some confusing aspects of statistical analysis. My thanks

also goes to Lisa Furman for her meticulous review of my drafts.

For the use of their computer facilities I express my
appreciation to my employer, Redcom Laboratories.

On a more personal note I would like to express my deepest

thanks to my wife, Suzanne, who watched and waited many long
evenings as I wrote and rewrote. Although this paper bares my

name the effort was no less hers by allowing me the time needed

with two small children at home.

The pursuit of education has been both a challenge and a

joy to me and I would not have known either side had it not been

for the encouragement of my parents, for they have shown me the

importance of learning and for that I be forever thankful.

Finally, I would like to express my thanks to God for the

strength, love, and eternal life He has given me and my family.

"The fear of the Lord is the beginning of wisdom, and knowledge

of the Holy One is
understanding."

(Proverbs 9:10).

This research was in part supported by Rome Air Development

Center, under contract number F3060285-C-0008 and done in

cooperation with the Rochester Institute of Technology Research

Corporation .

1 Introduction

Speech recognition has been an area of interest to computer

scientists for many years. Although progress has been slow and

the work often tedious, knowledge has been gained regarding what

the critical attributes of speech are and how to work with these

attributes in a computer. Much work has been done with the

application of general pattern matching techniques producing

very good success within a limited domain. The limitations

placed on the speech domain for pattern matching techniques

include a single speaker, a small vocabulary, and the

requirement that the speaker produce words in isolation. The

extension of low level pattern matching techniques to a large

vocabulary, speaker independence, and continuous speech has not

met with great success. For this reason, researchers have begun

to look for more robust techniques that might work in more

difficult domains.

Phonetic analysis is considered by some to be one of the

more robust ways of analyzing speech and may prove to be

successful with domains using a large vocabulary, speaker

independence, or continuous speech. Phonetic analysis involves

mapping the incoming speech to a sequence of phonemes. This can

be done with good results by a highly trained phonetician

[ZUE 79]. However, enabling a computer to perform this task is

a formidable challenge. The phonetic analysis approach used

here involves the basic steps of, feature extraction,

segmentation, and classification. Once a set of meaningful

features has been extracted, the segmentation and classification

- 3 -

can be done by applying traditional clustering and multivariate

analysis to the feature vector.

Any gross mistakes in segmentation or classification (e.g.

identifying a vowel as a fricative) of the incoming voice will

probably result in an incorrectly recognized word. Minor

labeling errors (e.g. the fricative /sh/ labeled as /ch/) are

much more likely to be tolerated or corrected at a higher level.

It is this concern that has motivated the work presented in this

thesis. The objective was to study ways of doing the first

level segmentation and classification, placing each segment into

its correct class (strong fricative, weak fricative, vowel-like,

or silence). Once the correct coarse class has been

established, the next level can continue the classification

process down to the specific phoneme. Therefore, the primary

concern of the work presented here was to ensure that the system

avoid gross errors in identifying segment boundaries and

phonetic labels, leaving the detailed analysis to other modules

in the system.

4 -

CHAPTER 1

PHONETIC CLASSIFICATION

1.1 Phonemes and continuous speech

The human speech production system is capable of producing

an almost infinite number of sounds. However, the English

language is made up of approximately 42 basic sound units called

phonemes. It has long been believed that each phoneme possesses

certain inherent characteristics that make it distinguishable

from all other phonemes. Identifying these characteristics and

learning how to extract them from a speech signal is a key issue

in the process of recognizing what phoneme is being spoken.

Correctly performing this task is difficult due to the fact that

these characteristics exhibit a high degree of variability- A

major source of variability arises from interspeaker differences

because each speaker pronounces phonemes in a slightly different

way. Their frequency range, rate of speech, volume, accent,

etc. all vary and must be taken into account. Another very

difficult source of variability occurs in continuous speech and

is called coarticulation . This is when the properties of a

phoneme change as a function of the phonemes around it. The

problem of coarticulation is best explained by viewing an

example of it in a spectrogram. As shown in Figure 1.1, the

- 5 -

words
"Two"

and
"ten"

both start with the same phoneme /t/ , and

although they are similar, there are also differences. The

burst frequency is lower for the first /t/ than for the second,

due to the anticipation of the vowel /u/. Also, notice the

three occurrences of the vowel // (in "seven", "less", and

"ten"). The second // is influenced by the adjacent /I/,

resulting in a very low starting frequency of the second

formant*. It is also influenced by the following /s/ raising

the second formant upward near the end of the phoneme. The

third // is heavily nasalized, as shown by the smearing of the

first formant. These examples serve to illustrate that it can

often be difficult to even see the similarities in two separate

occurrences of a phoneme in continuous speech. Therefore,

although there is a relatively small set of phonemes that

comprise the English language, identifying them is not a simple

job of matching a small set of well-defined patterns, or

templates. It involves a much deeper understanding of the

acoustic properties of the phonemes and their interaction with

each other [ZUE 85] .

* Formants are natural resonant frequencies of the vocal tract,

which appear as regions of relatively high energy in

spectrograms. Formant frequencies are known to carry a great

deal of phonetic information.

- 6 -

-w mttttttmt

i i i i i i

0.0 0.1 0.2 0.3 oa u oS 0I7 5TS 615 To Ti T3 fj T5 Ta To i.7 i. .s

Two plus seven is less than ten.

t U P 1 A S e V 9 n 1 z 1 e s 6 3 n t c n

Figure 1.1 A speech spectrogram of "Two plus seven is less

than
ten,"

spoken by a male, illustrating some allophonic

variations often found in continuous speech [ZUE 85].

- 7

1.2 Spectrogram-reading research

In the late 1970's, spectrogram-reading experiments were

performed by Zue and Cole in which Zue was asked to read

spectrograms in three categories [ZUE 79]. He was given

spectrograms consisting of: (1) isolated words, (2) sensible

sentences, (e.g., "The soldiers knew the battle was won."), and

(3) semantically anomalous sentences (e.g., "Wake jungle

gasoline sudden bright."). These utterances were unknown to Zue

and were spoken by unknown speakers. His resulting phonetic

transcriptions were compared with results provided by three

phoenticians who listened to the utterances. Zue's

segmentation*
matched that of the other three phoneticians 100

percent of the time for isolated words and 97 percent for

continuous speech. His segment labeling produced results from

81 to 93 percent agreement with the other phonetician's results.

These results are far better than any computer speech

recognition system has done thus far.

These results point have several implications for computer

speech recognition. First, there is a wealth of phonetic

information to be obtained directly from the speech signal. The

fact that Zue performed correct segmentation 100 percent of the

time with isolated words and 97 percent of the time on

continuous speech says that the information needed for

segmentation is present in the spectrogram. Second, the reading

was based on the use of many acoustic cues, some of which were

extracted and used immediately; others were not examined until a

* Segmentation is the process of determining the phonetic

boundaries within an utterance.

context had been established. This indicates that the order in

which the extracted features were used was significant.

Finally, it was found that the sensible sentences were read

almost as accurately as the semantically anomalous ones,

indicating that a high level knowledge of English sentence

structure is not a requirement for good phoneme recognition.

1.3 Coarse Classification

While handling the variability between speakers, one must

not lose sight of the desire to recognize a large vocabulary of

words. The problems associated with a large vocabulary are not

just related to the sheer size of the search space, but also to

the very small acoustic distinction (or distance) between words

as the vocabulary size increases. For example, distinguishing

reliably between
"Sue"

and
"zoo"

across a wide range of speakers

can be very difficult. An approach that will help solve this

problem is the use of coarse phonetic classes. Coarse

classification has been used on speech projects by Leung and Zue

at MIT [LEUN85]; Wilcox and Lowerre at Hewlett-Packard [WILC86];

Cole, Phillips, Brennan, and Chigier at Carnegie-Mellon

[COLE86]; and Wilpon and Rabiner at Bell Laboratories [WILP85].

The coarse classes aid in breaking down a large problem into a

number of sub-problems. When applied to phonetically-based

speech recognition, this process generally involves categorizing

speech into a few coarse classes such as, fricatives, vowels,

stops, etc., then further categorizing each of those classes

into their respective phonemes. The size of each coarse class

may range from about three to twenty phonemes. The problems now

- 9 -

include coarse classification and detailed classification within

each coarse class.

1.3.1 Feature analysis

When attempting to identify a phoneme, in a system based on

phonetic features, one crucial consideration is the choice of

acoustic features. The relevant-

features vary depending on the

available information and the learning goals. For example, if

the phoneme is known to be a vowel, then the formant frequencies

are very important. However, formant information is not useful

for differentiating among fricatives. The following sections

discuss three widely used characteristics of the speech signal

and how they have been used in coarse classification.

Ene rgy

1) The presence of voice can be detected by measuring the rms

energy of the signal relative to the rms energy of the noise

prior to the utterance. Then, a static threshold can be set.

However, if a
"silent"

period is known, this threshold can be

set dynamically [WILC86].

2) Relative energy measures can also reveal very valuable

information. Vowels and nasals can be distinguished based on

the total energy relative to the peak energy in the voiced

part of the signal. Also, energy in the mid passband

relative to the peak energy in the mid passband during

voicing can be used. The goal is to detect a loss of formant

structure that is not a result of a decrease in the overall

- 10 -

signal energy [WILC86].

3) A comparison of energy in the low frequency range 100-350 Hz

to that in the range 350-850 Hz can be useful in nasal

detection [CHEN86].

4) Energy onset rate is the energy change from 1000-7000 Hz

within 20 msec. To capture rapid transitions, the energy is

computed every millisecond from short time Fourier transforms

using a 2 msec Hamming window [CHEN86].

5) High frequency energy change, the slope of the best linear

fit to the energy in the 4500-7800 Hz band over the duration

of a phoneme, helps to differentiate between fricatives

(which have relatively stable energy) and unvoiced plosive

releases (which generally have strong onset followed by

weakening aspiration) [CHEN86].

Zero crossing rate

In the detection of fricatives one critical factor is

the zero crossing rate. This is the number of times the

signal crosses the X-axis within a given time period (see

Figure 1.2). In order not to be influenced by low background

noise, there is a dead band set such that a zero crossing is

only counted if the signal passes completely through this

region. This dead band may be set prior to the utterance and

is the amplitude of the noise seen during that time [WILC86].

- 11 -

wmft4Mii

110 200 320 240 2*0 2S0 300 320

|ni rni tifii tiFirn| lijntn^i tniifii| ii i Lirn t| i 11 i[iminn if rumn i| ti ii4itic|iimi rufirii in !{mi iii| rxiKtu 411*' L1 rt*1 l[iriiJl rMI1

SCC4 9*24 10554 11544 12504 134(4 14424 15364

Figure 1.2 Sample zero crossing graph for the

word
"thrush"

.

Spectra

Spectral moments have been used in the analysis of

voiceless obstruents [FORR88]. The moments reveal

information about the distribution of energy across the

frequency range. The first four moments indicate mean,

variance, skewness, and kurtosis, respectively. Mean is the

midpoint, or average frequency of the power distribution.

Variance indicates how compressed or spread out (i.e.

variable) the energy is across the frequency range. Skewness

is a measure of how symmetrically the energy is distributed

about the mean. Kurtosis measures the amount of energy in

the ends of the spectra relative to the amount of energy in

the center of the spectra range.

- 12

1.3.2 Segmentation

Once the features have been identified and extracted, the

segmentation and classification steps may begin. In a recent

study by Glass and Zue [GLAS87], more insight was gained into

coarse segmentation and classification. In their study, the

segmentation was done first, followed by classification.

Segmentation involves finding the boundaries of each of the

phonemes in the incoming speech signal. The algorithm used for

this task was as follows:

1) The signal was divided into 10 millisecond frames.

2) A feature vector was produced for each frame.

3) A Euclidian distance measure was calculated from

the current frame to each frame 10 msec to the

left and to the right using the feature vectors.

4) If the distance measure changed from being closer

to the left frame to being closer to the right

frame, then that point was considered to be a

segment boundary.

One very important aspect of this algorithm is that all of

the information is local in context; that is, training data was

not used, and the approach does not require preconceived ideas

about segment boundaries. This is of great significance when

using speaker-independent input. By changing parameters within

the procedure, the sensitivity of segment detection can be

altered. Very sensitive parameter settings are chosen to ensure

that all true segment boundaries are found. As a result, some

false boundaries are likely to be found as well. Once the

initial segmentation is done, the following repetitive process

- 13 -

is performed:

1) Each segment is associated with either its left or right

neighbor using a linear distance measure applied to the

feature vector of each segment.

2) Then, these larger segments are subsequently associated

with one of their neighbors, and so on.

3) The merging continues until all of the segments are

merged into one single segment.

The result is the segment merging diagram seen in Figure

1.3. The figure shows this process being performed on the 2.7

second utterance, "Coconut cream pie makes a nice dessert". The

spectrogram and phonetic transcription are shown below the

segment merging diagram. The segment merging diagram shows the

steps of the repetitive process of combining segments together

based on the similarity of their spectral characteristics. The

very bottom of the diagram shows the results of the initial

segmentation done on the 10 msec frames. Moving up the diagram,

the small segments are merged together forming larger segments.

The shaded areas represent the points at which this process

found the correct segment boundaries.

- 14 -

0 ;k V ^kinj * 1 1 j k Hr jjp*jp j * i | ieil |a | n j r j
k*

;* ji | j * H #

0.4 shss-s-pntbo Pftomatlc Transcription - a.7

Figure 1.3 Multi-level Acoustic Segmentation, performed on

the utterance "Coconut cream pie makes a nice
dessert"

[GLAS87]

- 15 -

1.3.3 Classification

Once the speech signal has been segmented, the segments can

be placed into acoustic classes. The goal is to have a

procedure that groups similar speech sounds into the same class

and separates sounds that are different. To accomplish this

goal, Glass and Zue, in their 1987 study [GLAS87], used a

500-sentence database, covering over 24 minutes of speech.

Their approach is similar to that of the segmentation problem.

However, instead of starting with fine segments and working

toward coarse ones, they began with the assumption that all

segments were in one single class, and then, iteratively, broke

them into finer and finer classes. Distance measurements were

taken between segments, and tighter tolerances were used to

produce these finer classes. Figure 1.4 shows the steps of this

process. At the bottom of the diagram, all of the segments are

assumed to be in the same class. Moving up the diagram, the

class breaks into two, three, four, etc. classes, until

eventually, there are 61 classes at the top of the diagram. The

results are not very surprising; for instance, the top two

levels distinguished nearly all the consonants from vowels. The

vowels were divided further based on spectral shapes

corresponding to different corners of the vowel triangle. It is

this coherent breakdown that is very encouraging to those

considering a hierarchical structure in which to incorporate the

decision process.

16 -

IV uo

y<i
P*o

PyQ

ytt

TFyT

e u

BU

oTssu

| wl

w

tftfr

Iwl

o otmlwl

i>

3Y

U5

a a w

aq a

Aa"acre

uoyAQ0oo7er

tfrf>ruoyAa"Qcr*ei

o"oeu|wltftfroorAa"acr'e

i7iI,,yQo"oeu|wltf^ruorAQ"Q{r's

FfrWS8v

ag-d-fp'tf^k'

31

Dg-cffp"tf#k"vO

T n rj

nrj

ri

rim

m?

ppm

nggrim

rpnggrim

frpnQQnm

eg

w ef
td

Ticief

?Ace6ftdbnphkg

.bhkg

Fiphkg

bnphkg

tdbfiphkg

ffpnngpm?6c9eftdbfiphkg

og"cTfp"b'n*'k"vDfmnQr)cim?ic9eftdbfiphko

ijriljryQo"ou|wltfi>uoyAQ"Qoycag"d"t"p"b"*k,vDifmnQQ(pm?(Jceftdbfiphkg

zs

rfe~

15"

zsinr

Figure 1.4 Hierarchical structure of the phonetic

alphabet [GLAS87] .

1.4 Structuring the decision-making process

Clearly, there needs to be a well-structured approach to

the process of determining the coarse phonetic classes. A

tree-structured decision making model was used to implement such

a classifier at MIT by Leung [LEUN85]. The tree structure, with

each non-terminal node representing a decision point and each

terminal node representing a coarse class, allows different

features to be examined at each decision point in order to

maximize the contrast between the possible output classes. For

example, Leung claims that zero-crossing rate is helpful for

distinguishing sonorants from obstruents, but not for

distinguishing vowels from voiced consonants. Thus, the problem

17 -

of classifying the speech signal into different groups can be

reduced to a sequence of sub-problems, each of which is of

lesser magnitude than the task as a whole. The following

sections will briefly examine several projects that have used

this approach. In the following chapter, this approach will be

applied to the work being done in this thesis.

1.4.1 Coarse classification for digit recognition

In a study at Hewlett-Packard Laboratories, Wilcox and

Lowerre [WILC86] developed a feature-based coarse classifier.

Using a very limited vocabulary (digits 0-9), it is possible to

accurately hypothesize digits, with very little detail in the

phonetic label. The work was done for speaker-independent

applications and is applicable to large vocabularies as well.

In their project, the goal was to identify the digit based

exclusively on its coarse classes. The following five coarse

classes were used in this process: silence, vowel, nasal-like,

strong fricative and weak fricative.

Each utterance was divided into 10 msec frames, and coarse

classification was performed on each frame. The next branch was

determined by a
Gaussian* classifier at each of the five

decision points in the tree shown in Figure 1.5. At each point

in the tree, different features of the signal were used as the

basis for decision making.

a Gaussian classifier is one that presumes a normal

distribution of the data. The multivariate maximum likelihood

distance measure discussed later is such a classifier.

- 18 -

Silence / Non-silence

Silence Sonorant / Non-sonorant

Vowel / Nasal-like

Vowel Nasal-like

Strong

fricative

Fricative / Non-fricative

Unknown

Weak Breath

fricative noise

Figure 1.5 Decision tree used by Hewlett-Packard
in a study on digit recognition

These results showed that without label information during

training, a classifier can be trained for the

sonorant/non-sonorant and the strong fricative/silence

decisions. The techniques break down in distinguishing vowels

from nasals and weak fricatives from strong fricatives and

- 19 -

silence. Therefore, it was concluded that the only robust

coarse classes are silence, fricative and sonorant. The

sampling rate for this classifier was 12500 Hz. It was

suggested, after the study, that a higher rate be used to make

the strong versus weak fricative decision more accurate.

1.4.2 Coarse classification as a front end to time alignment

The tree structured approach to coarse classification was

implemented in a project by Leung at MIT [LEUN85]. Leung

applied coarse classification to the time alignment* of phonetic

transcriptions in continuous speech using the architecture shown

in Figure 1.6. Coarse phonetic classification was used to set

some initial anchor points within the speech signal. From these

anchor points, the detailed phonetic alignment takes shape more

easily. The classifier is structured as a sequence of binary

classifiers arranged in a tree. A set of classifiers was used

to allow different feature sets to be used for each classifier.

In this way the most salient features are used at each binary

classification. The system structure is presented in Figure

1.7.

* Time alignment is the process of aligning a phonetic

translation with the speech signal along the time axis.

- 20 -

Speech
Broad

Class

Segmentation

Path Finding

Algorithm

Phonetic transcription I

Knowledge

based

Segmentation

I

Time-

aligned

speech

Figure 1.6 Coarse phonetic classification as

in speech time alignment by MIT [LEUN85].

used

Spch

Faatura Extraction

nd

Smoothing

Faatura Extraction

and

Smooth!nf

Clipping
nd

Normalization

Clipping
nd

Normalization

.
.

F*tur Extraction

nd

Smooth!nf

Clipping
nd

Normalization

r
M

K-meant

Cluttering

K-means classifier
Fiqure 1.7 Block diagram of the use of

during coarse phonetic
classification [LEUN85]

- 21 -

In the speech alignment structure, phonetic transcriptions

were not used for the coarse classification. The methodology

was to measure a set of feature vectors and perform a K-means

clustering analysis, using a Euclidian distance measure. The

results of this study indicated that this technique worked quite

well for coarse classification using a small number of classes

(i.e. five or six); however, it was much less successful for

fine phonetic distinctions. For this reason, five classes were

chosen, and each frame was assigned to one of these classes.

The five classes were vowel-like sonorant, obstruent, silence,

nasals and voice bars, and voiced consonants.

- 22 -

1.5 The K-means clustering algorithm

The main objective of a clustering algorithm is to group

like tokens together and to separate different tokens.

Algorithms to perform this function have existed for many years

and have been applied to numerous areas of study. The K-means

algorithm is a clustering technique that will form K clusters of

data points in an n-dimensional space. For speech samples, the

feature vector may be considered to be a point in an

n-dimensional space, where each feature represents one of the

dimensions. The K-means algorithm functions as follows:

Given: Many sample data points within the n-dimensional

space .

Goal: To find K cluster centers (means) for the data.

Procedure :

Step 1: Choose K initial cluster centers. These may be

arbitrary and are often the first K data points

given .

Step 2: Distribute the remaining data points around the K

cluster centers by placing each point in the cluster

whose center is closest in Euclidian distance to

that point.

Step 3: Calculate the center of each new cluster by choosing

the point such that the sum of the squared distances

from all the points within the cluster is minimized.

Step 4: If the new cluster centers are different from the

old cluster centers, then repeat starting at step 2.

Otherwise, the algorithm has converged, and the

process may terminate.

The behavior of the K-means algorithm is influenced by the

number of cluster centers specified, the choice of initial

cluster centers, the order in which the samples are taken, and,

of course, the geometrical properties of the data. Although no

- 23 -

general proof of convergence exists for this algorithm, it

yields acceptable results when the data exhibit characteristic

pockets that are relatively far from each other. In most

practical cases, the application of this algorithm requires

experimenting with various values of K, as well as different

starting configurations [Tou 74].

- 24 -

1.6 Bayes decision theory

In its simplest form, the K-means algorithm returns a mean

feature vector (the cluster center) and standard deviation for

each cluster. With this information, the simplest approach to

categorizing an unknown data sample is to calculate a z-score

for the unknown data point to each cluster and classify the data

point as a member of the cluster whose z-score is the smallest.

Because speech features often result in clusters that

overlap within the n-dimensional space, more sophisticated

techniques are often employed to measure the distance between a

data point and a cluster. If we presume that clusters of data

are normally distributed around the cluster center, then we can

take the mean feature vector and distribution characteristics

and use a distance measure called maximum likelihood [DUDA73].

The maximum likelihood distance formula is defined as follows:

2 t -1

r = (x
-

u) SUM (x - u)

where: x = the feature vector being evaluated

u = the mean feature vector for the cluster

(cluster center)

-1

SUM = inverse covariance matrix for the features

(distribution information)

t

(x-u) = is the transpose of x-u.

25 -

CHAPTER 2

THE COARSE CLASSIFIER

2.1 Overview of the RIT Speech Understanding System

This thesis was conducted in cooperation with the Rochester

Institute of Technology (RIT). At RIT there is a speaker

independent, large vocabulary, continuous speech recognition

project currently under development whose front end structure is

shown in Figure 2.1. This system has a bottom-up architecture,

meaning that the phonetic feature extractors will drive the

system toward its conclusions. The objective of this part of

the system is to convert the speech signal into phonetic units.

The process can be broken down into the following three general

steps: feature extraction, coarse classification, and fine

classi f ication .

The target machine for this project is a Sun Work-station

running the Unix operating system and located at RIT. Much of

the development was done off-site on an IBM PC running the

MS-DOS operating system. For the CPU-intensive test runs the

project was ported to a VAX 11/785 running VMS. The final

project will run on all three machines, operating systems, and

their respective compilers, with the source code being common to

all. The code was written in C with some utility support on the

- 26 -

PC written in Pascal

Phoneme builder and

application levels

Weak

Frcatives Silence Vowels

CLASS

Coarse phonetic classifier

(the subject of this thesis)

Zero Total 100-400 Peak

crossing

rate

energy Hz energy

relative

to

4 0 0-900

energy

relative

to total

energy

Spectral

change

Period

icity

Moments:

Mean

Deviation

Skew

Kurtosis

Speech utterance

Figure 2.1 Block diagram of the structure for the speech

understanding
system into which this work will fit.

- 27

2.2 The objectives of this work

2.2.1 Feature Extraction

Characteristics such as zero crossing rate and energy

characteristics are extracted and a feature vector is produced.

This vector is the ordered set of the resulting feature values

for a particular sample of the speech signal.

2.2.2 Coarse Classification

The coarse classification step involves first identifying

the coarse class for each 10 msec frame of the utterance. From

this, the beginning and end of each acoustic segment is

identified by setting these boundaries at the point where the

frames change from one coarse class to another. The segment

labels will be one of the four coarse classes; strong fricative,

weak fricative, vowel-like, and silence. Appendix B shows the

phonetic makeup of each of these classes. The objective of

coarse classification is to determine general guidelines or

boundaries for the rest of the system to use.

2.2.3 Specific Classification

Once the coarse class of the segment has been hypothesized

and its end points roughly marked, the signal is presented to

the appropriate specific phoneme identifier. The specific

phoneme identifiers are responsible for doing in depth analysis

of their particular phonetic classes.

- 21

This thesis concentrated on coarse classification. The two

major objectives for the work outlined in this section were:

(1) to examine the merits of K-means clustering, a

tree-structured architecture, maximum likelihood, and linear

distance measures as they apply to coarse classification of

unknown speech signals, and (2) to produce a working version of

a coarse classifier. The remainder of this section will discuss

the details of how these objectives were reached.

2 . 3 Training

Training involves systematically examining many samples of

speech data in order to allow the system to learn the salient

characteristics of each category. The training process used in

this work will be explained in three steps.

1) Feature extraction and data preparation

2) Cluster analysis

3) The output from the training phase

2.3.1 Feature extraction and data preparation

In the first step of the training, raw samples of speech

data were examined to produce a collection of label/vector pairs

(LVP) (see Figure 2.2). An LVP is a two-part entity consisting

of a phonetic label, which is taken from hand labeling

information in the data base, and a feature vector. The feature

vector is an ordered set of numbers, each number corresponding

to a particular characteristic of the speech sample. The

features being used are:

- 29 -

Zero crossing rate (ZER)
Total energy (TOT)
Relative energy (REL)
Peak energy (PEA)
Spectral derivative (SPE)

Periodicity (PER)
First moment, mean (MOl)
Second moment, deviation (M02)

Third moment, skew (M03)

Fourth moment, kurtosis (M04)

| Label | Feature Vector I
+ + +

V V v

{ PT, { ZER, TOT, REL, PEA, SPE, PER, MOl, M02 , M03 ,
M04 } }

Figure 2.2 A label/vector pair, or LVP -

The objective of this first step of the training phase was

to generate a collection of LVP
'
s that will form the basis for

the cluster analysis. Four kinds of files are involved in

creating LVP
'
s : the CMU speech data base, the options file, the

executable code, and the resulting output files, which are the

collection of LVP
'
s .

30 -

CMU data base

Speech

sample

1.b

2.b

3.b

4.b

Transcription

file

1-ptlola I

2.ptlola |

3.ptlola |
4.ptioia l

Options

file .opt

I
Class data

base Pre

processor

Feature output

files

Zero crossing

yJTotal energy

Relative energy

?^Peak energy

Spec, change

Periodicity

Mean

Deviation

Skewness

|Kurtosis~

.zer

.tot

.rel

.pea

.spe

.per

.mo1

.mo2

.mo3

.mo4

IPhonetic trans. I .pt

Figure 2.3 Feature extraction and data flow diagram.

2.3.1.1 The CMU data base

The speech data base used for this thesis was a subset of a

data base supplied by Carnegie-Mellon University- It includes

98 utterances, spoken by 5 males and 5 females. Each utterance

was roughly 3 seconds in duration, resulting in a training set

of about 5 minutes. In terms of phonetic data there were about

2,300 coarse segments and some 26,600 frames. This makes the

average segment 11.5 frames, or 115 msec in length. Appendix E

gives the detailed list of utterances used. Each utterance has

been hand-labeled with the phonetic transcription information

available in a file associated with that utterance. The speech

data as provided by Carnegie-Mellon University consisted of the

phonetic transcription information and a binary data file of 12

- 31 -

bit PCM sampled at 16kHz. The data was then low pass filtered

at 6kHz and downsampled to 12.8kHz. From there a 128-point FFT

spectral analysis was performed once per millisecond returning

64 magnitude components of the spectra. The FFT data was then

"cleaned"
of background noise by removing the amount of energy

found in a silent phonetic frame from all the frames. For

feature extraction, all the FFT information was averaged over

the 10 msec frame. This data base was then used during both the

training and testing phases of this work.

2.3.1.2 The options file

The options file is a text file that contains information

the preprocessor uses in order to extract and prepare the data

properly. The options file was used in place of switches to the

program. The format of the options file is explained in detail

in Appendix A.

2.3.1.3 The preprocessor

The preprocessor section includes all of the executable

code needed to extract the LVP
'
s

,
as specified by the options

file, and to create the output files. This code consists of a

collection of programs that perform specific operations on the

speech data and a final program that organizes the results and

produces the output files.

2.3.1.4 The feature output files

There was a file produced for each feature being extracted

- 32 -

and one containing the phonetic label information. The files

are in binary format organized such that reading the first

number from each of the files will return the first LVP, reading

the second number from each file will give the second LVP, and

so on. Thus, reading the eleven files into an eleven-by-N array

will give N different LVP
'
s produced from the CMU speech data

base. The next phase of the training was to perform cluster

analysis on these LVP
'
s . The output files were named using the

same root name as the options file along with a unique extension

for each feature. The following sections discuss the

implementation of each of the features.

Phonetic transcription f ile . PT - This file contains the

phonetic transcription information. It indicates what

phonetic label was given to the speech sample by human

interpretation. This will be considered the most correct

phonetic label and will, therefore, be used in determining
how well the clustering techniques perform.

Zero crossing rate file . ZER - This file contains zero crossing

rate information. This is the number of times the speech

signal crosses completely through the dead band around the

zero line for the duration of the frame. The limits of the

dead band may be changed in the options file.

Total energy file . TOT - This file contains the total energy in

eacTi frame .

Relative energy file . REL - This file contains a comparison of

the energy in the 100-400 Hz range to the energy in the

400-900 Hz range. The frequency ranges can be altered in

the options file.

Total to peak energy file . PEA - This file contains the total

eniTgy relative to the peak energy. The peak energy is

determined by finding the FFT component containing the most

energy. Then, the ratio of that component to the total is

calculated .

Spectral change file. SPE
- This file contains the spectral

change . This is the rate of change of the energy from one

frame to the next. It is calculated by summing the

differences of all the components of the FFT between two

adjacent frames.

- 33 -

Periodicity file. PER -

This file contains the periodicity
calculation. Periodicity is a measure of how periodic the

waveform is, which helps separate signals such as fricatives
from vowels.

Mean file. MOl - This file contains the first moment, mean.

The mean is calculated by:

MOl (1) *
rms[l] + + (64) *

rms[64]

where rms[l] is the magnitude of the rms energy for the

signal from 0 to 100 Hz., rms [2] is the energy from 100

to 200 Hz, etc.

Deviation file ,M02
- This file contains the second moment,

variance. The variance is calculated by:

M02 = (1-M01P2 *
rms[l] + . . . + (64-M01T2 *

rms[64]

Skewness file .MQ3

- This file contains the third moment,

skewness. The skewness is calculated by:

M03 = (1-M01P3 *
rms[l] +

M03 = M03 / M02~3/2

+ (64-M01P3 *
rms[64]

Kurtosis file.M04 This file contains the fourth moment,

kurtosis. The kurtosis is calculated by:

M04 = (l-MOl)~4 *
rms[l] + . .

M04 = (M04 / M02~2) - 3

+ (64-M01P3 *
rms[64]

2.3.2 Cluster analysis

Once the feature information has been extracted and the

LVP's collected, the clustering began. This involved assigning

each LVP to one of the coarse classes. The collection of all

the LVP's assigned to any one class is called a cluster. The

goal of this phase was to split the collection of LVP's into

clusters such that each cluster represents one of the coarse

classes being analyzed.

- 34 -

2.3.2.1 The tree structu re

The determination of which class an LVP should be assigned

to could be done in many ways. No matter what technique is

used, there must be an underlying structure to the decision

making process. This structure can be as simple as evaluating

all features together and making a single decision, or it can be

broken down into a series of smaller decisions, evaluating a

subset of the features during each decision. Either structure

can be represented by a tree where each terminal node represents

a coarse class, and the branches off of a non-terminal node

represent the decision that must be made. The three trees shown

below represent the extremes of the tree structures for a

decision tree with four coarse classes and was the basis for

comparison in this work. The main objective was, to determine

the effects (positive or negative) on the classifier of making

several consecutive decisions as opposed to one comprehensive

decision .

/A\

Binary Tree Single level tree Skewed binary tree

Figure 2.4 The three tree structures being evaluated

in this study-

- 35 -

With the tree-structured decision process, the goals of the

clustering phase were to determine the clusters of LVP's at each

node in the tree and to determine which features should be used

at each of the non-terminal nodes, in the tree. There were two

techniques used to determine the answers to these questions.

2.3.2.1.1 Clustering the data

The simplest and most obvious clustering technique is to

simply place the LVP's into one of the terminal nodes, based on

its phonetic label. With the terminal node established, all the

non-terminal nodes that must be passed through are also

established and thus the clusters at each node are known. The

advantage of this approach is that it allows the clusters to

most completely represent each class forming logical phonetic

classes. The drawback is that you must determine in advance the

mapping of phonemes to coarse classes and this is not a simple

task .

A second approach uses only the feature vector to separate

the data into clusters. The K-means algorithm, described

earlier, was applied to perform the clustering. All the LVP's

were initially placed in the root node cluster. The K-means

clustering algorithm then separates the LVP's between the

children of the root node. The process was repeated on each of

the children until all of the feature vectors were assigned to

one of the terminal nodes. At each of the non-terminal nodes,

the K-means clustering algorithm was run once for each

combination of features. A performance index, the percent of

- 36 -

feature vectors correctly classified as specified by the

phonetic label, was determined. A difference between this and

the previous clustering method is that previously the clusters

were based solely on the phonetic label. The K-means technique

uses the phonetic label to determine the performance of the

features, but it does not use it to determine the final

assignment of the LVP to a cluster. Cluster assignment is based

solely on the feature vector. Figure 2.5 shows the collection

of LVP's as they progress through the tree structure during this

method of training.

- 37

After initial

set-up

/\

After first

call to train

After second

call to train

After third

call to train

After fourth

call to train

Figure 2.5 Data clusters as they flow through a

training session using K-means.

- 31

2.3.3 The output from the training phase

In summary, the training phase trained the system on three

different tree structures, each using two different techniques.

This yields the following six combinations of training results

that will be compared to each other.

1) Maximum likelihood -

Binary tree

2) Maximum likelihood - Single level tree

3) Maximum likelihood - Skewed binary tree

4) K-means -

Binary tree

5) K-means - Single level tree

6) K-means - Skewed binary tree

For each combination of techniques, the training session

produced statistics associated with the cluster at each node,

with the exception of the root node. For the maximum likelihood

training sessions, the statistics included a mean feature vector

and an inverse covariance matrix. For the K-means training

sessions, the characteristics were the mean feature vector and

standard deviation.

2.4 The classification of an unknown data sample

Once the training was completed the classification stage is

rather simple. To classify an unknown sample of data, the

system performed the following steps:

1) Start at the root node.

2) Compute the feature vector of the unknown speech frame.

3) Calculate the distance between the computed feature vector

and the cluster centers associated with each of the

children.

- 39 -

4) Move down in the tree to the child whose cluster center is
closest* to the unknown frame.

5) If the new node is a terminal node, then this determines

the coarse class of the phoneme. If not, then return to

step 3.

The output of the classification phase includes the coarse

class, or terminal node, in which the frame has been classified.

It was also advantageous to know the second most likely class in

which the frame falls, and the probability with which the frame

falls into each class. Under the techniques using maximum

likelihood, the distance measure can be converted directly to

the probability that the unknown frame is a member of the

cluster. Therefore, this result can be returned directly as the

probability measure. With the K-means technique, a probability

is not generated directly; and if one is to be returned, it must

be calculated, the maximum likelihood technique returned a

probability. The first and second choices will be determined by

taking the first and second best distance measures at the last

non-terminal node visited.

* When trained with the K-means technique, a z-score is used to

measure closeness. When trained with maximum likelihood, the

distance used is the one returned directly from the formula.

- 40 -

CHAPTER 3

RESULTS

3.1 Training results

At the initial design of this project it was intended that

the systems would be able to distinguish between the five

classes: vowel-like, strong fricative, weak fricative, silence,

and voiced closures. Preliminary testing suggested that the

distinction between silence and closures could not be made

reliably. Figure 3.1 shows sample spectrograms of silence (bg)

and three different voiced closures (bcl, del, thel) . From

these samples, the similarity between the silence and closure

classes is evident. Therefore, the classification results

reported here are scaled down to include only the final four

classes: silence, strong fricative, weak fricative, and

vowel-like. The class vowel-like could be described as

"everything else", or voiced sounds. Figure 3.2 shows a sample

spectrogram of each of the four classes.

41 -

-HY.---V''

X 1M

'<"! I I <-(-
4*34 fTM

ja

) *40

MH*-

10144I
SM24)

$T*V:

'

: '.--

:

*

. {
<

-

TN 73

U424 Mi

tkel

Silence Closures

Figure 3.1 Sample spectrograms of the small difference

between the silence and closure phonemes.

- 42 -

K 7

-/

-.
-

f
-

kM'%i*"'- i

I ;

i. *

/
*

t X *

-

1. -,. ..

-J :, .

0 (0 100 120

fnniiui]n>itiiialiiaiiiri{iiiiniiajiiflirrti|iitiaria]iiaiiiatt

04 3t<4 4124 5714

t>g

210 240 2C0 200)i

iiiun^ttaii<ii[aiiu<i4ituiiuiIiiitn(i4iiuiiuilt]itciia]iiiiiinf{rtitHiii

10514 11S44 12S04 134C4 14

4~-

0 S00

l|lllllllll|llllllllljlllllMll|lllllj
3(4 24034 21

*yft> - y-

<(0 (10 7<

nii|iiiiii!n|iMimi|iiiiimi|iniiiiiJ
1704 J2CC4 21(

Silence Vowel-like Strong
Fricative

Weak

Fricative

Figure 3.2 Examples spectrograms of the four coarse

classes being identified in this study.

- 43

The results will be examined in the same order in which

they were carried out, starting with clustering and ending with

overall performance comparison. Throughout the presentation of

the results the following abbreviations will be used:

Sil - The class
"silence"

SF - The class "strong
fricatives"

WF - The class "weak
fricatives"

Vow - The class
"vowel-like"

Kl - K-means training, single level tree

KB - K-means training, full binary tree

KS - K-means training, skewed binary tree

Ml - Maximum likelihood training, single level tree

MB - Maximum likelihood training, full binary tree

MS - Maximum likelihood training, skewed binary tree

zer - Zero crossing rate

tot - Total energy

rel - Relative energy

pea
- Peak energy

spe - Spectral change

per -

Periodicity
mol - 1st moment, mean

mo2 - 2nd moment, deviation

mo3 - 3rd moment, skewness

mo4 - 4th moment, kurtosis

44

3.1.1 Cluster analysis

The cluster analysis was performed by using the K-means

method at all decision points in each of the three tree

structures. The results of the clustering are shown in Table

3.1. These results show that the clusters were very similar

regardless of the tree structure being used. Because K-means is

inherently a clustering algorithm, this step was only done using

K-means. The classes produced by K-means were also used as the

class sets for maximum likelihood.

Table 3 . 1 Coarse phonetic clusters as produced by K-means on

each of the tree structure used in this study.

Single

level tree

Binary
tree

Skewed

tree

Silence :

sil pau pel sil pau pel sil pau pel

tcl kcl qcl tcl kcl qcl tcl kcl qcl

gel dhel bcl gel dhel bcl gel dhel del

q del

h

k

hh

P

q

g

q dh V

Strong fricatives:

ch sh jh ch sh jh ch sh jh

zh s z zh s z zh s z

t t-h t t-h t t-h

Weak fricatives:

hh h th f th k-h P g h

f P 9 k f th

k hh p q

Vowel-like :

uh ao aa ey ay

aw ow e o ih

eh ae ah dh del

m n ng em eng

dx ix uh ux oe

ax ah r er axr

el 1 iy y w

uw v

uh ao aa ey ay

oy aw ow e o

ih eh ae ah m

n ng em w eng

uw dx ix uh ux

oe ax ah r er

y el 1 iy axr

dh v

uh ao aa ey ay

oy aw ow e o

ih eh ae ah m

n ng em w eng

uw dx ix uh ux

oe ax ah r er

y el 1 iy axr

- 45 -

3.1.2 Tree structu res

With only four classes, there is a very small set of tree

structures that can be used for the classification. However,

there is the problem of determining which classes should be at

each terminal node in the tree. Figure 3.3 shows the three

structures used and the classes that were chosen for each

terminal node in the trees. The non-terminal nodes are labeled

with a
"D"

followed by a number. This is the decision point

number, and these nodes will be referred to by that number.

When choosing the class positions for the binary tree the choice

of strong and weak fricatives together seems like a very

reasonable one. Tests that were run on the other combinations,

indicated that this arrangement was optimal. In the skewed tree

structure, the goal is to find the most easily identifiable

class first, then the next easiest, and finally to split the

last two as best as possible- For the skewed tree, tests were

also run with each of the classes in each different position,

and the best performer was the combination shown in Figure 3.3.

D1
D1 D1

4l ^D3

/\ /\
Sil Yaw E WE

Binary Tree

A^. A
Sil SE Jffi Yjm /\o:

Sil Vow

Single level tree
-

Skewed binary tree

Figure 3.3 Tree structures shown with their final

classes .

- 46 -

3.1.3 Feature Utilization

Having set the tree structures and classes, the next step

was to determine the best set of features to be used at each

decision point in each tree. This was done by making a test run

of all combinations of the features at each decision point and

choosing the feature set that made the least number of

classification errors. This was done for both the K-means and

maximum likelihood methods on all three tree structures, which

resulted in performing classification analysis 14,336 times on

the data set of around 26,000 frames. The results of these

tests are shown in Table 3.2.

Of the total of ten features, the ones most often used by

the top performing classifiers were zero crossings (zer) , total

energy(tot), and periodicity(per) Followed by relative

energy(rel), mean(mol), deviation(mo2) and kurtosis (mo4) . The

least used of all the features were peak energy(pea), spectral

change (spe) and skewness (mo3) .

47

Table 3.2 Best features to use at each decision point in the
trees shown in Figure 3.3. Results were determined
after trying all combinations of all features at each

decision point.

decision

point: Dl D2 D3

K-means

single zer tot pea

level rel per mol

tree mo 3 mo 4

K-means zer tot rel zer tot pea tot spe mol

binary spe per mol per mo4 mo2 mo3 mo4

tree mo2 mo3 mo4

K-means zer rel per zer tot per zer tot pea

skewed mo2 rel per mo4

Max. tot rel per

single mo4

level

Max. tot pea per zer tot per zer tot rel

binary mo2 mol spe per mol

tree mo2 mo3 mo4

Max. per mo2 zer tot pea zer tot per

skewed mol mo2

- 48 -

3.2 System comparison and evaluation

One of the goals of this work was to identify the best

system out of the six different ones constructed. The measures

that will be used to represent performance comparisons are the

following :

1 Percentage of correctly classified frames out of all

frames .

2 Percentage of correctly classified frames disregarding
frames that are within 10 msecs of a segment boundary.

3 Percentage of correctly classified segments to within

10 msecs of the true segment boundary.

4 Percentage of correctly classified segments anywhere

within the true segment.

The first two measures represent performance analyzed on a

per frame basis, (i.e. each 10 msec frame is evaluated

independently of its neighbors). The first measure is an

overall indication of the performance of the system. Here, each

10 msec frame is marked either right or wrong based on the

hand-labeled information. This measure represents the number of

frames correctly classified relative to the total number of

frames in the test set. The second measure is also a ratio of

correct to total frames; however, in this figure, fumes that

are within 10 msecs of a segment edge are ignored. It has been

shown that hand-labeling is accurate to only about 10 msecs

[SMIT88]. An examination of these two measures indicates where

the errors are being made. For example if the first is lower,

then the errors are near the edges, if it is higher, then they

are in the centers, and, if they are the same, then the errors

are uniformly distributed throughout the segments.

- 49 -

The third and fourth measures represent performance with

respect to segments rather than frames. A segment is a sequence

of frames all having the same class. For example, an 80 msec

noise associated with the phoneme /s/ would create a strong

fricative segment of 8 frames. Performance measure three

indicates the percent of correct segments, where a correct

segment is defined as an instance in which the classifier

correctly labeled any of the frames within the segment. Measure

four tightens up this performance figure by defining a correct

segment, as an instance in which all but the boundary frames are

correctly classified. Figures 3.4 and 3.5 show several examples

of these results.

Example frame-by-frame type 1 analysis

True classes: 1111333333111112222

Classifiers: 0010033333330022222

Frame match: nnynnyyyyynnnnnyyyy=10 yes's

out of 19

= 53%

Example frame-by-frame type 2 analysis

True classes: 1111333333111112222

Classifiers: 0010033331330022222

Frame match: *ny**yyyy**nnn**yy*=7 yes's

out of 11

= 64%

Notation: y
=
"yes"

the frames (or segments) match.

n =
"no"

the frames (or segments) do not match,

* = "do not care", this frame is an edge and

not considered in the analysis.

Figure 3.4 Examples of frame-by-frame analysis

- 50

Example of segment-by-segment type 3 analysis

True classes: | 1 1 1 1 | 3 3 3 3 3 3 | 1 1 1 1 1 1 2 2 2 2 |
Classifiers: |0 0 1 0 | 0 3 3 3 3 3 | 3 3 0 0 2|2 2 2 2|
Frame match: |n n y njn y y y y yjn n n n njy y y y|

Segment match: j y | y j n j y j = 3 yes's

out of 4

(segment marked
"y"

if any frame = 75%

within the segment is correct.)

Example of segment-by-segment type 4 analysis

True classes: |1 1 1 1|3 3 3 3 3 3|1 1 1 1 1|2 2 2 2|
Classifiers: |0 0 1 0 | 0 3 3 3 3 1|3 3 0 0 2 | 2 2 2 2|
Frame match: |*ny*|*yyyy*j*nnn*|*yy*j

Segment match: j n | y | n | y j = 2 yes's

out of 4

(segment marked
"y"

if all = 50%

but edge frames are correct)

Figure 3.5 Examples of segment-by-segment analysis

Figure 3.6 shows the performance results of the six

classifiers after classifying all 96 utterances, and Appendix D

shows the full set of confusion matrices and tables from which

this summary is constructed.

51 -

rror Maximum likelihood - single level tree Error

10 20 30 40 50 60 70 80 90%

eitot Maximum likelihood - binary tree
t\yr\A ' ' t

--in m d.
typ

1

.
i i.,,,,,,,! U J F

1 '
-i 1

- v

2

3

4
i_

10 20304050607080 90%

Brof Maximum likelihood - skewed binary tree

K-means - single level tree

ElTOf
typo

Error
type

10 20 30 40 50 60 70 80 90%

K-means - binary tree
. I. ,.,. 1 1 ,1, ...

,.1,1,1 .

v//^////////^
2

10 20304050607080 90%

K-means - skewed binary tree

10 20304050607080 90% 10 20 30 40 50 60 70 80 90%

Error types :

1 Frames labeled correct out of all frames.

2 Frames labeled correct disregarding boundary frames.

3 Segments correct to within 10 msecs of boundary.

4 Segments correct anywhere within the true segment.

Overall Performance Ratings

1

2

3

4

5

6

Rank Method Tree Type

Maximum

K-means

K-means

K-means

Maximum

Maximum

1 ikelihood

likelihood

1 ikelihood

Binary tree

Binary tree

Skewed binary
tree-

Single level tree

Skewed binary tree

Single level tree

Figure 3.6 Performance for each of the six classifiers

in four different areas, and there relative ranking.

From these classification performance figures, the best

overall classifier was the maximum likelihood binary tree

system. It was the top performer, or tied for the top, in all

four areas. The last column shows the overall ranking of each

classifier from best to worst. These overall are based on the

sum of the rankings for each of the four performance measures.

The lowest number is considered to be the best classifier and is

assigned to one; the next lowest is given a two, etc. Of the

tree structures, the binary tree performed best since two

systems using it outperformed all of the other systems. Of the

two distance methods, the K-means, or simple Euclidian distance,

performed better overall, holding three of the top four

positions. However, maximum likelihood in combination with the

binary tree structure was the best classifier, indicating an

interaction between the tree structure and the distance measure.

53

3.3 Speaker independence

The system was tested on five male speakers and five female

speakers with nine or ten utterances from each speaker. To

measure sensitivity to different speakers, the system was

trained and tested on all combinations of the groups of male and

female speakers. For example, it was trained on all speakers

and then tested on just males, then it was trained on females

and tested on just females, etc. Table 3.3 shows the results

for K-means using a binary tree, which produced results typical

of all the systems tested. The numbers in the table are

performance measures 1 and 2 from the list in section 3.2,

(percentage correct of all frames and percentage correct of

frames disregarding frames within 10 msecs from a segment edge).

Table 3.3 Classification results of training and testing
all the combinations of male, female and both.

These performance results were from K-means

using a binary tree, and the figures shown are

error types 1 and 2 as described in Figure 3.6.

All Male Female < Test set

All | 79% (84%) 77% (84%) 80% (86%) |
Male | 78% (84%) 77% (84%) 79% (84%) |
Female | 79% (85%) 77% (83%) 81% (87%) |

I

Training set

54

3.4 Visual Inspection of the Results

In concluding the presentation of results, it is valuable

to actually see the manner in which the classifiers function for

particular utterances. Figures 3.7 and 3.8 show the results of

the six classifiers on two sample utterances with the

corresponding spectrograms. These graphs are a representative

sample of the type of results produced by the six classifiers.

From these figures, it can be seen that most of the

classification errors are taking place at the class boundaries.

This reaffirms what was seen in the performance indicators shown

in the last section. The typical errors are those such as

extending or shortening a segment and are of the type that might

be dealt with at higher levels of smoothing software.

55

cs

HI

?__g .
i ,

11111111111,111 111

HS

m ta t M

Jmmm
^^

Hi "I
j'""'"'

,
. . . i i | i i i . . .

Figure 3.7 Classification results on utterance:

'She'll choose whomever the association
approves."

Note :

1 Each partition, denoted by the time tick marks along the

bottom of the graph, represents 100 msecs, or 10 frames.

The thick bar indicates the true coarse class.

The thin line along the top of each graph indicates

where the classifier made an incorrect classification.

The lowest level bar is silence, next up is vowel-like,

then weak fricatives, and finally strong fricatives.

56 -

n---i 1 1 1 (--B 1 1
i- * ' ' '-w = i-isi.i * I HHM-

-+M I I 1=

Figure 3.8 Classification results on utterance

"The foul ball sailed over the stadium
roof."

57

CHAPTER 4

CONCLUSIONS AND FURTHER STUDY

The previous chapters of this paper have presented the

methods and results of a comparison study of six different

coarse phonetic classifiers. This chapter will draw some

conclusions from the results and make some suggestions for

future work.

4.1 Tree structure influence

One of the goals of this study was to examine the influence

of tree structure on the performance of the classification

process. The results showed that the overall performance of the

classifier was improved by the use of a tree structure as

opposed to a single decision structure. From Figure 3.6 it can

be seen that for the K-means method the tree structure increased

the performance by from one to nine percent across the

performance figures. For maximum likelihood, the improvement

was even greater, giving increases ranging from zero up to

twelve percent. All three of the top performers (upper half)

were tree structured. Of all the structures, the two binary

tree (MB and KB) finished first and second, indicating that this

- 58 -

structure has an inherent advantage. Another influence of the

tree structure is the ability to allow the system designer to

improve recognition of one particular class at the expense of

the others. This is particularly true of the skewed binary tree

structure. Here, the system designer may place the class

needing the highest recognition rate at the first terminal node

in the tree. In this study, the strong fricatives were placed

in that position, and the recognition rate went from 74% in the

single level tree to 89% in the skewed tree using maximum

likelihood, see Appendix D, Table D.l.

4.2 K-means versus Maximum Likelihood

When comparing the results of K-means and maximum

likelihood methods, there are two areas to be considered.

First, the overall ability to work with coarse classes, and,

second, the best performance using the optimal feature sets for

each class.

In overall ability to be trained on different feature sets,

the maximum likelihood method did not perform well. Depending

on the set of data that was used (i.e. all males, one speaker,

all speakers), the training process failed to generate

covariance matrices on most combinations of features. This is

attributed to the fact that this method is much more sensitive

to the distribution of the data than K-means. In the K-means

method, any combination of features always worked with any set

of speakers. This is because although K-means assumes that the

data are normally distributed, there are no calculations that

- 59 -

actually rely on that being true. Therefore, even with

non-normally distributed data, the K-means process functions;

however, it may return poor results.

The second results comparison is the classification

performance using the best set of features for each method.

Here, the two methods performed almost the same, coming within

one percent of each other in three of the four performance

measures shown in Figure 3.6. K-means, using a simple Euclidian

distance measure, took the second and third overall positions.

All of the top three classifiers were in fact very close in

their performances. It is suspected that one reason for the

good performance of the simple Euclidian distance is that the

very classes the system was trained on were determined using

that same distance measure. If the maximum likelihood measure

were incorporated into a clustering algorithm, and then used to

determine the classes, it may have then shown a more substantial

improvement over K-means. Another reason that the K-means

method performed as well as it did is that maximum likelihood

had significant trouble generating covariance matrices during

training. It is suspected that by removing some of the outlying

data points from the training set, we could allow maximum

likelihood to further improve its performance. The creation of

this training set would be a very interesting extension of this

work .

4.3 Normal Distribution

Both the K-means and maximum likelihood make the assumption

- 60 -

that the vectors within each coarse class form a normal

distribution. The results of testing indicate that this is not

the case- The set of data appears to be made up of many "hills

and
valleys,"

even within a single coarse class. When K-means

is run in its unconstrained form on truly normally distributed

data, it migrates toward the peaks and stabilizes there, letting

the algorithm terminate. When it was run on a large set of data

for this study, the centers drifted from one small peak to

another. Eventually, the system allowed one center to hold

almost all of the data points while the remaining centers were

placed on some insignificant peaks. This indicates that there

are too many small peaks in the data and no clear center point

within the coarse classes. With the maximum likelihood method,

there was significant difficulty generating covariance matrices

which also indicates non-normally distributed data. Out of the

1024 combinations of features, only five were successful in

generating covariance matrices capable of separating all four

classes .

It is clear that either the classification algorithm used

must be designed for non-normally distributed data, or the data

must be reorganized to allow it to be viewed as normally

distributed. In a recent broad classification study at Carnegie

Mellon by Chigier and Brennan [CHIG88], it was found that within

their three broad classes there were 19 subclasses that were

each more normally
distributed than the broad classes (see

Figure 4.1). To determine the probability of a sample being in

a broad class, they took the sum of the probabilities that the

sample was in each of the subclasses. This is a very attractive

- 61 -

approach that might be exploited to improve the results of thi:

work .

Class Description Broad class

background Long noisy background

(inhalations etc)

Silence

noisybackground Long non-noisy background
and silences

Silence

closures Clean voiceless closures Silence

noisyclosures Noisy closures Silence

volcedclosure Voiced closures Silence

unvoicedv The unvoiced allophone

of v

Stop-fricative

hv The phoneme hv Stop-fricative

strongfricative Strong fricatives

(e.g., s. sh, z)

Stop-fricative

affricates Affricates (ch, jh) Stop-fricative

weakfric Weak fricatives

(e.g.. f. th)

Stop-fricative

strongptk Heavily aspirated
stops (e.g.. p. t. k)

Stop-fricative

weakptk Weakly aspirated stops Stop-fricative

voicedstops Voiced stops (e.g.. b, d. g) Stop-fricative

nasal Nasals (e.g., n. m) Sonorant

voicedv The voiced allophone of v Sonorant

liquids Liquids (e.g., 1. r, w) Sonorant

backvowels Back vowels (e.g., ao, uw) Sonorant

frontvowels Front vowels (e.g.. iy, ey) Sonorant

midvowels Mid vowels (e.g.. ax, oe) Sonorant

Figure 4.1 The 19 subclasses within 3 broad classes

as determined by a coarse classification study at

Carnegie Mellon, done by Chigier and Brennan.

4.4 Classification probabilities

Another consideration related to the non-normal

distribution problem is the usefulness of the probability. The

classifiers return a probability based on the distance between

an unknown frame's vector and the center of the coarse class to

which it has been assigned. These probabilities are difficult

to use and, in fact, can be misleading. For example, consider

- 62

the class of vowels. Given a representative sample set of

vowels, they will tend to be distributed among the three

classes: back vowels, mid vowels, and front vowels. When the

coarse class of all vowels is constructed, it will determine a

center point somewhere in the middle of the triangle created by

these three subclasses. Now, when the system receives a frame

that is the phoneme /ao/ to classify, rather than falling right

on or very close to the center point for vowels, it will be away

from the center, nearer to the back vowels. For this reason,

speech samples that are very typical and would be expected to

receive a very high probability, often receive a low

probability. Therefore, in order to take advantage of the

probability, the system must have a more accurate scheme for

determining the probability. If the system were to incorporate

the concept of subclasses within a coarse class, then once the

coarse class had been determined, it could return the highest

probability of any subclass within the coarse class as the

probability for the frame.

4.5 Smoothing the results

The current system operates strictly on a frame-by-frame

basis, taking almost no account of the characteristics of its

neighboring frames. The only constraint involving neighbors is

if a frame is surrounded on both sides by frames classified

differently than itself, than the frame's class will be changed.

A possible extension of the present work would involve designing

a second level of software to smooth the classes. For example,

it was observed that the first 20 or 30 msec of a strong

- 63 -

fricative is sometimes classified as a weak fricative, while the

remaining 60 to 100 msec is classified correctly. This might be

detected and corrected by a program that examines segments

larger than 10 msec. Another example might be the first 20 to

30 msec of a /t/ that looks very much like an /s/ could be

detected by the silent period preceding it. If a vowel-like

segment under 50 msec surrounded on both sides by some other

class were detected, it would be reasonable to merge the

vowel-like segment into the adjacent segments. This type of

process can be done using a rule-based system trained by

observation. The Hidden Markov Model technique [RABI86] would

be a very attractive method to perform this function. It could

train itself using the output of the first-choice outputs of the

classifier along with the true classes for each frame. The goal

of the training phase would be to find the most common errors

and determine the best way to correct them.

4.6 Summary

The task of coarse classification and segmentation can be a

very useful first phase in a phonetically-based speech

recognition system. This study has compared the results of six

coarse classifiers using combinations of the K-means algorithm,

maximum likelihood, and several different tree-structured

decision processes. It was found that the maximum likelihood

method, using a binary tree structure, performed coarse

classification more accurately than any other combination. Of

the 26,000 frames tested, 80% were correctly classified under

this structure. Error analysis indicated that a substantial

- 64 -

portion of the errors occurred at the edges of the coarse

segments. It is felt that the type of errors occurring could be

greatly reduced by higher level software.

In addition to a frame-by-frame analysis, the results were

analyzed on a coarse segment basis. All frames within each

segment were labeled correctly (within 10 msec of the edge) for

about 58% of the segments. Over 90% of the segments had at

least some frames within them labeled correctly- Some of the

types of errors occurring might be detected and corrected by a

post processor looking at several frames at a time. It was also

found that the data within the coarse classes are not normally

distributed, which caused considerable difficulty during the

training process using the maximum likelihood technique.

However, it is felt that by further breaking down the classes

and ignoring some of the atypical samples during training, even

higher
performance'

rates can be achieved. The results have been

encouraging, and it is expected that future work will be able to

use the tree structure approach outlined here in other areas of

phonetic classification.

- 65 -

CHAPTER 5

USER DOCUMENTATION

5.1 Introduction to the CLASS facilit les

The CLASS system consists of a set of programs designed for

the purpose of training and classifying speech utterances into

coarse phonetic classes. In this chapter, each of the programs

will be discussed in detail concerning their functionality,

input, and output. Without a complete understanding of this

thesis, it is intended that from this chapter the user could

perform training and classification experiments on a variety of

tree structures, speakers, features, and classes. It is

expected that the user has a basic understanding of phonetics,

the features being extracted, and the tree structured decision

making process.

The programs written for CLASS each build on the output of

the previous program. This collective knowledge is accumulated

in a
"statistics"

file that is complete by the end of the

training process. The statistics file is then used to classify

an unknown utterance. Because this file is added to in

increments, it is important the programs be run in the order in

which they are specified. The remainder of this chapter is

- 66 -

organized as follows

o

o

o

o

o

A brief description of the programs (see below)
An overview of the program flow (Figure 5.1)
Detailed training process explanation

Detailed classification process explanation

A detailed discussion of each program

PRE This program is responsible for extracting all of the

feature vectors from the training data base. It is

the first program run for training both maximum

likelihood and K-means.

NORM This program will normalize the feature vectors

produced by PRE. Normalization is only done for the

K-means training method.

KTRAIN This program takes the normalized feature vectors and

performs the appropriate training procedures on them

to produce cluster centers and standard deviations at

each point in the tree structure. The training
process used in this program is K-means.

CLASS This program uses the K-means training results

produced by the previous three programs and performs

coarse classification on an unknown speech utterance.

SD This program takes feature vectors and analyzes the

data for center points, deviations, and feature

covariance at each decision point in the tree. It

also produces a file indicating the class to which

each feature vector is closest. This program is run

for both training and classification using the maximum

likelihood method.

CLASSM This program takes the results from the SD program and

produces output files the same as those produced by
CLASS. It also produces confusion matrices and error

statistics. The program does not perform training or

classification itself, it only reorganized the results

of SD to be more easily compared to the output of

CLASS.

67 -

PROGRAM EXECUTION FLOW

K-means Maximum

Likelihood

Create an options file

RUN PRE

/ \

/ \

/ \

/ \

RUN NORM

RUN KTRAIN

SD COM FILE

Training

RUN CLASS

\

SD COM FILE Classification

I

I
RUN CLASSM

I
/

\ /

\ /

\ /

output coarse

phonetic transcription

Figure 5.1 Programs used and flow for

training and classifying
utterances.

68 -

5.2 Detailed discussion of the training process

In this section, each of the steps required to train a system is

discussed, including the calling sequence of the programs, the

input files, the output files, and any other pertinent details.

The first and most important part of the training process is to

generate an options file that accurately portrays the intended

training parameters.

The options file is a text file that defines all of the

options to all of the programs during the training process, see

Appendix C for an example. The options file guides the system

during the training phase. The same file will also be used

during classification where only items such as the input

utterance would be changed. This file must be well thought out

before any reasonable results can be expected from the

classifier. Once in place, this file can be changed and the

system retrained and tested to evaluate the effects of the

change on the accuracy of the system. These changes include

using different sets of features at the decision points, using

different feature parameters, and changing the tree structure.

There are five general areas to consider when creating the

options file. The remainder of this section examines each of

these areas in detail. The syntax for the options is given in

Appendix A.

69

1) The training method to be employed.

Option line:

TRAINING_METHOD = (TRAINING_METHOD = K_MEANS)

The training method can be set to either K-means, maximum

likelihood, or fixed classes. If K-means or fixed classes is

used, then the program PRE should be run, followed by NORM

and KTRAIN. If maximum likelihood is used, then after

running PRE, a *.unix (*.com for VMS) script file will be

generated. This file will run the SD program in the

appropriate manner to perform the remainder of the training

necessary- The distinction between K-means and fixed classes

is that the training process can either determine its own

classes using the K-means clustering procedure, or it can use

the classes as specified by the user in the options file.

With K-means specified, the system will determine what

phonemes are in each class by determining the best cluster

separation, based on the feature vectors. With fixed

classes, the user determines the final clusters, and the

training session simply calculates the means and deviations

based those classes.

2) The source files to be used.

Option line:

SOURCE = (SOURCE = data/obey)

PTLOLA = (PTLOLA =
.ptl)

FRAME_SIZE = (FRAME_SIZE = 5)

Each occurrence of the
"SOURCE"

line specifies a common root

name (with path if necessary) of a set of three files. These

three file are the source of the speech utterance and there

- 70 -

may be as many source file line as desired. The three source

files are: first, the
".b"

file that contains the PCM speech

samples; secondly, the
".f"

file that contains the fft's

taken once per msec; and thirdly, the
".ptlola"

file which

is the phonetic transcription information. The
".b"

file is

derived from the CMU data base ".adc". The CMU files have a

different sampling rate than is used in this work; and,

therefore, the speech utterance must be low pass filtered and

resampled. The
".f"

file is generated from the
".b"

file by

an fft program called "b2f". The
".ptlola"

file is taken

unchanged from the CMU data base. Because this project runs

on several computers, some of which do not support file name

extensions greater than three characters, the
"PTLOLA="

option was introduced. The character string specified here

will be used for the file extension of the phonetic label

file. FRAME_SIZE specifies the number of msec.'s in a frame.

The default here is 10 msec.

3) The features to be used.

Option 1 ine :

FEATURE = (FEATURE = ZERO_CROSSING , -20 0 , 200)

FEATURE_FILE = (FEATURE_FILE = OBEY)

STANDARD_DEVIATION = (STANDARD_DEVIATION = 10000)

In this section, we must consider the features that will be

used. The line
"FEATURE="

specifies the features that are to

be extracted from the source files. As the features are

being extracted, their values are placed into files named

with a root as specified on the
"FEATURE_FILE="

line and an

extension corresponding to the feature. Each feature is

- 71 -

placed in a separate file. The "STANDARD_DEVIATI0N="
line

indicates what the standard deviation should be when the

features are normalized during preparation for the K-means

clustering .

4) Phoneme selection and seed classification.

Option line:

PHONEME = (PHONEME =

ow,b,y
= 5)

CLASS = (CLASS = 0,ow,y)

These two options give the user control over the phonemes

selected for the training process and the initial classes.

The
"PHONEME="

line can specify a phoneme (or several

phonemes), followed by a count. The count will limit to that

number the occurrences of the phoneme specified. If a count

is not specified, then all of those phonemes found in the

source samples will be used. This count should be used if

there is a particular phoneme, or several phonemes that occur

so frequently that they dominate the training set. They then

can be limited to a reasonable number. The
"CLASS="

option

allows the user to specify which phonemes belong to each

class. By using these options together, the user can, for

example, only extract vowels and set the classes 0, 1, and 2

to the three broad vowel classes. In this way, the system

could be trained and tested on the usefulness of each of the

features in distinguishing between the three broad vowel

categories .

72

5) The decision tree structure to be used.

Option line:

NODE = (NODE = 0.1 = 2, CO)

A sequence of these lines defines the tree structure. The

tree can be of virtually any shape and size. The node lines

MUST appear in the order of a breadth-first, right-to-left

tree search. The nodes are internally numbered starting with

zero in the order that they appear in this list. Each node

line specifies either the number of children (if it is

defining a non-terminal node) or the class that the node

represents (if it is a terminal node). If the training

method specifies "FIXED_CLASSES ,

"

then these will represent

the final classes from the training process. If this is not

specified, the final classes may be different, and these are

only used to find seed vectors for the k-train clustering

algorithm. On a non-terminal node, the features to be used

can be specified. If features are declared optional, the

training process then tries the feature set with all

combinations of the optional features. It chooses the best

feature set based on the least number of incorrectly placed

frames .

73

5.3 Detailed discussion of the classification process

The classification process for the K-means system involves

simply running the program CLASS. There are three typical ways

of classifying an unknown utterance. First if the

classification is to be done on the same utterance set as the

training was performed, then CLASS can be run passing it only

the options file. Second, if a new utterance is to be used it

can be classified by running CLASS and passing it the options

file (unchanged from the training process) and the root name of

the files containing the utterance to be classified. The files

containing the utterance must include a .b file, a .f file and

an optional .ptlola file. If the .ptlola file is missing then

error analysis results will not be generated. The third way to

classify utterances is by modifying the options file to have the

SOURCE line reference utterances other than the ones that were

trained on, then running CLASS passing it only the options file.

This would have to be done if several utterances were to be

classified together.

The classification process for maximum likelihood requires

the following four steps:

1) running PRE on the new utterance! s]

2) making a modification to the .unix (.com) file

3) running that new .unix (.com) file

4) running CLASSM

The first step is to run PRE on the utterances to be classified.

If the same utterances are to be used as were used during

training, then steps 1 through 3 can be skipped. If new

utterances are to be classified, then the options file needs to

- 74 -

be modified. The SOURCE line of the options file needs to

include the file names of the new utterances. PRE is then run

with the modified options file. This will produce the

appropriate . sxx (vector data) files to be used by the .unix

file. Next the .unix file must be modified to use the trained

statistics file as input on the
"-s"

switch. Also, all calls to

SD should use the .sOO file generated by PRE. There are

comments in the .unix file that will more clearly state what

changes need to be made. Once these changes are made the .unix

file may be run. After completion of the .unix file the CLASSM

program should be run. This program takes the output files from

SD and the original hand label information files and displays

confusion matrices and produces files in the same format as

CLASS.

- 75 -

5.4 Detailed discussion of the each program

In this section each of the programs shown in Figure 5.1 are

discussed with a functional overview and a description of usage,

input, and output.

5.4.1 PRE - The feature extraction program

The feature extraction program PRE is a preprocessor to the

training routines. Its main function is to extract all the

features requested from all of the source files specified. The

input to this program includes: the FFT file (.f), the PCM file

(.b), the hand label file (.ptlola), and the options file

(.opt). PRE produces a set of files that contains the extracted

features. There will be a file for each feature, and all files

will contain the same number of 16-bit integers. Taking the

first integer from each of the files and putting them together

gives the feature vector for the first frame, the second integer

from each file will return the second feature vector, and so on.

PRE also produces a file containing the coarse phonetic labels

for each sample. This, too, is a file of 16-bit integers, where

each word represents a phoneme. This file is used by the

training process to determine how well each set of features

performed in the task of splitting the phonemes into coarse

classes. Finally, PRE will start the process of building up the

statistics file. This is a file that contains information about

the training process and is the input file used by the

classi f ier .

76 -

Usage :

pre <opt file> [-v] [-d]

where :

<opt file> is the root file name of the options

file. The extension will be added as

. opt .

-v Verbose output. This returns some

additional information to the screen

when the program is running.

-d Debug output. This returns more

information to the screen when the

program is running.

Input :

.opt This is the options file and must be specified as

the first parameter on the command line when

calling PRE.

.b The PCM samples are stored in files named with

the extension ".b". The files to be used are

specified in the options file.

.f For each .b file there is expected to be a

corresponding .f file that contains the FFT data.

This file must be in the same directory and have

the same root name as the .b file.

.ptlola For each .b file, there is expected to be a

corresponding .ptlola file that contains the

hand-labeled phonetic translation of the speech

utterance. This file must be in the same directory
and have the same root name as the .b file.

Output :

All output files will have their root names as specified in

the options file on the
"FEATURE_FILE="

line.

When run with
"METHOD=K_MEANS"

:

.zer Zero crossing rate feature data points.

.tot
Total energy feature data points.

.rel
Relative energy feature data points.

.pea
Peak energy feature data points.

.spe
Spectral change feature data points.

.per Periodicity feature data points.

.mol
First moment, mean, feature data points.

!mo2 Second moment, deviation, feature data points.

.mo3
Third moment, skew, feature data points.

!mo4 Fourth moment, kurtosis, feature data points.

.pt

Phonetic label for each data point as specified

by the hand label file.

- 77 -

When run with
"METHOD=MAX_LIKELIHOOD"

:

. sxx where xx represents the node number, and the file

contains all of the feature vectors for that

decision point. This file is in a format to be

sent directly to the SD program.

.unix This is a Unix script file that is used to perform

the training. It is generated specifically for

Unix, and the mode will have to be changed to add

execution privileges.

.com This is a VMS command file that is used to perform

the training on a VAX running VMS.

.pt Phonetic label for each data point as specified

by the hand label file.

- 78 -

5.4.2 NORM - The data normalizer

Once the feature vectors have been collected, it is important to

be sure that no one feature dominates the decision making

process. In order to insure this, the features are normalized.

The normalization process merely involves finding two numbers X

and Y such that when all of the occurrences of a features are

modified by X * (point + Y), the standard deviation will be

that specified in the options file and the mean will be at zero.

This process is done for each of the features independently.

Usage :

norm <opt file> [-v] [-d]

where :

<opt file> is the root file name of the options

file. The extension will be added as

. opt .

-v Verbose output. This returns some

additional information to the screen

when the program is running.

-d Debug output. This returns more

information to the screen when the

program is running.

Input :

All input files are expected to have their root names as

specified in the options file on the
"FEATURE_FILE="

line.

.opt This is the options file and must be specified as

the first parameter on the command line when

calling NORM.

.zer Non-normalized zero crossing rate feature data points.

.tot Non-normalized total energy feature data points.

.rel Non-normalized relative energy feature data points.

.pea Non-normalized peak energy feature data points.

.spe Non-normalized spectral change feature data points.

.per Non-normalized periodicity feature data points.

.mol Non-normalized first moment, mean, feature data points.

.mo2 Non-normalized second moment, deviation, feature data

points .

.mo3
Non-normalized third moment, skew, feature data points.

.mo4
Non-normalized forth moment, kurtosis, feature data

points .

- 79 -

Output :

All output files will have their root names as specified in

the options file on the
"FEATURE_FILE="

line.

Normalized zero crossing rate feature data points.

Normalized total energy feature data points.

Normalized relative energy feature data points.

Normalized peak energy feature data points.

Normalized spectral change feature data points.

Normalized periodicity feature data points.

Normalized first moment, mean, feature data points.

Normalized second moment, deviation, feature data

points .

Normalized third moment, skew, feature data points.

Normalized forth moment, kurtosis, feature data points

Statistics file.

zer

tot

rel

pea

spe

per

mol

mo 2

mo3

mo4

sta

- 80 -

5.4.3 KTRAIN -

K-means training program

The main task of KTRAIN is to produce a mean and standard

deviation for each node in the decision tree. This is done by

associating all of the feature vectors in the root node of the

tree and then separating the vectors into as many clusters as

there are children off of the root node, (see Figure 2.5). Once

this is done, the mean vector and standard deviation of each

cluster is determined and written to the statistics file. Then

the process is repeated on each of the children. When all of

the vectors are in terminal nodes, the process stops, and the

training is considered complete. Two major considerations must

be addressed when running KTRAIN. The first is the algorithm

used in dividing the vectors associated with a node among its

children. This can be done by splitting the vectors so that

they move toward their declared terminal nodes. No intelligence

is needed the part of the program with respect to clustering the

data in this case. If the classes are not known then the

K-means training algorithm may be employed (see section 1.5).

In this case the feature vectors themselves determine how they

are grouped based on their relative distances from each other.

The second major consideration is what features should be used

at each decision point in the tree. The features desired are

declared on the
"NODE="

line for each decision point.

Usage :

ktrain <opt file> [-v] [-d]

where :

<opt file> is the root file name of the options

file. The extension will be added

as .opt.

- 81 -

-v Verbose output. This returns some

additional information to the screen

when the program is running.

-d Debug output. This returns more

information to the screen when the

program is running.

Input :

All input files are expected to have their root names as

specified in the options file on the
"FEATURE_FILE="

line.

.opt This is the options file and must be specified as

the first parameter on the command line when

calling NORM.

.zer Zero crossing rate feature data points.

.tot Total energy feature data points.

.rel Relative energy feature data points.

.pea Peak energy feature data points.

.spe Spectral change feature data points.

.per Periodicity feature data points.

.mol First moment, mean, feature data points.

.mo2 Second moment, deviation, feature data points.

.mo3 Third moment, skew, feature data points.

.mo4 Fourth moment, kurtosis, feature data points.

.pt Phonetic label for each data point as specified

by the hand label file.

.sta Statistics file.

Output :

The output file will have the root name as specified in the

options file on the
"FEATURE_FILE="

line.

.sta
Statistics file.

- 82 -

5.4.4 CLASS - The classifier

This program utilizes the results of the training process for

K-means. It will read in the statistics file and an unknown

utterance then perform coarse classification on that utterance.

On the screen a frame by frame indication of the classification

process came be seen (using -v) and confusion matrices will be

displayed at the completion of the classification process.

Usage :

class <opt file> [<utt file>] [-v] [-d]

where :

<opt file> is the root file name of the options

file. The default extension is .opt.

<utt file> Speech utterance file name. This should

be the path and root file name of the

pair of files, including a .b file and

a .f file. if the .ptlola file is also

available, it will be read, and performance

indicators will be generated. If not

specified the source files from the .opt

file will be used.

-v Verbose output. This returns some

additional information to the screen

when the program is running.

-d Debug output. This returns more

information to the screen when the

program is running.

Input :

All input files are expected to have their root names as

specified in the options file on the
"FEATURE_FILE="

line.

Output :

The output file will have the root name as specified in the

options file on the
"FEATURE_FILE="

line.

.tru
True class for each frame

.1st
First choice class for each frame

!2nd First choice class for each frame

.err
Error indication per frame:

0=no error

l=missed first choice

2=missed first and second choice

- 83 -

5.4.5 SD - Maximum likelihood training progr am

This program was developed for another speech research project

and is used here to determine its effectiveness with respect to

the K-means clustering approach. This program uses the maximum

likelihood formula (see section 1.6), which incorporates feature

covariance into the distance between vectors. Because it was

not written with the tree structure in mind, it must be run once

for each decision point in the tree rather than once for the

entire tree. To make this a bit easier, PRE produces a script

that runs the program the appropriate number of times with the

appropriate options. This will be generated whenever the

training method is specified as
"MAX_LIKELIH0OD"

in the options

file. For a detailed discussion of the usage and working of the

SD program refer to [GAYV88]. For the purpose of this work, it

should be sufficient to run the script file produced by PRE.

Usage :

test_f ile . com

This is the script file produced by PRE.

Execution privileges may need to be added.

Input :

Output :

sxx Feature files as produced by PRE.

.s
Statistics file.

- 84

5.4.6 CLASSM - Classifier for Maximum Likelihood

This program gathers together the files produced by the several

runs of SD into the same set of files as the program CLASS

produces. This program produces confusion matrices. However,

because it is not actually doing any classification it will not

use the options file.

Usage :

classm <tree type> <root file>

where :

<tree type> indicates the tree structure being
used and must be one of the following:

1 -

single level tree

b -

binary tree

s - skewed binary tree

Input :

All input files are expected to contain the results of the

decisions made by the SD program at each decision point in

the tree structure.

.pt File containing the true phonetic labels

If 1 is specified:

First choice at decision node 0.

If b is specified:

0.1st First choice at decision node 0.

"1.1st First choice at decision node 1.
~

2.1st First choice at decision node 2.

If s is specified:

First choice at decision node 0.

~l.lst First choice at decision node 1.

~3.1st First choice at decision node 3.

Output :

All output files will have their root names as specified in the

second parameter passed to the program.

.tru
True class for each frame

.1st
First choice class for each frame

!2nd First choice class for each frame

.err
Error indication per frame:

0=no error

l=missed first choice

2=missed first and second choice

- 85 -

CHAPTER 6

REFERENCES

[CARL68] Carlson Communication Systems: An Introduction to

Signals and Noise in Electrical Communication
,

McGraw-Hill Book Company, 1968.

[CHEN86] Chen, F. "Lexical access and verification in a broad

phonetic approach to continuous digit recognition",

Proceeding of the IEEE ICASSP 1986 , 1089-92.

[CHIG88] Chigier, B. and Brennan, R., "Broad class network

generation using a combination of rules and statistics

for speaker independent continuous speech", Proceeding
of the IEEE ICASSP 1988, 449-52.

[COLE80] Cole, R. and Zue, V., "Speech as eyes see
it,"

In

Attention and Performance VIII , R.S. Nickerson, Ed.

Hillsdale, NJ : Lawrence Erlbaum Assoc, 1980, 475-494.

[COLE86] Cole, R., Phillips, M., Brennan, B., and Chigier, B.,

"The CMU phonetic classification system", Proceedings

of the IEEE ICASSP 1986, 2255-57.

[DUDA73] Duda, R. and Hart, P-, Pattern Classification and

Scene Analysis ,
John Wiley and Sons, 1973.

[FORR88] Forrest, K., Weismer, G., Milenkovic, P. and Dougall,

R. ,
"Statistical analysis of word-initial voiceless

obstruents", University of Wisconsin, 1988.

[GAYV88] Gayvert, R., "Statistical methods for formant

tracking", Masters thesis, Rochester Institute of

Technology, Rochester, New York, 1988.

[GLAS84] Gla

aco

ss, J., "Nasal consonants and nasalized vowels: An

study and recognition experiment", Masters

thesis at Massachusetts Institute of Technology,

December 198 4.

[GLAS85] Glass, J. and Zue, V., "Detection of nasalized vowels

in American English", IEEE 1985 Acoustics, Speech, and

Signal Processing,
1569-1572.

16 -

[GLAS87] Glass, J. and Zue, V., "Acoustic segmentation and

classification", Report presented at the DARPA program

review, San Diego, CA, March 24-26, 1987.

[LEUN85] Leung H. and Zue, V., "Automatic alignment of phonetic

transcription with continuous speech", Proceedings of

the IASTED International Symposium on Robotics and

Automation, Lugano, Switzerland, June 24-26, 1985.

[MAEN84] Maenobu, Ariki, Sakai, "Speaker-independent word

recognition in connected speech on the basis of phoneme

recognition", Information Sciences 33 , 1984, 31-61.

[MEIS86] Meisel, W.
, "Implications of large vocabulary

recognition,"

Proceeding of the IEEE Speech Tech "86 ,

April 1986, 189-192.

[RABI86] Rabiner, L. and Juang, B., "An Introduction to Hidden

Markov Models", IEEE ASSP Magazine , January 1986, 4-16.

[SMIT86] Smith, B., Hillenbrand J., and Ingrisano D., "A

comparison of temporal measures of speech using

spectrograms and digital
oscillograms"

Journal of

Speech and Hearing
Research"

, 29, 1986, 270-274.

[TOU 74] Tou, J. and Gonzalez, R., Pattern Recognition

Principles, Addison-Wesley Publishing Comp., 1974

[WILC86] Wilcox, L., and Lowerre, B., "Coarse classification

using a hierarchical decision tree and top down

parsing", Hewlett-Packard Laboratories, Proceeding of

the IEEE ICASSP 1986, 73-76.

[WILP85] Wilpon, J. and Rabiner, L., "A modified K-means

clustering
algorithm for use in isolated word

recognition", IEEE Transactions on Acoustics, Speech,

and Signal Processing, ASSP-33, 1985, 587-93.

[ZUE 85] Zue, V., "The use of speech knowledge in automatic

speech recognition",
Proceedings o_f the IEEE, 73, 1985,

1602-1615

[ZUE 791 Zue, V. and Cole, R., "Experiments on spectrogram

reading,"Proceedings of the IEEE ICASSP-79, 1979,

116-119.

[ZUE 821 Zue, V. and Schwartz, "Acoustic processing and

phonetic analysis", Trends in Speech Recognition,

101-124.

CHAPTER 7

GLOSSARY

1) Children - all nodes directly connected to and one level
below a given node are children of the given node.

2) Coarticulation - the process in which a phoneme is
influenced by adjacent phonemes during continuous speech.

3) Euclidian distance -

a linear distance measure between two
points in an n-dimensional space. It is calculated by
taking the square root of the sum of the squared distances
for each dimension.

4) Formant -

a resonance frequency of the vocal tract.

5) Frame -

a fixed time slice (e.g. 10 msec) of speech

utterance .

6) PCM - Pulse Code Modulation - digital modulation in which a

message is represented by a coded group of digital

(discrete-amplitude) pulses [CARL68].

7) Phoneme - the smallest unit of speech that distinguishes one

utterance from another. It displays variation in the speech

of a single person or in a particular dialect as the result

of modifying influences. Definition from Webster's Third

New International Dictionary.

8) Phonetic alphabet
- a set of symbols used in phonetic

transcription. There is a separate symbol for every speech

sound that can be distinguished.

9) RMS energy
- Root Mean Squared - a calculation of energy.

10) Segment -

a continuous time slice of the speech utterance

where the entire slice is all of the same coarse class,

(i.e. vowel, strong fricative).

11) Segmentation - the process of taking in continuous voice

signal and dividing it into phonetic segments.

12) Spectrogram -

a two dimensional representation of speech,

showing frequency on the Y-axis, time on the X-axis and

intensity using light to dark shading.

13) Terminal node - a node in a tree structure with no branches

emerging from it.

- 89 -

APPENDIX A

A OPTION FILE FORMAT

This appendix explains the format of the options file used

throughout the training and classification process. The option

file is an ASCII text file that allows the user to control many

parameters about the system being trained. The user can specify

items such as the tree structure to be used, the training

method, what features to use and when, etc. This file must be

passed to all three steps of the training phase and also to the

classifier. It is important that this file be passed to all

four programs without being modified. For a detailed discussion

of the programs and data flow, refer to the "User
Documentation"

chapter of this paper.

Comments

All text to the right of a
"

;
"
is considered comments and

is not parsed as part of the options. Also, all blanks

and blank lines are ignored.

METHOD = training type

This line indicates what type of training will be done.

The "training
type"

may be one of three options: K_MEANS ,

MAX LIKELIHOOD, or FIXED_CLASSES . If K_MEANS is chosen,

then the k-means algorithm will be used to segment the

data at each decision point in the tree during training.

If FIXED CLASSES is chosen, then the classes that were

by the user are used to segment the data at each

decision point. If MAX_LIKELIHOOD is specified, then the

maximum likelihood formula will be used to make each

decision in the tree.

- 90 -

SOURCE = file name

This is the root name of a speech utterance to be used in
the training session. it is expected that there will be

three files for each root name given: a
".b"

file

containing PCM, a
".f"

file containing the FFT's, and a
".ptlola"

file containing the phonetic label information.
One or more of these lines can be specified. Wild card

names are not supported, and the full path name should be

specified for clarity.

FEATURE = feature [,pl [,p2 [,p3 [,p4 1111
Specifies what features are to be extracted from the

speech utterance. One or more of these lines can be

specified, each with one feature chosen from the

following: ZERO_CROSSING, TOTAL_ENERGY , PEAK_ENERGY,

RELATIVE_ENERGY, SPECTRAL_CHANGE , PERIODICITY, M0MENT_1ST,

MOMENT_2ND, M0MENT_3RD, MOMENT_4TH. Several features have

parameters that can be changed to maximize the usefulness

of the feature. ZERO_CROSSING has a dead band associated

with it through which the signal must completely pass

before being counted as a crossing. This can be set by
assigning the lower limit to pi and the upper limit to p2 .

TOTAL_ENERGY can be limited to a specified frequency band

by setting the lower limit to pi and the upper limit to

p2 . RELATIVE_ENERGY is the energy in a given band

relative to that of another band. The lower and upper

limits of the first band are given in pi and p2 ,

respectively. The second band's lower and upper limits

are specified by p3 and p4 .

PHONEME = phonemes
[

= num]_
Specifies which phonemes and how many of each are to be

used for the training process. Each input file has a

phonetic transcription file, and the feature extractor

will only extract data samples from phoneme types

specified here. The phonemes are CMU type names separated

by commas. If a
"*"

is specified, then all phonemes are

used. The optional second equal sign, followed by a

number, indicates how many samples of the specified

phonemes the feature extractor is to use. If omitted, all

samples of that phoneme will be extracted. One or more of

these lines may be specified. If a phoneme is specified

in more than one line, the last line will determine how

many are used.

FRAME = msec

Specifies the number of milliseconds (1/1000 of a second)

in each frame. If not specified, the frame will be 10

msec .

SKIP = count
^

Skip controls how many frames are considered to be at a

segment boundary. For example, if 1 is specified, then

one frame on each end of a segment is considered to be an

edge and is not added into the non-edge confusion matrices

for the classifier. This is employed to discover the

- 91 -

effect that removing these edge frames has on the
performance of the classifier. This option will also be
used by the preprocessor, and any frames on edge

boundaries there will not be placed into the training set.

In order to get all frames, this should be set to zero,
which is the default. It is, therefore, likely that this
would be set to zero for the training programs. But,
during classification, it could be set to one or two. For

this study, it was set to zero for training and to one

during classification.

NODE = node id = children J_ pi]_
These lines describe the tree structure to be used. One

of these lines must be present for each node in the tree.

The "node
id"

indicates which node this line is describing
(0 =

root; 0.0 = leftmost child of 0; 0.1 = next child of

root to right; then 0.2, 0.3, etc. 0.0.0 is leftmost

child of 0.0; then 0.0.1, 0.0.2, etc.). The parameter
"children"

is the number of children belonging to the

node. The optional parameter
"pi"

can take on one of two

meanings depending on whether the node, is a terminal node

of a decision point. If it is a terminal node this

parameter will tell the system what class we want it to

train this node to be (e.g. CO for class 0). For

terminal nodes, this parameter is not optional. If the

node is a decision point (i.e. non-terminal), then
"pi"

may be a list of features that are to be used at that

point. These features should be the first three letters

of the
features'

names, each separated by commas and

appearing in lower case. If an asterisk appears before

the feature name, then this feature is considered to be an

optional feature. The system will try all combinations of

the optional features and choose the set that makes the

least number of classification errors. The following is

an example of a class option line with two optional

features: CLASS = 1
, tot ,

*zer
,
per ,mol , *mo2 . The feature

names allowed are the following: zer, tot, pea, per, spe,

rel, mol, mo2, mo3, mo4 . These names are also used as the

file name extensions for the feature files.

CLASS = class number]_
= number 1 [_ j_

phoneme list]_
This switch is used to establish the relationship between

the phonemes and the classes. The system will use initial

clusters as shown in Appendix B; however, these may be

rearranged to any classes desired. These are only seed

classes if K-means is chosen, and the final classes may be

very
different. If the training method is fixed classes

or maximum likelihood, then these classes will be the

final classes. If the optional parameter
"number"

is

specified, then the feature extractor will limit the

number of feature vectors to the specified number.

Otherwise, all feature vectors of the class will be used.

- 92

STANDARD DEVIATION = sd

Once the features have been extracted, they are normalized

to achieve the standard deviation specified here. This is

done to prevent features with large ranges from dominating
the z-score decision during the K-means or fixed classes

technique. This is not used for maximum likelihood.

INCLUDE = file name

When this line is encountered, the program will open the

file specified by "file
name"

and begin reading lines from

that file just as if they had been in the original options

file. When the end of this file is encountered,

processing will continue with the line following this

INCLUDE line in the original options file. Only one level

of include file support is allowed.

PTLOLA = file extension

This line defines the file extension used for the phonetic

label file. By the conventions of the CMU data base, this

is ".ptlola". However, because much of the development of

this project was done on an IBM-PC, which only supports

three character extensions, this switch was introduced to

allow the extension to be shortened.

93

The following is a sample options file to be used during the

training of the utterance "obey". For a complete sample of the

training process using this options file, see the "user
documentation"

section.

Options file for utterance
"obey"

Tree structure

/

0

/ \

/
0.0

/ \

/ \
0.0.0 0.0.1

sil b

_
\
0.1

/ \

/ \
0.1.0 0.1.1

ow y

METHOD = K_MEANS, FIXED_CLASSES

SOURCE = C: /CLASS/DATA/OBEY

PTLOLA =
.PTL

FRAME =10

FEATURE

FEATURE '

FEATURE

FEATURE

FEATURE

FEATURE

FEATURE

FEATURE

FEATURE

FEATURE

FEATURE_
STANDARD

PHONEME

CLASS =

CLASS =

CLASS =

CLASS =

= ZERO_CROSSING,-400 , 400

= TOTAL_ENERGY

= RELATIVE_ENERGY,100,4 0 00,40 00,90 00

= PEAK_ENERGY

= SPECTRAL_CHANGE

= PERIODICITY

= MOMENT_lST

= MOMENT_2ND

= MOMENT_3RD

= MOMENT_4TH

FILE = OBEY

= 1000

= sil ,ow,b,y

0 ,
sil

1 ,
ow

2,b

3.-y

NODE =0=2

NODE =0.0=2

NODE = 0.1 = 2

NODE = 0.0.0 = 0,C0

NODE = 0.0.1 = 0,C2

NODE = 0.1.0 = 0,C1

NODE = 0.1.1 = 0,C3

- 94 -

APPENDIX B

B PHONEME NAMES

This appendix gives the phonetic makeup of each of the

coarse classes proposed for this thesis. Following the coarse

classes, a list of all of the phoneme names and their uses is

presented. The class sets are not intended to be complete; they

are only representative of what is being observed. The phoneme

names were adopted without modification from the Carnegie-Mellon

data base .

Coarse class Typical phonemes Phoneme groups

Silence sil, pau, bg, q, background

pel, tcl, kcl closures

del, bcl, gel voiced closures

Strong fricatives s, z, sh, zh, strong fricatives

ch, jh affricates

Weak fricatives f, th, hh ,
hv , weak fricatives

Vowels ax, e, oe , ao, vowels

ey, ow, iy, uw

n, m nasals

1, r, w liquids

95 -

Name Description

Vowels :

iy
'beat'

ih 'bit'

eh 'bet'

ae
'bat'

ux high, front, rounded allophone of /uw/ as in 'beauty'

oe mid-low, front, rounded allophone of /ow/
ix high, central vowel (unstressed), as in 'roses'

ax mid, central vowel (unstressed), as in 'the'

ah mid, central vowel (stressed), as in 'butt'

uw 'boot'

uh 'book'

ao 'bought'

aa
'

cot
'

ey
'bait'

ay
'bite'

oy 'boy
aw

'bough'

ow
'boat'

e non-diphthongized /ey/

mid-low, back, non-diphthongized allophone of /ow/
o

Liquids :

1 'led'

r
'red'

Glides :

Y
'yet'

w
'wet'

Syllabic resonants:

er
'bird'

axr unstressed allophone of /er/,

el syllabic allophone of /l/, as

em syllabic allophone of /m/, as

en syllabic allophone of /n/, as

eng syllabic allophone of /ng/, as

as in '

diner '

in 'bottle'

in
'

yes
' em'

in
'button'

in 'Washington'

Stops

p
'pop'

b
'bob'

t
'tot'

d
'dad'

k 'kick

g
'gag'

m
'mom'

n
'
non

'

ng
'sing'

q glottal stop
- allophone of /t/, as in Atlanta'

- 96 -

Affricates :

rhch
' church'

jh '

judge '

Fr i ca fives :

f '

fief

v
'very'

th 'thief

dh 'they'

s
'sis'

z
'

zoo
'

sh
'shoe'

zh 'measure'

hh 'hay'

hv voiced allophone of /hh/, occurred between vowels

Flaps and trills:

dx alveolar flap (allophone of /t/ and /d/)
nx nasal flap (allophone of /n/)
lx lateral flap (allophone of /l/)

Others :

bg silence at beginning and end of utterance

pau silence within an utterance

sil same as pau, but shorter

ns a non-speech sound

h# exhalation at end of utterance

#h inhalation at beginning of utterance

voi voicing not associated with a stop closure

epi closure resulting from coarticulation of fricative

and nasal or lateral

Qualifiers :

cl closure associated with a stop

-h aspiration of a stop

-n nasalization of sonorants

-q
glottalization/laryngealization of sonorants

-b stop release at a spot where stops are not

often released

- 97 -

APPENDIX C

C SAMPLE OUTPUT

This appendix will show the results of a sample training

and classification session for the utterance "obey". The system

will use four classes corresponding to the four phonemes of the

utterance. Figure C.l is the spectrogram of the utterance being

used. Following this, the options file that was used is

presented and then the actual output from running PRE, NORM,

KTRAIN, and CLASS.

- 98 -

0 Msec

Figure C.l Spectrogram for utterance
"obey"

99 -

$ type obeycb.opt

Options file for utterance
"obey"

Tree structure: 0

/ \

/ \

/ \

/ \
0.0 0.1

/ \ / \

/ \ / \
0.0.0 0.0.1 0.1.0 0.1.1

sil b ow y

METHOD = FIXED_CLASSES

SOURCE = [JDELMEGE. CLASS. DATA]OBEY

PTLOLA =
.PTL

FRAME =10

SKIP = 0

FEATURE_FILE = OBEY FULL

FEATURE_SET = 1,10
_

STANDARD_DEVIATION = 1000

FEATURE = ZERO_CROSSING,-400, 400

FEATURE = TOTAL_ENERGY

FEATURE = RELATIVE_ENERGY, 100, 4000, 4000, 9000

FEATURE = PEAK_ENERGY

FEATURE = SPECTRAL_CHANGE

FEATURE = PERIODICITY

FEATURE = MOMENT_lST

FEATURE = MOMENT_2ND

FEATURE = MOMENT_3RD

FEATURE = MOMENT_4TH

CLASS = 0, sil

CLASS = l,ow

CLASS = 2,b

CLASS = 3,y
PHONEME =

sil,ow,b,y

NODE = 0 = 2, tot, rel, per

NODE = 0.0 = 2, per

NODE = 0.1 = 2
, tot, rel , mol

NODE = 0.0.0 = 0,C0

NODE = 0.0.1 = 0,C2

NODE = 0.1.0 = 0,C1

NODE = 0.1.1 = 0,C3

100 -

$ pre obeycb -v

Feature files being generated:

ZERO_CROSSING

PEAK_ENERGY

SPECTRAL_CHANGE

M0MENT_1ST

MOMENT 3RD

(OBEY_FULL.zer)

(OBEY_FULL.pea)
(OBEY_FULL.spe)

(OBEY_FULL.mol)
(OBEY FULL.mo3)

TOTAL_ENERGY (OBEY_FULL . tot)
RELATIVE_ENERGY (OBEY_FULL . rel)

PERIODICITY (OBEY_FULL.per)

MOMENT_2ND (OBEY_FULL . mo2)
MOMENT 4TH (OBEY FULL.mo4)

Phonemes found:

sil = 1

Classes found: 0

1

2

3

ow = 16

1

16

= 30

y
= 30

Silence

Strong fries

Weak fries

Vowels

$norm obeycb -v

File High Low Sub shift D. Multiplier

OBEY_
OBEY_
OBEY_
OBEY_
OBEY_
OBEY_

OBEY_
OBEY

OBEY_
OBEY_
OBEY_
OBEY_
OBEY_
OBEY_
OBEY_
OBEY_
OBEY_

OBEY_
OBEY

FULL,

FULL,

"FULL,

FULL,

FULL,

'FULL.

FULL.

FULL.

"FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

FULL.

zer

zer

tot

tot

pea

pea

rel

rel

spe

spe

per

per

mol

mol

mo2

mo2

mo 3

mo 3

mo 4

mo 4

18

1903

2317

2016

22098

3064

2513

4269

15223

4214

985

1160

2645

1927

272

2992

247

1577

567

2103

0

-1691

0

-1540

0

-1326

0

-1993

0

-1205

0

-2001

0

-1611

0

-2137

0

1327

-61

-1056

-9

-30

-1037

0

-10146

0

-930

-1

-3480

0

-774

-1

-1692

0

-202

-3

-121

-11

-149

-2

4

999

634

999

3899

999

370

999

2786

999

181

999

494

999

23

999

79

999

198

999

729021

078130

761430

571135

829847

578866

749830

595300

291377

611315

868484

579457

467427

484767

393861

587424

848721

399874

684995

479301

211.

1.

1.

1,

0,

1,

2,

1,

0,

1,

5.

1.

2.

1

42

1

12

1

5

1

60273

00923

75395

00429

56421

00421

97237

00405

58900

00389

98479

00421

22378

00515

46257

00413

23682

00600

33093

00521

101 -

$ktrain obeycb -v

Class to node association: N3=C0 N4=C2 N5=C1 N6=C3

Method = Fixed classes not resetting classes

Results for node: 0

Performance: 54 out of 55 99%

Feature sets: 1

Feature vector: (tot rel per)

Node 1, SD = 1122 Children= (3-4)

mean vector = (-1403 1012 1066)

C0=1 Cl=l C2=8

Node 2, SD = 1388 Children= (5-6)
mean vector = (275 -196 -206)

Cl=15 C3=30

Node 1 Children 3-4

sil

b

1 0

8.
. . 0

CO (1)

C2 (8)

Node 2 Children 5-6

ow

y

15

30

CI (16

C3 (30

Results for node: 1

Performance: 9 out of 9 100%

Feature sets: 1

Feature vector: (per)

Node 3, SD = 1000 Class=(0) Silence

mean vector = (835)

C0= 1

Node 4, SD = 56 Class=(2) Weak fries

mean vector = (1095)

C2 = 8

Node 3 Class 0 Silence

sil 1 0 CO (1)

Node 4 Class 2 Weak fries

b 0 8 C2 (8)

102 -

Results for node: 2

Performance: 45 out of 46 98%

Feature sets: 1

Feature vector: (tot rel mol)

Node 5, SD = 783 Class=(l) Strong fries
mean vector = (51 -80 -912)
Cl=16 C3=l

Node 6, SD = 1121 Class=(3) Vowels

mean vector = (395 -258 836)
C3 = 29

Node 5 Class 1 Strong fries

ow 16 0 CI (16)

Node 6 Class 3 Vowels

y 1 29 C3 (30)

Trained Classes

Class = 0 Silence

pau sil pel tcl kcl qcl dhel m-h w-h w-q

Class = 1 Strong fries

ch sh jh zh s z t d t-h t-b

d-b dh v ow

Class = 2 Weak fries

p-b b-b g-b ncl f r-h th k-h b

Class = 3 Vowels

uh ao aa

eh ae ux

ae-q aa-q er

uw-q eh-q w

Class = 4 Closures

ih-q bcl del

ix-q ng ng-b

rx r-q hh

k b-h d-h

bh kh gh

ey

oe

ay

ax

oy

ah

aw

ih-n

e

r

o

ix-q

ih

ey-q

axr el 1 aw-n iy 1-h y

uw

gel

q-b

P
nx

g

em

mcl

en

ngcl

eng

m

dx

n

lx

voi

q-h

er-q

n-h

P

ng

-h

-h

ly-q

q-h

h

k-b

q

m-b

ph

n-b

hv IX axr -q

- 103

$class obeycb -v

EO sil El ow Cl ow Cl ow Cl ow

CI ow Cl ow Cl ow Cl ow Cl ow

CI ow cl ow Cl ow Cl ow Cl ow

CI ow El ow C2.E1 b C2.C1 b C2 b
C2 b C2 b C2 b C2 b C2.E1 b

C3-E1 y C3 y C3 y C3 y C3 y
C3 y C3 y C3 y C3 y C3 y
C3 y C3 y C3 y C3 y C3 y
C3 y C3 y C3 y C3 y C3 y
C3 y C3 y C3 y C3 y C3 y
C3 y C3 y C3 y C3 y

Analysis by frame

Sil SF WF Vow Sil SF WF Vow

+
-

Sil | 100% 0% 0% 0% | 1

+

Sil | 0% 0% 0% 0%

+

I 0

SF | 0% 100% 0% 0% | 16 SF | 0% 100% 0% 0% 1 14

WF | 0% 37% 62% 0% | 8 WF | 0% 17% 83% 0% 1 6

Vow | 0% 3% 0% 96% |
+

29
'

Vow | 0% 0% 0% 100% 1 27

With edges 94% Without edges
1
98%

Analysis by frame

Sil 100% 100% 100% 100% 100% out of 1

SF 100% 100% 100% 100% 0% out of 1

WF 100% 100% 100% 100% 0% out of 1

Vow 100% 100% 100% 100% 0% out of 1

All 100% 100% 100% 100% 25% out of

- 104

APPENDIX D

D CLASSIFIER RESULTS

This appendix shows the detailed results of the six

classifiers. The tables shown here are directly taken from the

output produced by the classifiers as they were trained then

tested on the full set of 98 utterances. Table D.l shows two

confusion matrices for each classifier. These matrices are

showing the performance on a per frame basis. The first matrix

includes every frame and the second includes only frames that

are not within 10 msecs of a segment edge. The difference

between the two gives some general information about where the

errors are occurring. Table D.2 shows the details of the

segment based error analysis. In this table classifier

reports five percentages for each class as well as for its

overall performance. The five percentages represent the

following :

A) Percentage of segments where at least some frames within

the segment were labeled with the correct class.

B) Percentage of segments where one and only one contiguous

string of frames within the segment were labeled with the

correct class, regardless of how close to the actual edges

this string came.

C) Percentage of segments all the frames were labeled

correctly-

D) Percentage of segments all the frames were labeled

correctly except those within 10 milliseconds of the edge

of the segment.

E) Percentage of segments all the frames were labeled

correctly
except those within 20 milliseconds of the edge

of the segment.

- 105

Vow

K-means - Single level tree

Sil SF WF Vow Sil SF WF Vow

Sil | 54% 2% 20% 24% | 2532 | 63% 0% 15% 21% | 1603

SF | 8% 74% 11% 7% | 6165 | 6% 84% 8% 3% | 4972

WF | 20% 14% 48% 18% j 2576 j 19% 17% 54% 9% | 1889

Vow | 8% 1% 4% 87% | 15329 | 7% 0% 2% 90% | 13517

With edges 77% Without edges 84%

K-means -

Binary tree

Sil | 71% 4% 5% 21% | 3103 | 78% 2% 5% 16% | 2100

SF | 9% 75% 8% 9% || 6165 | 6% 8 3% 8% 4% | 4972

WF | 31% 15% 40% 15% || 1909 | 29% 17% 46% 8% | 1518

Vow | 10% 2% 1% 87% |[15425 | 9% 1% 1% 90% | 13611

With edges 79% Without edges 84%

K-means - Skewed tree

Sil | 65% 4% 9% 22% | 3532 | 71% 3% 8% 18% | 2261

SF | 6% 83% 6% 6% | 6309 | 3% 91% 5% 2% | 5064

WF | 19% 23% 46% 12% | 2439 | 15% 27% 52% 6% | 1849

Vow | 13% 1% 2% 85% | 14322 | 12% 0% 1% 86% | 12300

With edges 78% Without edges 83%

Maximum likelihood - Single level tree

Sil | 88% 4% 5% 4% | 2533 | 93% 1% 4% 2%| 1603

SF | 8% 74% 15% 3% | 6166 | 4% 83% 12% 1% | 4973

WF | 32% 10% 55% 3% | 2576 | 26% 11% 62% 1% | 1889

Vow | 19% 2% 15% 64% | 15328 | 17% 1% 14% 68% | 13516

With edges 68% Without edges 73%

Maximum likelihood -

Binary tree

Sil I 65% 9% m 9Y~\ 3104 | 74% 5% 16% 5% | 2100

SF I 3% 86% 9% 2% | 6166 | 2% 90% 8% 1% | 4973

WF | 12% 9% 72% 6% | 1909 | 9% 9% 79% 3% | 1518

13% 2% 3% 82% | 15424 | 12% 1% 2% 85% [13610

With edges 80% Without edges 85%

Maximum likelihood - Skewed tree

Sil TT2% 11% 261 2T%"T 3532 | 52% 8% 25% 15% | 2262

SF 2% 89% 8% 2% | 6310 | 1% 94% 4% 1% | 5065

WF 9% 46% 38% 7% | 2439 | 7% 53% 38% 3% | 1849

Vow | 7% 2% 5% 86% 1 14322 1 6% 0% 4% 89% j 12300

With edges 76% Without edges 82%

Table D.l - Confusion matrices showing frame by frame

analysis results of all six classifiers.

- 106 -

D E Se gments

37% 51% out of 479

4 5% 7 3% out of 597

22% 39% out of 362

66% 76% out of 908

K-means Binary tree

83% 79% 32% 56% 66% out of 517

92% 89% 9% 35% 68% out of 597

73% 65% 1% 6% 19% out of 196

97% 86% 34% 6 4% 74% out of 912

83% 77% 31% 50% 63% out of 653

95% 93% 24% 66% 83% out of 623

69% 61% 6% 21% 33% out of 301

98% 83% 45% 67% 74% out of 1015

K-means - Single level tree

Class A 13 c

~stt 69i g~6% mr
SF 91% 89% 9%

WF 70% 62% 8%

Vow 99% 85% 36%

ATI 87"% 79% 2T% 48% 65% out of 2346

Sil

SF

WF

Vow
^

All 91% 83% 24% 49% 66% out of 2222

K-means - Skewed tree

Sil

SF

WF

Vow

ATI 901 8T% 32% 57% 68% out of 2392

Maximum likelihood - Single level tree

Sil 91% 88% 64% 82% 85% out of 480

SF 92% 89% 11% 48% 70% out of 597

WF 70% 62% 10% 25% 38% out of 362

Vow 86% 68% 12% 34% 42% out of 908

All 86% 76% 22% 46% 57% out of 2347

likelihood -

Binary tree

Sil 77% 72% 24% 49% 60% out of 518

SF 95% 93% 48%

WF 92% 86% 15%

Vow 96% 82% 33%

ATI 9T% 83% 3T% 58% 67% out of 2223

Maximum likelihood - Skewed tree

Sil 59% 56% 8% 28% 39% out of 653

SF 96% 95% 44% 73% 89% out of 623

WF 77% 65% 12% 24% 31% out of 301

Vow 96% 85% 40% 69% 74% out of 1015

ATI 851 78% 29% 5"4l 64% out of 2592

Table D.2 - Segment by segment analysis results of all

six classifiers.

- 107 -

Maximum

77% 72%

9 5% 93%

92% 86%

96% 82%

70% 8 0% out of 597

44% 62% out of 196

58% 64% out of 912

APPENDIX E

E UTTERANCE TRAINING SET

This appendix lists the utterances used for training and

testing the classifiers described in this paper. These were all

taken from a larger set complied by Carnegie Mellon University.

The file names shown here are those that were used by Carnegie

Mellon. There is a total of 98 utterances spoken by 10

speakers, 5 female and 5 male.

/usr/tidb/f ricdata/ADC/f It66/F3 . 1 .adc to F3.10.adc

1 Zanzibar is a lovely island off the coast of Africa.

2 Voodoo influences the lives of superstitious peasants.

3 A Schick shaver is best for removing facial hair.

4 She'll choose whomever the association approves.

5 Susie wears a size five in socks.

6 Festus vouched for the authenticity of the check.

7 Thick haze enshrouded the hostile valley.

8 The czars only foible was his thirst for sweet wine.

9 Fred's search for salvation sent him to Zen philosophy.

10 The sergeant shoved the volunteers to the front.

/usr/tidb/f ricdata/ADC/fwr66/F4.1. adc to F4.10.adc

/usr/tidb/f ricdata/ADC/mjp66/F4 .1 .adc to F4.10.adc

/usr/tidb/f ricdata/ADC/mdc66/F4 .1 .adc to F4.10.adc

(missing F4.3.adc)

1 Thoughtful viewers like those types of shows.

2 Shirley is the zaniest violinist in Ashland.

3 The shifty huckster fleeced his hapless victim.

4 The soot showered down the chimney of the haunted house

5 Ancient civilizations are most visible through their

arti facts .

6 Persuasion is the art of swaying the sure.

7 Schuster hoisted the heavy hose to his shoulder.

8 Sophisticated shysters vie for foolish souls.

9 Fewer than one thousand votes were needed to defeat the

charismatic judge.

10 Joseph usually avoids the pistachio fudge -

- 108

/usr/tidb/f r icdata/ADC/f tc66/F5 . 1 .adc to F5.10.adc

/usr/tidb/f r i cdata/ADC/mm j 66/F5 . 1 .adc to F5.10.adc

1 A fuse shattered and the huge house was left in shadows.

2 The thrush constructs her nest from feathers and pieces of

fluff.

3 His father sold the vase before they realized its value.

4 Cheech and Chong have unusual voices.

5 Treasure hunts make me vomit.

6 The sound of the zither gave Shirley a sensation of deja vu .

7 The freezer always thaws the food.

8 Should we rehearse the third scene again?

9 Heath is a shrub that thrives in the Scottish highlands.

10 Discussion of Zionism caused him to suffer from ulcers.

/usr/tidb/f r icdata/ADC/fhe66/F6 . 1 .adc to F6.10.adc

/usr/tidb/f ricdata/ADC/miy66/F6 .1 .adc to F6.10.adc

1 The thief groped his flashlight out of nervousness.

2 Mother fixed the thatch roof before the thunder and hail

struck .

3 The sound of the
horses'

hooves thundered through the evening

si lence .

4 Thistles and sunflowers are both in the daisy family.

5 Athena sprang from the head of Zeus.

6 Every first child gets everything he wants.

7 Blackbeard seized the English admiral's flag ship.

8 This soy sauce has no artificial ingredients or

preservatives .

9 The foul ball sailed over the stadium roof.

10 Thanksgiving symbolizes the fall harvest feast here in the

U.S.

/usr/tidb/f ricdata/ADC/fmm66/F7 .1 .adc to F7.10.adc

/usr/tidb/f ricdata/ADC/mes66/F7 .1 .adc to F7.9.adc

1 Athletic events jam the TV on Saturday afternoons.

2 The mazurkas were played with verve and enthusiasm.

3 Julie hooked a giant of a fish yesterday.

4 George and Faye are very fond of faraway vacations.

5 He injured his foot when he slid home.

6 The theft of the silver sousaphone had the sheriff baffled.

7 Herschel's visa for South Africa has yet to be approved.

8 Shoofly pie is a specialty of the Dutch of Pennsylvania.

9 The suicidal teenager slashed her wrist with a shard of

glass .

10 The sheaves of wheat stood as sentinels in the snowy fields.

- 109 -

APPENDIX F

F CODE FOR FEATURE EXTRACTION

This appendix gives the code used for feature extraction in

thi s work .

/A********************** feat.c ****************************

*

* FEAT.C

*

*

* This file contains all the feature extraction routines for

* the CLASS thesis, by Jim Delmege.

*

* For detailed information on each feature see the header for

* each feature extraction routine.

*

*

* Common variables:

*/

unsigned int

FFT data[100] [64] ,
/* FFT data (max FRAME 100 msec) */

avg[64],
/* Average FFT readings across frame*/

FFT-hist[3] [64]={ 0} ,
/*

History of last three FFT_avgs */

per frame=130;
/* Number of PCM samples in frame */

int

PCM data[1300],
/* PCM data for frame (max 100 msec)*/

shif t [1300] ;
/* Shifted version of the PCM signal*/

short

feat value=0;
/* Feature value returned */

double

moment! 5];
/* Value of the moments */

110

This function will return the zero crossing count of a

given frame of raw PCM from a sample of speech.

/***

*

*

*

*

* A dead band is used which can be set in the options file of

* the program. A count is added on the positive the negative

*
edge of the signal, when it passes completely through the

* dead band.

*/

extract zero crossing()

{
unsigned int posi tive=TRUE ,

/* Current state of signal */

i; /* General index variable */

feat_value = 0; /* Initialize zero count */
for (i=0; i ! =PCM_per_f rame ; ++i) { /* For each PCM sample */
if ((positive == TRUE) && /* If was POS and now NEG */

(PCM_data[i] < dead_band_low)) {
positive = FALSE; /* Set status to NEG */
feat_value = feat value + 1; /* Add one to zero count */

}
if ((positive == FALSE) && /* If was NEG and now POS */

(PCM_data[i] > dead_band_high)) {
positive = TRUE; /* Set status to POS */

}

}

/***

*

* This function will return the total energy of a

* given frame of FFT's from a sample of speech.

*

* The FFT_avg contains the average FFT's for each frequency
* band, and thus total only needs add up the bands. This

* will return an average FFT total, rather than the true total.

* Also, a band width can be specified so as to narrow the range

* of bands viewed.

*/

extract_total_energy()

{
unsigned long total=0;

int j;

for (j = total_low/FFT_BAND; j < total_high/FFT_BAND ; ++ j)

total = total + FFT_avg[j];

feat value = total /

((total_high/FFT_BAND)-(total_low/FFT_BAND));

}

/***

- Ill -

* This function will return the peak energy relative

* to the total energy of a

* given frame of FFT's from a sample of speech.

V

extract peak energy()

{
unsigned long sum[64],

large = 0,

total = 0;
unsigned int j ;

double temp;

for (j=0; j<64; j++) sum[j] = 0; /* Clear out the sum array */

for (j=0; j<64; j++) { /* Get the total energy */
total = total + FFT_avg[j];
if (large < FFT_avg[j]) {
large = FFT_avg[j];

}

}
/* Avoid divide by zero /if (large == 0) {

feat_value = 0;

} else {
if (large == 0)

temp = 0 ;

else

temp = (double) total / large; /* Get the relative number*/

temp = temp
* 1000; /* Get 3 significant digits*/

feat value = temp;
/*

Keep only non-fractional*/

- 112

/***

*

* This function will return the relative energy of a

* given frame of FFT's from a sample of speech.

*

* Relative energy calculation will compare the energy in any
* two ranges as specified in the options file.

*

*/

extract_rel_energy ()

{
unsigned long low_total=0,

high_total=0;
unsigned int j ;

double temp;

/* Low range energy */

for (j=rel low_low/FFT_BAND ; j < rel_low_high/FFT_BAND ; ++ j)

low_totaT = low_total + FFT_avg[j];

/* High range energy */
for (j=rel_high_low/FFT_BAND; j <rel_high_high/FFT_BAND ; ++j)

high_total = high_total + FFT_avg[j];

if (low_total == 0) {
/* Avoid divide by zero */

feat_value = 0 ;

} else {
if (low_total == 0)

temp = 0 ;

else

temp = (double) high_total /

low_total;
/* Get relative number */

temp = temp
* 1000;

/* 3 significant digits */

feat_value = temp;
/*

Keep only nonf raction*/

}

- 113 -

/**.(.****

*

* This function will return the spectral change of the energy
* in a given frame of FFT's from a sample of speech.

*

* This is a summation of the differences between the current

* frame and the previous three frames.
*

*/

extract spectral change()

{
unsigned long avg_hist [64] ,

/* Ave. of the last 3 frames */
diff = 0; /* Total differences */

unsigned int i; /* index variable */

for (i = spec_low/FFT_BAND; i < spec_high/FFT_BAND ; ++i) {
avg_hist[i] = FFT_hist [0] [i] ; /* Add up in the history */

avg_hist[i] =

avg_hist[i] + FFT_hist [1] [i] ;
avg_hist[i] =

avg_hist[i] + FFT_hist [2] [i] ;

avg_hist[i] =

avg_hist[i] / 3 ;

if (avg_hist[i] > FFT_avg[i]) { /* Find difference */

diff = diff + (avg_hist[i] - FFT_avg[i]);

} else {
diff = diff + (FFT_avg[i]

-

avg_hist[i]);

}

}
diff = (diff*10) / ((spec_high/FFT_BAND)-(spec_low/FFT_BAND)) ;

feat value = diff;

114 -

/***

*

* This function will return the periodicity of the speech

* signal. This is a comparison of the PCM signal against

*
a shifted version of itself.

*/

extract_per iodici ty ()

{
int i ;

double r,

rx,

sumx = 0 ,

sumy
= 0 ,

sumxy
= 0 ,

sumxsqr = 0,

sumysqr = 0,

num,

dl,

d2,

denom;

for (i=0; i!=PCM per frame; i++) {
rx

rx

sumx

sumxsqr

ry

ry

sumy
sumysqr

sumxy

}
num

dl

d2

denom

r

feat value = r;

= PCM_data[i] ;
= rx / 1000;
= sumx + rx;

= sumxsqr + (rx

= PCM_shift[i] ;
=

ry / 10;
=

sumy + ry;

= sumysqr + (ry

=

sumxy (rx

rx) ;

ry) ;

ry) ;

=

sumxy
- (sumx *

sumy / PCM_pe r_f rame)

= sumxsqr
- (sumx * sumx / PCM_per_f rame)

= sumysqr
- (sumy

*
sumy / PCM_per_f rame)

= sqrt(dl * d2) ;

= (num / denom) * 1000; /* Return 3 significant */

115 -

/***

*

* Moments ()
* Where order = 1 - mean 2 -

variance

* 3 -

skewness 4 - kurtosis
* Note: If moments are being used then the first moment MUST

* be calculated before attempting to calculate y of

* the second and the second must be calculated before
*

attempting the third or fourth.

V
extract_moments ()

{
int

double

],i; /* Index variables */

p,
/* Normalized power spectrum */

f, /*
Frequency */

m,
/* Current moment */

d,dl,

fl; /*
Frequency prime (temp storage) */

m = 0;

moment[l]
= 0; moment[2]

= 0; moment[3]
= 0; moment[4]

= 0;

if (FFT_total_energy != 0) {
for (i=0; il=64; i++) {
m = m + ((double) i*((double) FFT_avg[i]/FFT_total_energy)) ;

}

}

momentfl]
= (m * 100) ;

if (FFT_total_energy
!= 0) {

for (i = 0; i I =64 ; i ++) {
dl = i -

m;

d = dl * dl;

moment[2] =+ (d * ((double) FFT_avg[i] / FFT_total_energy))

d = d * dl;

moment[3] =+ (d * ((double) FFT_avg[i] / FFT_total_energy))

d = d * dl;

moment[4] =+ (d * ((double) FFT_avg[i] / FFT_total_energy))

}

if (moment[2]
== 0) {

moment[3]
= 0; moment[4]

= 0;

\ e 1 s s {

moment[3]
= (moment[3] / sqrt (moment [2] *

moment[2]
* moment! 2])) * 100;

moment[4]
= ((moment[4] / (moment[2] *

moment! 2])) - 3) * 100;

116

APPENDIX G

G CODE FOR K-MEANS CLUSTERING

This appendix gives the code used for the K-means

clustering in this work.

/k ********************** * kmeans . c *************************

*

* This file contains the main routines needed for the K-means

*
process. It consists of the following:

*

* di str ibute_data () - Distributes all the data points

* around the current center points.

*
get_new_centers_and_sd() - Calculates the new center points

* and the standard deviations for

* each cluster.

* get init centers!) - Calculates initial center points.

* - This is the K-means routine as used

* for training coarse classes.

*

117

********************* distribute data()

*

~

* This routine will take all the data points associated with

* the current node and change their association according to

* how close they are to each of the cluster current centers.

*

* For each data point associated with this node

* For each child node off this node

* calculate distance from data point to center of child

* if closest so far

* place data point on this node

* end if

* end for

* end for

*

*/
di str ibute_data ()

{
int i

,

j >

k;

double best_dist,

dist;

unsigned

long subtotal,

total ;

for (i=0; i!=data count; ++i) {
/* for each data point */

if (node assoc[iT
== node) {

/* if dealing with this child */

for (j=n"ode_b[node] ; j I =node_b[node+1] ; ++ j) {
/* each child*/

total = 0;
,.-:,. + ,

for (k=0; k ! =MAX FEAT; ++k) { /* look at each feature */

if (curr_flag[kT == TRUE) {
/*

Only add features we use */

subtotaT = curr_centers[k] [j] - data[k][i];

total = total + (subtotal
* subtotal) ;

}

dist = sqrt((double) total); /* sqrt of sum of squares */

if (-i
== node b[node])

/* If first time through loop*/

best dist = dTst + 1;
/* Force next if to be true */

if (dist < best dist) {
/* if closest so far */

best dist = dist;
/* remember this as best */

node-assoc[i]
= j;

/* assoc. the data with node */

}

}

}

}

- 118

/***************** get new centers and sd()

*

_ _

* Once the data has been distributed (ie clustered) this

*
routine will determine the centers and deviations. The

* centers are determined by taking the average of each

* dimension individually- The standard deviation is the

* average difference between the center point and all

* the data points in the cluster.

*

V

get_new_centers_and_sd()

{
int i, j, k, div;

long total, run_total, subtotal, n;

double dist;

for (i=node_b[node] ; i I=node_b[node+1] ; ++i) {
div = 0 ;

for (j=0; j ! =data_count ; ++ j)

if (node_assoc [j] == i) ++div;

for (j=0; j!=MAX_FEAT; ++ j) {
total = 0;
for (k=0; k ! =data_count ; ++k) {
if (node_assoc [k] == i) {
total = total + data[j][k];

}

}
if (div 1= 0) total = total / div;

new_centers[j] [i] = total;

}

/* This next part gets the standard deviations */

run_total = 0;

n = 0 ;

for (j=0; j<data_count ; ++j) {

if (node_assoc[j] == i) {
total = 0;

for (k=0; ki=MAX_FEAT; ++k) {

if (curr_flag[k] == TRUE) {
subtotal = data[k][j]

- new_center s [k] [i] ;

total = total + (subtotal
* subtotal) ;

}

dist = sqrt((double) total);
/* sqrt of sum of squares */

run_total = run_total + dist;

++n ;

}

}
if (n==0)

curr sd[i]
= standard_deviation ;

else

curr sd[i]
= run_total / n;

,,,.,..

if (cu7r sd[i]
== 0) curr sd[i]

= standard__deviation ;

- 119

/******************** get init centersi

*
~ ~

*

*

*

*

*

*

*

*/

get

The initial centers are determined by clustering the phonetic

samples by their initial coarse class and then determining
the centers of these clusters. The clustering uses the coarse

classes as specified in the options file. This may not be

their final coarse class but it is expected only to be a good

place from which to start the process.

()

nt i ;

cluster_by_class () ;
get_new_center s_and_sd() ;

for (i=0; i ! =data_count ; ++i)

node assoc[i] = back assocji] ;

/* For each data point */
/* Restore node assoc. */

- 120 -

/********************** kmeans() ***************************

*

* K-Means training routine

*
Key variables:

* node -

current node being worked on

*
(only those data points in the

*
current node will be used).

*
node_k[node]

- number of branches for this node.

*
node_b[node]

-

beginning node of the children of
'node'

* node_assoc [i] -

node to which vector
'i' is associated.

* back_assoc [i] -

node to which vector
'i'

was associated

* at the start of this procedure.

cur r_centers [i] [j] - current center point where
'i' is the

feature or vector dimension and
'j'

is

the node this vector will represent.

new_center [i] [j] -

newly calculated center.

curr_flag[i]
- TRUE/FALSE flag to indicate if a

feature is being used or not.

*

*

*

*

*

*

*

*

* Process :

* New centers = initial centers

* Repeat

* Current centers = New centers

* Distribute all the data around the center points

* New centers = centers of the new clusters

* Until New centers == Current centers

*

*

* Results:

* curr centers
- current cluster centers for this pass

*

~~

*

* Note:

* For more details see section called "The clustering

* algorithm, K-means", in my thesis. "CLASS - A Coarse

* Phonetic Classifier", 1988. Also, the text "Pattern

* Recognition Principles", by J. Tou and R. Gonzalez,

* 1974 contains this and other clustering algorithms.

*/

121 -

ktrain()

{
int done,

i ,

j ;

get_ini t_centers () ;
do { /* loop until centers don't change */

/* For each child node */
for (j=node_b[node] ; j ! =node_b[node+1] ; ++ j) {
for (i=0; il=MAX_FEAT; ++i) { /* For each feature */
curr centers! i][j] = new centers [i][j] ; /* make them curr */

}

}

for (i=0; i!=MAX_DATA; ++i) /* Restore node associations */

node_assoc [i] = back_assoc [i] ;

di stribute_data () ; /* Distribute around curr centers */

get_new_center s_and_sd () ; /* Calculate new centers and dev. */

done = TRUE; /* Assume we are done */

for (j=node_b[node] ; j ! =node_b[node+1] ; ++j) {
for (i=0; iI=MAX_FEAT; ++i) { /* Look at each feature */

if (curr_f lag! i] == TRUE) {
/* If a center changed */

if (curr_centers [i] [j] I =new_centers [i] [j]) {
done = FALSE;

/* then we are not done */

}

}

}

}
k means_count++ ;

/* Counter for the fun of it */

} while T done==FALSE) ;
/* While the centers don't match */

}

- 122

	CLASS - A Study of methods for coarse phonetic classification
	Recommended Citation

