
Rochester Institute of Technology Rochester Institute of Technology

RIT Scholar Works RIT Scholar Works

Theses

1987

Teraphim: a domain-independent framework for constructing Teraphim: a domain-independent framework for constructing

blackboard-controlled, blackboard-based expert systems in blackboard-controlled, blackboard-based expert systems in

Prolog Prolog

Bruce Lyon

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation Recommended Citation
Lyon, Bruce, "Teraphim: a domain-independent framework for constructing blackboard-controlled,
blackboard-based expert systems in Prolog" (1987). Thesis. Rochester Institute of Technology. Accessed
from

This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in
Theses by an authorized administrator of RIT Scholar Works. For more information, please contact
ritscholarworks@rit.edu.

18

Teraphim does not impose any internal organization on any of the three blackboards,

although the user may specify a structure for the problem blackboard if the application

demands it. For example, in the Identifier test program considered below, the blackboard is

assumed to have entries at different "levels of
abstraction"

that have significance in determin

ing the importance of a term to the developing solution of the problem. This corresponds with

the "phoneme to
sentence"

dimension of the Hearsay-II system. But in the Murder_plot

example, instead of using the structure of the blackboard to reflect how close entries are to a

solution for the problem, an evaluation function specific to the problem is used, and no struc

ture is imposed on the blackboard. Thus, in Teraphim, internal structure of the blackboard

is an option, and different applications might use different degrees of structure for the prob

lem blackboard, including no structure at all.

3.3. Blackboard Entries

If the blackboard is the medium of communication for the knowledge sources of Tera

phim, then the entries on the blackboard are the messages. Since Teraphim is written in Pro

log, the entries that are posted on the blackboard are Prolog terms.

The agenda blackboard contains the KSARs and associated entries. An example

KSAR produced during the execution of the Identifier program is:

ksar(tiger,7,7)
rating(7,31).

reliability(7,some).

context(tiger,order(charlie,carnivore),7,7).

context(tiger,color(charlie,tawny),7,7).

context(tiger,pattern(charlie,striped),7,7).

precursors(7,[order(charlie,carnivore),class(charlie,mammal),

skin(charlie,hair),empty_q,problem(charlie),

diet(charlie,meat),color(charlie,tawny),

pattern(charlie,striped)]).

19

The knowledge source tiger was triggered on cycle 7, producing KSAR number 7.

KSAR number 7 has a rating of 31, determined by the scheduling heuristics currently active,

and a reliability computed from the reliabilities of the blackboard entries that produced the

KSAR and the reliability of the knowledge source tiger. The context entries for KSAR 7

preserve the variable bindings that resulted when the triggering pattern of tiger was instan

tiated from the problem blackboard. The context entries also record tiger's use of this combi

nation of entries, assuring that tiger will not be triggered by these same entries on subsequent

execution cycles. The precursors entry for KSAR 7 collects all of the problem entries that

contributed to the KSAR's generation. Because Teraphim's certainty mechanism is non

monotonic, it is possible that the certainties of some of the blackboard entries that determine

the reliability of KSAR 7 will be changed between the cycle the KSAR was produced and

the cycle on which KSAR 7 is chosen for execution. By comparing the precursors entries for

the existing KSARs with the problem blackboard entries produced on each cycle, it is possi

ble for Teraphim to determine whether it.might be necessary to recalculate the reliability of

each KSAR.

KSARs are posted to the agenda blackboard by the scheduler using the make_ksar pro

cedure. KSARs are removed from the agenda after execution by the scheduler using the

procedure remove_ksar. Poisoned KSARs (see below) are also removed using remove_ksar,

which removes all of the information related to the KSAR from the agenda (except for the

context entries, which are needed to prevent knowledge sources from triggering again on

entries they have already 'seen').

The control blackboard contains a wider variety of entries. The principal types of con

trol blackboard entries and their meanings are as follows:

problem(Name) means that the name of one of the problems that must be solved is

Name. Entries on the blackboard that refer to the solution of this problem should all contain

Name as one of their elements so that their context can be recognized by the system. Usually

20

this entry would be posted by the user, although in more complex programs it might be

asserted by one of the knowledge sources.

solved(Name) means that a solution to problem Name has been found. If the certainty

of this entry exceeds, a user-determined threshold, Teraphim will stop working on that prob

lem. Usually this term is posted by an implementation-specific control knowledge source.

plan(Strategy) means that the scheduling heuristics associated with the plan Strategy

should be made active by a control knowledge source. Plans that are part of Teraphim

include default, depth, and evaluate, which are recognized by different control knowledge

sources and which cause different scheduling heuristics to be activated. Plan entries may be

provided by the user or may be posted by control knowledge sources.

active(Method) means that the scheduling heuristic Method should be used to evaluate

the relative merits of the KSARs on the agenda blackboard. Scheduling heuristics provided

by Teraphim include preferjrecent, prefer_easy, prefer prefer_focus, and

use_evaluation. Active entries are produced by control knowledge sources in response to the

presence of plan entries on the control blackboard.

focus(Term) means that the scheduling heuristic prefer should increase the ratings

of those KSARs that would produce new blackboard entries matching Term if executed.

Focus entries are generated by problem-specific control knowledge sources. Unlike plan and

active entries, which usually remain on the control blackboard permanently once posted,

focus entries generally refer to only one stage of the solution of a problem, and focus entries

are removed from the control blackboard by control knowledge sources that recognize the

satisfaction of the focus's goal.

inhibit(KS,Term) is an instruction to the scheduler that KSARs produced by the

knowledge source KS and triggered by an entry matching Term are not to be considered for

execution unless their reliability exceeds the certainty of the inhibit term, which derives from

the control knowledge source that posted it. The inhibited KSARs are not removed from the

21

agenda, since the non-monotonic nature of Teraphim's certainty mechanisms means that the

reliability of a blocked KSAR may later increase. The KS portion of the inhibit term may be

filled by a Prolog variable, in which case all KSARs using the inhibited term will be blocked.

poison(KS.Term) is similar to inhibit except that poisoned KSARs are removed from the

agenda permanently. Since evaluating the reliability of pending KSARs is the most
time-

consuming step of Teraphim's execution cycle, poisoning KSARs instead of just inhibiting

them can greatly speed up the execution of the system. Of course, the poisoning of the

KSARs cannot be undone, so poisoning is not as safe as inhibiting.

Other terms might also be considered part of the control blackboard - for example, each

knowledge source has an importance term associated with it, which provides the initial rating

of KSARs produced by that knowledge source before the scheduling heuristics are applied to

it. It might be useful to have control knowledge sources that change the importance of other

knowledge sources in response to the progress of the system towards a solution to the prob

lem.

The syntax of the entries that can appear on the problem blackboard is not restricted by

Teraphim, except in a few special cases. The choice of a knowledge representation scheme

for the partial solutions that are built on the problem blackboard is up to the user. An

object-oriented extension to Prolog could be used for most problem blackboard entries, for

example. The only restriction is on terms that might result from questions put to the user by

Teraphim. Teraphim includes a generic problem knowledge source, which can ask the user

for more information if the program cannot generate a satisfactory solution to the problem

with the facts at hand. The format of the terms created by the system from the user's replies

to these questions is restricted. These terms must have the format Slot(Object,Value) - for

example, the term locomotionfclyde,walks) would be produced to represent the idea that the

value in Clyde's
"locomotion"

slot is "walks". If more flexibility is required, the user must

provide his own question-asking knowledge sources.

22

One special entry that appears on the problem blackboard is the supports -entry:

supports(Term,KS,List), meaning that the problem blackboard entry Term was posted by the

knowledge source KS on the basis of the terms in List. The entries on the problem black

board are tied to one another by the supports terms so that it is possible to trace the origin of

any term on the blackboard by following the supports links. If a problem blackboard entry

can be produced in several ways, it will have a number of different supports terms connected

to it. By following the supports links to the terms supplied by the user and using the user's

evaluation of the reliability of those original terms, the certainty of the derived terms can be

calculated.

Usually problem blackboard entries, once made, are not removed, although the cer

tainty of an entry may be changed during the solution of the problem. Terms with certainties

below a user-specified threshold will produce KSARs that are never chosen to be executed,

and thus these terms with low certainties will not affect the solution.

3.4. Knowledge Sources

Solving a problem with an expert system generally involves the creation of new informa

tion based on information already known. In Teraphim, procedural knowledge about how to

produce new information is embodied in problem and control knowledge sources.

Problem knowledge sources communicate with the problem blackboard. It is the prob

lem knowledge sources that respond to the information on the problem blackboard by gradu

ally building a solution to the problem on the problem blackboard. Teraphim provides a sin

gle generic problem knowledge source, find_out, which can ask the user questions. Other

wise, a new set of problem knowledge sources must be written for each new problem domain.

Control knowledge sources respond to information posted on the problem and control

blackboards by modifying the contents of the control blackboard. This affects the

scheduler's choice of a KSAR to be executed because the scheduling heuristics evaluate the

relative worth of the pending KSARs in response to the decisions posted on the control

23

blackboard. Teraphim includes generic control knowledge sources and scheduling heuristics

sufficient for solving simple problems, but complex solution processes require more specific

knowledge sources that must be written by the user.

A knowledge source in Teraphim comprises several elements. Below is a representative

problem knowledge source search_move from the Murder_plan example program to be

presented in Section 4.2. This knowledge source guides the movements through a house of a

robot searching the rooms for a weapon:

knowledge_source(search_move) :->

[
/*

Triggering pattern */

[scheme(Problem,Weapon,Room,Plan,Cost,search,no),

non(location(Problem,Weapon,Room)),

adjacent(Room,NewRoom,MoveCost),

allowable(NewRoom,Plan)],

/* Immediate action */

[],

/*

Firing action */
[NewCost is Cost + MoveCost,

add_to(Plan,NewRoom,NewPlan)],

/*
Productions */

[scheme(Problem,Weapon,NewRoom,NewPlan,NewCost,search,no)]

]

importance(search_move,5).

type(search_move,problem).

reason(search_move,['Look for weapon in unvisited adjacent room']).

Each knowledge source has a body which consists of four lists of terms:

1) A triggering pattern, which is a conjunction of Prolog terms that must all be true (i.e.,

that can all be instantiated) for the knowledge source to be triggered. Usually, most of these

terms will be blackboard entries, but they can also be calls to Prolog procedures that express

relations between entries on the blackboard. Search_move refers to the problem blackboard

24

entries scheme, location, and adjacent. Allowable is a Prolog procedure that checks to -make

sure that a proposed new move does not violate any constraints. The special term

non(location(ProblemWeapon,Room)) should be noted; no non term is ever posted to any of

the blackboards. Instead, a non term is always true, but with a certainty that is the comple

ment of the certainty of the inner term (in this case, location(Problem,Weapon,Room)), so that

if the inner term has a high certainty, the non term has a low certainty. If the inner term can

not be matched, the non term has the maximum possible certainty.

In this example, search_move is triggered when there is a partial search plan which has

not reached the room containing the weapon the robot is searching for, and there is an adja

cent room that the robot could enter. Search_move will propose that the robot enter the new

room next.

Every time that Teraphim begins a cycle, it checks all the knowledge sources that share

triggering terms with the blackboard entries produced on the last cycle to see if any of the

triggering patterns is true. Thus, knowledge sources are triggered by changes to the black

board. A different knowledge source activation record (or KSAR) is created for each possi

ble instantiation of the triggering pattern. The KSARs and the context terms that preserve

the instantiated variables are posted on the agenda blackboard.

2) An immediate action, which is a list of Prolog procedure calls that are executed dur

ing the matching phase immediately after the knowledge source is triggered. All variables

that were instantiated by the triggering pattern will have the same values when the immediate

action is carried out. Usually this section of the knowledge source is used to write a message

to the user indicating that the knowledge source has been triggered, since this information is

useful during program development. Most knowledge sources will have no immediate action

once the program is running correctly. Searchjnove does not have an immediate action.

3) A firing action, which is a list of Prolog terms to be matched when the KSAR from

25

this knowledge source is chosen for execution (or firing) by the scheduler. It is likely that

this will occur several cycles after the KSAR was posted, since more than one KSAR is usu

ally produced each cycle. All the variables that appeared in the triggering section of the

knowledge source will have the same instantiations as before. Not all knowledge sources will

have anything in their firing action sections; for example, a knowledge source that

corresponds to a production rule will have only a triggering pattern and a set of productions.

The example knowledge source has a series of procedure calls in its firing action. Variables

that are instantiated by the firing action transmit their values to the next section of the

knowledge source, so the firing action is generally used to build up a new entry to be added

to one of the blackboards. For example, searchjnove's firing action computes the cost of the

new plan and adds the new room to the robot's path.

4) A production section, which is a list of Prolog terms that will be posted on the black

board. When each term is posted, the knowledge source and triggering blackboard entries

that produced the new entry are recorded in a supports entry for each new term. The supports

term is used by the explanation facility to explain the genesis of the new terms to the user if

requested, and is also used to determine the confidence or certainty that the system may

place in the truth of the new assertions. Not all knowledge sources will have a production

section. For example, some knowledge sources may cause a message to be written to the user

without changing any blackboard. Search_move's production section causes a new partial

plan to be posted to the problem blackboard. This new partial plan might cause search_move

to be triggered again on the next execution cycle.

There may also be other terms describing a knowledge source. Each knowledge source

may have a certainty associated with it. This certainty reflects the accuracy of the knowledge

source and is a measure of the certainty that the system has in the results of the knowledge

source's action. If no certainty is provided for a knowledge source, the default assumption is

that the knowledge source does not introduce any additional error into the system Each

26

knowledge source also may have an importance attached to it; the greater the importance of a

knowledge source, the more likely it is that KSAR's produced by it will be chosen for execu

tion by the scheduler. Again, the system will make default assumptions about the
importan-

ceoi knowledge sources that were not rated by the user. The type of a knowledge source is

used by some of the scheduling heuristics; most scheduling heuristics will not change the rat

ings of KSARs belonging to control knowledge sources. If a knowledge source has no type

term, Teraphim will assume that it is a problem knowledge source. Each knowledge source

may have a reason term, which is an English-language explanation or justification of its action

that can be used during explanation of the solution.

3.5. Scheduling Heuristics

The control knowledge sources do not affect the KSARs posted on the agenda black

board directly; instead, they change the contents of the control blackboard, which changes

the behavior of the scheduling heuristics. Scheduling heuristics that are active (because some

control knowledge source has posted an appropriate active term on the control blackboard)

change the ratings of each KSAR on the agenda blackboard. The text of use_focus, one of

Teraphim's generic scheduling heuristics, is:

27

heuristic(use_focus) :->

[
/*

Trigger */
ksar(KS,C,Id),

[
/*

Body */
focus(Term),
not type(KS,plan),

get_used(KS,List,C,Id),

knowledge_source(KS) :->

[Cond|[Imm|[Act|tReslJ]]],
Cond = List,

member(Term,Res),

rating(Id,N),

weight(use_focus,W),

New is N + W,

rerate(Id,New)

]
]

weight(use_focus,40).

The body of a scheduling heuristic is a list with two elements:

1) a trigger, which is matched in turn with each pending KSAR that has not yet been

rated by the heuristic, and

2) a body, which is a list of terms to be called. The action of the list of terms changes

the ratings of appropriate KSARs by adding some factor to the previous ratings. Because

addition is always used to change ratings, it does not matter in what order the various active

heuristics re-rate a KSAR. In this example, the scheduling heuristic use_Jocus increases the

ratings of KSARs produced by knowledge sources that will post terms matching any current

focus. It identifies these knowledge sources by looking at their production sections. Tera

phim includes several other generic scheduling heuristics, such as use
_evaluation,

which

increases the ratings of KSARs according to a domain-specific evaluation function provided

by the user, and preferjrecent, which increases the ratings of recently produced KSARs and

28

thus causes a degree of depth-first behavior.

By activating different sets of scheduling heuristics, the control knowledge sources can

affect which KSARs are preferred in the selection process. The set of active scheduling

heuristics determines the overall course of the problem-solving process.

In addition to the explicit scheduling heuristics that can be activated (or de-activated)

by the control knowledge sources, Teraphim has an implicit scheduling heuristic that always

prefers the KSARs with the highest degree of certainty. This preference cannot be turned

off by any control knowledge source. However, this built-in preference has a weight like

those of the explicit heuristics, and by changing this weight to zero it is possible to prevent

the reliabilities of the KSARs from affecting their ratings. This will still leave any thresholds

for KSAR execution or solution acceptance intact.

3.6. Uncertainty

Expert systems frequently must reason with uncertain or contradictory information.

Teraphim provides simple methods for dealing with uncertainty in the terms posted to the

blackboards and in the operation of its knowledge sources. Teraphim's most primitive uncer

tain reasoning terms are separate from the rest of the system and may be modified by the

user to fit various models of inexact logic.

Each blackboard entry provided by the user and each knowledge source can have a

certainty associated with it. Entries or knowledge sources for which no certainty has been

specified are assumed to have maximum certainty.

When a knowledge source posts a new entry derived from previously posted entries, the

certainty of the new entry will be the conjunction of the certainties of all the triggering

entries and the certainty of the posting knowledge source. If an entry could be produced in

several different ways, each of which has a different degree of certainty associated with it,

then the certainty of the entry will be the disjunction of the certainties of the different possi-

29

ble origins of that entry. Since the different ways of producing the same entry may be

discovered at different times during the solution of the problem, the certainty of an entry

may change after the entry is posted.

The special triggering pattern non(Term) has been mentioned above. This pattern can

always be matched. Its certainty is the complement of the certainty of Term. If Term is not

posted on the blackboard, then the certainty of non(Term) is assumed to be the maximum

possible.

There are thus three primitive inexact reasoning functions required: conjunction, dis

junction, and complement. Teraphim adopts the approach of the Inexact Reasoning Module

(IRM) by collecting these primitive operations into one set of procedures which is then used

by all of the other components of the system to reason about uncertainty (LEC086). In the

examples discussed below, a fuzzy set theory approach to these three functions is used, so

conjunction corresponds to minimum, and disjunction is equivalent to maximum. In addi

tion, Teraphim allows the user to choose whatever terms for the various certainty levels are

convenient. In the example programs, the levels are: none, poor, some, good, and total cer

tainty. But because the primitive operations for inexact reasoning are separate from the rest

of the system, users can write other definitions of conjunction and disjunction, and can use

other names for the levels of certainty or have a different number of levels of certainty.

Each level of certainty, whatever its name is, must have a numerical equivalent so that

the scheduler can determine the effect the certainty of KSARs will have on their ratings.

An important use of certainty in the Teraphim system involves two user defined thres

holds, the minimum certainty that a KSAR must have to be considered for execution, and

the minimum certainty that a problem solution must have to satisfy the system and allow it to

stop looking for solutions to that problem.

Although being able to deal with uncertain knowledge is useful, it is expensive. Experi

ence shows that up to one-half of the processor time required to solve a problem with

30

Teraphim is consumed by calculations of the certainties of KSARs.

3.7. Asking the user questions

The user of an expert system might not know how much information the system will

require to solve the problem Although Teraphim normally reads in the initial facts from a

file, it is possible that the user will not have provided enough information for the system to

solve the problem. Therefore, Teraphim includes a generic problem knowledge source,

find_out, which is capable of asking the user for more information if the problem cannot be

solved. The designer of the problem knowledge sources may designate some of the black

board terms as being askable; the term askable(Functor) means that the system is allowed to

ask about the value of terms with the functor Each askable term must have the format

Slot(Problem,Value); the designer must specify the range of legal values for Value. If the sys

tem runs out of KSARs without solving the problem, it will search for knowledge sources

that could be fired if more of the askable terms were known. Then it asks the user about the

value and certainty for each term. If the user does not know the correct value, the answer

"unknown"

will keep the system from asking further questions about that term but will not

cause any knowledge sources to be triggered. An example of Teraphim asking questions is

shown in the Identifier program discussed in Section 4.1.

Teraphim can be run in three modes: normal, verbose, or crawl. In verbose mode, the

agenda is displayed every cycle, and the KSAR that will be executed is noted. Terms posted

to the blackboard are echoed to screen. In crawl mode, the system pauses after choosing a

KSAR but before executing it. The user can interrupt execution at this point and display the

blackboard entries, change the contents of the blackboards, or select a different KSAR to be

executed.

31

3.8. Explaining the results

Expert systems that can explain their results are easier to debug and inspire greater con

fidence in the correctness of their solutions. Teraphim has a simple explanation facility that

allows users to trace the development of its problem solutions. After the system halts, the

user can inquire about the origin and certainty of any of the terms on the problem black

board. Teraphim permits the designer of the problem knowledge sources to specify English

translations of the problem blackboard terms. A sample dialogue with the explanation facility

is shown in Section 4.1. with the Identifier program example.

32

4. EXAMPLE USES OF TERAPHIM

Two example expert systems were written to illustrate Teraphim's capabilities. Since

the problems solved by expert systems are frequently classified as analysis problems or syn

thesis problems, one expert system of each type was constructed.

4.1. The Identifier Program

The generic control knowledge sources of Teraphim are sufficient to control expert sys

tems with knowledge sources that are similar to production rules. The first example program

was written as the Teraphim version of a toy rule-based system called Identifier described in

(WINS85). The problem is to provide a way for Robbie the robot to identify an animal from

its description. Winston wrote a set of 15 if-then rules for this problem. In Appendix B are

Winston's rules recast as Teraphim knowledge sources. For example, the knowledge source

penguin represents Winston's rule:

114 If the animal is a bird

it does not fly
it swims

it is black and white

then it is a penguin

The 16 knowledge sources required to translate this knowledge for Teraphim may be

summarized as follows:

Knowledge Source Summary

mammal_l An animal with hair is a mammal

mammal_2 An animal that gives milk is a

mammal

bird 1 An animal with feathers is a bird

bird 2 An animal that flies and lays eggs

is a bird

carniv 1 A mammal that eats meat is a

carnivore

carniv 2 A mammal with pointed teeth, claws,

and forward-facing eyes is a

carnivore

ungulate_l

ungulate_2

A mammal with hoofs is an ungulate

A mammal that chews a cud is an

even-toed ungulate

cheetah A carnivore with a tawny colored

spotted coat is a cheetah

tiger A carnivore with a tawny colored

striped coat is a tiger

giraffe An ungulate with a long neck and

long legs and a tawny coat with

spots is a giraffe

zebra An ungulate with black and white

stripes is a zebra

ostrich A bird that does not fly and is

black and white is an ostrich

penguin A bird that swims and does not fly
and is black and white is a penguin

.33

default_bini

solution

A bird that flies is an albatross

An animal is identified if its

species is known

In this example, all of the knowledge sources are assumed to be perfectly reliable. The

only uncertainty in the solution comes from uncertainty in the observations presented to the

34

system. A simple range of named certainty factors (none, poor, some, good, and total certainty)

was used, with fuzzy-set versions of conjunction and disjunction. A solution is required to

have at least good certainty before it is considered adequate, and KSARs are required to

have at least some certainty to be chosen for execution.

The problem blackboard for the Identifier program is structured, with four levels of

increasing priority as follows:

LEVEL MEANING

observation observable facts about animals

class the class of the animal

order the order of the animal

species the species of the animal

KSARs that produce blackboard entries on lower levels of the blackboard will be pre

ferred. Note that the user provides Identifier with terms on the observation level only; the

other entries are produced by the system.

In one run of this system, the starting observations presented to the system were:

Charlie gives milk

certainty = poor

Charlie is tawny

certainty = total

Charlie has a striped pattern

certainty
= total

charlie eats meat

certainty = some

charlie walks

certainty = total

charlie is a problem

certainty
= total

35

This is not enough information about the animal (a tiger) for the system to identify it.

Instead, the system must ask for more information. The program is allowed to ask questions

about any of the directly observable properties of the animal - e.g. its color, if it has feathers

or not, or if it eats meat. Of course, the blackboard entries are actually Prolog terms and not

phrases in English. Not included in Appendix B are the terms that specify how translation is

to be done. An example of such a term is:

english(color(Animal,Shade),[Animal,is,Shade]).

Other terms provide the system with information about how to phrase the questions it can

ask the user:

question(color,Animal,[what,color,Animal,is]).

Although in this example only one problem (identifying Charlie) is presented to the sys

tem, it would also be possible to provide data about several different animals to be identified.

Note that no special control knowledge sources were written for Identifier. The

knowledge source solution is required to stop the program after an acceptable identification is

made. A similar knowledge source must be written for each Teraphim program.

When the Identifier program is run with the observations about the tiger, the first cycle

of the system is as follows:

Cycle 1

Create ksars

Rating ksars

ksar rating certainty

ksar(mammal_2,l,l) 10 poor

ksar(depth,l,2) 100 total

ksar(default,l,3) 100 total

Choosing best ksar

Choosing ksar 2

Execute best ksar

active(prefer_deeper)

36

The KSARs from the generic control knowledge sources have high ratings (because

their parent knowledge sources have high importance ratings) and thus are chosen first.

These generic knowledge sources specify the control heuristics that will affect the selection of

KSARs from the agenda. For example, in this cycle the KSAR from the knowledge source

depth was chosen for execution. This produced the new blackboard entry

active(prefer_deeper),which causes the system to use the scheduling heuristic prefer

to rate the KSARs on the agenda. This heuristic causes KSARs posting entries to the lower

levels of the problem blackboard to be preferred. This preference gives the system a sem

blance of depth-first behavior since partially-solved problems will have higher priorities than

others. Note that KSARs 2 and 3 have the same rating and certainty; the choice between

them was made randomly.

After all of the control knowledge sources have been executed, the only KSAR remain

ing on the agenda is the one produced by mammal_2, which was generated in response to the

observation that the animal gives milk. However, the certainty of this KSAR is only poor, so

it cannot be chosen. The lack of any worthwhile KSARs causes the generic knowledge

source find_put to trigger for each
"interesting"

question that could be put to the user at this

point. A question is interesting if the answer to the question, in combination with known

blackboard entries or the answers to other questions, will allow one of the unused knowledge

sources to fire. Since the class of the animal must be known before any of the other

knowledge sources can be used, questions that can determine the class of the animal are gen

erated. Then Identifier asks the question:

37

Cycle 4

Create ksars

Rating ksars

ksar rating certainty

ksar(mammal_2,l,l) 20 poor

ksar(find_put,4,4) -2 total

Choosing best ksar

Choosing ksar 4

Execute best ksar

In order to use mammal_l

I need to know what kind of skin charlie has

hair

feathers

or unknown

Which is it?

|: hair.

Certainties range from none to total

Which is it?

|: total.

skin(charlie,hair)

Cycle 5

Create ksars

Rating ksars

ksar rating certainty

ksar(mammal_2,l,l) 20 poor

ksar(mammal_l,5,5) 20 total

Choosing best ksar

Choosing ksar 5

Execute best ksar

class(charlie,mammal)

The program will repeat its question if the user does not respond with one of the

choices presented. Note that the question identifies the knowledge source for which the

question is trying to find triggering information.

The information that Charlie has hair is enough for Identifier to determine that Charlie

is a mammal. Since the class of the animal is now known with good or better certainty, no

further effort is expended on deducing Charlie's class.

The program now proceeds to identify Charlie as a tiger:

38

Cycle 6

Create ksars

Rating ksars
ksar

ksar(mammal_2, 1,1)
ksar(carniv_l

,6,6)

Choosing best ksar

Choosing ksar 6
Execute best ksar

order(charlie,carnivore)

rating certainty
20 poor

26 some

Cycle 7

Create ksars

Rating ksars
ksar

ksar(mammal_2,1,1)
ksar(tiger,7,7)
Choosing best ksar

Choosing ksar 7
Execute best ksar

species(charlie,tiger)

rating certainty

20 poor

3 1 some

Cycle 8

Create ksars

Rating ksars

ksar

ksar(mammal_2,1,1)

ksar(solution,8,8)

Choosing best ksar

Choosing ksar 8

Execute best ksar

I have determined that charlie is a tiger

solved(charlie)

rating certainty

20 poor

1 50 some

However, the problem cannot be considered solved at this point because the certainty

of the solution is only some. The problem is that the order of Charlie (carnivore) was deter

mined from the observation that Charlie eats meat, which had a low certainty. Identifier now

uses find_out to see if a more certain order identification can be made. There are two possi

bilities: Charlie could be shown to be a carnivore using the knowledge source camiv_2, or

Charlie might be an ungulate. The system asks some questions to sort out the problem:

39

20 poor

-1 total

-1 total

-1 total

-1 total

Cycle 10

Create ksars

Rating ksars

ksar

ksar(mammal_2, 1,1)

ksar(find_out,10,9)

ksar(find_out,10,10)

ksar(find_out,10,ll)

ksar(find_out,10,12)

Choosing best ksar

Choosing ksar 1 1

Execute best ksar

In order to use carniv_2

I need to know which way the eyes of charlie face

forward

sideways

or unknown

Which is it?

|: forward.

Certainties range from none to total

Which is it?

|: good.

eyes(charlie,forward)

Cycle 1 1

Create ksars

Rating ksars

ksar rating certainty

ksar(mammal_2,l,l) 20 poor

ksar(find_out,10,9) -1 total

ksar(find_out,10,10) -1 total

ksar(find_out,10,12) -1 total

Choosing best ksar

Choosing ksar 9

Execute best ksar

In order to use carniv_2

I need to know what kind of teeth charlie has

pointed

blunt

or unknown

Which is it?

|: pointed.

Certainties range from none to total

Which is it?

|: good.

teeth(charlie,pointed)

40

rating certainty

20 poor

-1 total

-1 total

Cycle 12

Create ksars

Rating ksars

ksar

ksar(mammal_2,1,1)

ksar(find_out,10,10)

ksar(find_out,10,12)

Choosing best ksar

Choosing ksar 12

Execute best ksar

In order to use ungulate_2

I need to know if charlie chews a cud

yes

no

or unknown

Which is it?

|: unknown.

Certainties range from none to total

Which is it?

|: total.

cud(charlie,unknown)

Cycle 13

Create ksars

Rating ksars

ksar rating certainty

ksar(mammal_2,l,l) .20
poor

ksar(find_out,10,10) -1 total

Choosing best ksar

Choosing ksar 10

Execute best ksar

In order to use carniv_2

I need to know what kind of feet charlie has

claws

hoofs

or unknown

Which is it?

|: claws.

Certainties range from none to total

Which is it?

|: total.

feet(charlie,claws)

41

Cycle 14

Create ksars

Rating ksars

ksar rating certainty

ksar(mammal_2,l,l) 20 poor

ksar(carniv_2,14,13) 26 good

Choosing best ksar

Choosing ksar 13

Execute best ksar

order(charlie,carnivore)

All problems solved!

Note the user response
"unknown"

to the question about cud chewing. A blackboard

entry that does not have a value useful to any of the knowledge sources will still prevent the

system from asking more questions about this property of the animal, since the user cannot be

asked two questions about the same observation.

No new blackboard entry for Charlie's species is produced, but the new order term has

a certainty of good, and this increases the certainty of the species identification to good.

Identifier considers the problem solved and halts. The user can now ask to see all of the

problem blackboard entries.

After Identifier stops, the user can ask for a discussion of the reasoning used by the

system to deduce each of the blackboard entries:

42

| ?- discuss.

j: charlie is a tiger.
charlie is a tiger deduced by tiger
from -

charlie is a carnivore

charlie is tawny
charlie has a striped pattern

with certainty good

|: charlie is a carnivore.

charlie is a carnivore deduced by carniv_2
from -

charlie is a mammal

charlie has pointed teeth

charlie has claws

charlie has forward-facing eyes

with certainty good

|: carniv_2.

Any mammal with pointed teeth, claws, and

forward-facing eyes is a carnivore

With certainty total

|: charlie is a mammal.

charlie is a mammal deduced by mammal_l

from -

charlie has hairy skin

with certainty total

|: charlie has hairy skin.

charlie has hairy skin deduced by user

with certainty total

|: user.

This knowledge source is a human!

with certainty total

|: done.

done

Notice that the identification of Charlie as a carnivore first was made because of the

observation that Charlie eats meat. But the questions asked during the run established a

better reason for this deduction, so the new justification appears in the discussion.

This example problem took 59 CPU seconds to solve, running in C-Prolog on a multi

user computer. Execution was slowed since the program was in verbose mode; in terse mode,

which does not print out the lists of KSARs or the blackboard entries, the same example

took 51 seconds of CPU time.

43

4.2. The Murder_plot Program

Teraphim is not limited to imitating production systems or to solving only analysis prob

lems. Another program, called Murder_plot, was written to demonstrate the use of Teraphim

to solve a synthesis problem (in this case, a planning problem).

The problem is a variant of the sort of planning problems typically solved by the

STRIPS program: Robbie the robot lives in a house with his owner. One day, Robbie

becomes tired of constantly solving blocks-world problems and decides to murder his owner

and dispose of the body. This problem can be decomposed into three subproblems:

1) Find a weapon to kill the owner with;

2) Find the owner and kill him with the weapon;

3) Hide the owner's body somewhere.

There are two weapons in the house: a knife in the kitchen and a gun in the den. Each

has a different certainty of being able to kill the owner. There are two possible places to

dispose of the corpse: the cellar or the lawn. Each has a different reliability as a hiding place.

The robot and the owner each start in different rooms of the house, which is represented by

a network of linked nodes (the rooms). Robbie is to find the shortest path through the house

that will accomplish his goal and have an acceptable certainty of success. Omitting the house,

the starting facts are:

44

the robot is in the family__room

certainty = total

the gun is in the den

certainty = total

the knife is in the kitchen

certainty = total

the owner is in the entry

certainty = total

gun is lethal

certainty = some

knife is lethal

certainty = good

could hide body in lawn

certainty = good

could hide body in cellar

certainty = total

The 22 knowledge sources needed to solve this problem are listed in Appendix C, and

may be briefly summarized as follows:

Knowledge Source Summary

searchfocus Establishes a focus on the search

for a weapon

end search Removes the search focus when the

weapon is found

stalkfocus Establishes a focus on the search

for a path from the weapon to the

owner

end stalk Removes the stalk focus when the

owner is found

hidefocus Establishes a focus on the search

for a place to hide the body

end hide Removes the hide focus when the

body has been hidden

