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Figure 3.4: ROC curves comparing F-statistic, B-statistic, and the perfect-match likelihood ratio
L(As). The signal populations consist of a linearly polarized signal with cos ι = 0 and ψ = 0 (top left
panel), a nearly circularly polarized signal with cos ι = 0.99 and ψ = 0 (top right panel), while the
second set shows the case where the signals are drawn from a population of randomly distributed cos ι
and ψ, according to the isotropic prior (cf. 3.3.1), with a �xed SNR of 4 (bottom left panel) and a
�xed amplitude of h0 = 10

√
Sn (bottom right panel). For all linearly polarized sources, the F-statistic

does better while in the case of all nearly-circularly polarized sources the B-statistic is more powerful.
In the case of signals drawn from an isotropic prior, the B-statistic is more powerful. Taken from [9]

They also looked at to two more realistic cases, in which the signals are drawn from a population of

randomly distributed cos ι and ψ, according to the isotropic prior (cf. section 3.3.1), with a �xed SNR

of 4 (left panel) and a �xed amplitude of h0 = 10
√
Sn (right panel). The resulting ROC curves are

shown in the bottom row of �gure 3.4. Its clear that in these case, the B-statistic is the more powerful

of the two, having higher detection probabilities at every false alarm rate. It should be noted that if

the signals populations were draws instead from the isotropic prior with a uniform h0 prior, then the
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B-statistic would always be more powerful but we cant simulate this since the prior is improper. The

analysis of Prix and Krishnan shows that even when di�erent signal priors are chosen, the B-statistic

will be more powerful unless the source is assumed to be linearly polarized.
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Chapter 4

B-Statistic Approximation

From the last chapter, we now have explicit and exact equations for both the B-statistic and the

F-statistic. The formula for the F-statistic is rather straightforward, however the equation for the B-

statistic, while potentially more useful, requires a non-analytic integral which can be computationally

ine�cient to evaluate numerically. Considering �gure 3.2, we notice that the metric components K

and L are small compared I and J . This implies that it is possible to Taylor expand the log-likelihood

ratio about these points. In this chapter, we present an analytical approximation to the B-statistic

obtained via this Taylor expansion which not only has the correct form at the extremes of Âr and Âl,

but also for speci�c choices of prior distributions. We compare this approximation to the numerically

evaluated B-statistic and the F-statistic for di�erent false alarm rates and points in the parameter

space to determine which is the most powerful statistic.

4.1 Derivation

Likelihood Ratio
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4.1. Derivation

The �rst thing we will compute is the form of the log-likelihood ratio, Λ({Aµ̆};x). In this case, the

data vector xµ̆ takes on the following form in CPF-polar coordinates,

x1̆ = IÂr cos φ̂r + LÂl cos φ̂l −KÂl sin φ̂l (4.1.1a)

x2̆ = IÂr sin φ̂r +KÂl cos φ̂l + LÂl sin φ̂l (4.1.1b)

x3̆ = LÂr cos φ̂r +KÂr sin φ̂r + JÂl cos φ̂l (4.1.1c)

x4̆ = −KÂr cos φ̂r + LÂr sin φ̂r + JÂl sin φ̂l . (4.1.1d)

We know from equation (3.2.6) that the log-likelihood ratio can be written as Λ({Aµ̆};x) = Aµ̆xµ̆ −
1
2Aµ̆Mµ̆ν̆Aν̆ . Using the above data vector, the linear part of the log-likelihood ratio becomes

Aµ̆xµ̆ = Ar(x1̆ cosφr + x2̆ sinφr) +Al(x3̆ cosφl + x4̆ sinφl) . (4.1.2)

If we look at just right component (the piece involving Ar), it can be simpli�ed as

Ar(x1̆ cosφr + x2̆ sinφr) = Ar(IÂr cos φ̂r cosφr + LÂl cos φ̂l cosφr + IÂr sin φ̂r sinφr

+ LÂl sin φ̂l sinφr −KÂl sin φ̂l cosφr +KÂl cos φ̂l sinφr)

= Ar

[
IÂr cos (φ̂r − φr) + LÂl cos (φ̂l − φr)−KÂl sin (φ̂l − φr)

]
.

(4.1.3)

If we do the same for the left component of equation (4.1.2) and combine the two, we see that

Aµ̆xµ̆ =Ar

[
IÂr cos (φ̂r − φr) + LÂl cos (φ̂l − φr)−KÂl sin (φ̂l − φr)

]

+Al

[
LÂr cos (φ̂r − φl) + JÂl cos (φ̂l − φl)−KÂr sin (φl − φ̂r)

]
.

(4.1.4)

For the quadratic portion of the likelihood, we can use equations (3.3.18) and (3.3.19) and �nd that

1

2
Aµ̆Mµ̆ν̆Aν̆ =

1

2
IA2

r
+

1

2
JA2

l
+ArAl [K sin (φr − φl) + L cos (φr − φl)] . (4.1.5)
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The full log-likelihood ratio can now be written in the CPF-polar coordinates as

Λ({Aµ̆};x) = C0I + C1J + C2L+ C3K

=

[
−1

2
A2
r

+ArÂr cos (φ̂r − φr)

]
I +

[
−1

2
A2
l

+AlÂl cos (φ̂l − φl)
]
J

+
[
−ArÂl sin (φ̂l − φr)−AlÂr sin (φl − φ̂r)−ArAl sin (φr − φl)

]
K

+
[
ArÂl cos (φ̂l − φr) +AlÂr cos (φ̂r − φl)−ArAl cos (φr − φl)

]
L ,

(4.1.6)

where we have separated the terms into pieces Cκ({Aκ̆};x), with κ = {0, 1, 2, 3}, which depend on the

individual metric components I, J,K,L respectively.

B-statistic Integral

Now we will consider equation (3.3.4) in physical coordinates. Assuming a uniform prior of the form

pdf(h0, χ, ψ, φ0|Hs) = const , (4.1.7)

we can write the B-statistic integral as

B(x) ∝
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
eΛ(h0,χ,ψ,φ0;x) dh0 dχ dψ dφ0 . (4.1.8)

The Jacobian for coordinate transformations between the physical and CPF-polar coordinates was

found in [14] as 1
4 (ArAl)

−1/2. Using this we can rewrite this integral as

B(x) ∝
∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

eΛ(φr,φl,Ar,Al;x)

√
ArAl

dφr dφl dAr dAl . (4.1.9)

Since the metric components K and L are both small, we can consider them separately (i.e. assume

K = 0 when doing the integration involving L and L = 0 when dealing with K). Considering the

integration involving L �rst, we can substitute in equation (4.1.6) under the assumption K = 0 and
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we obtain

B(x) ∝
∫
eC0I+C1JeC2

√
ArAl

dφr dφl dAr dAl

=

∫
eC0I+C1J

√
ArAl

[
eL[ArÂl cos (φ̂l−φr)+AlÂr cos (φ̂r−φl)−ArAl cos (φr−φl)]

]
dφr dφl dAr dAl

≈
∫
eC0I+C1J

√
ArAl

[
1 +ArÂl cos (φ̂l − φr)L+AlÂr cos (φ̂r − φl)L−ArAl cos (φr − φl)L

]
dφr dφl dAr dAl

=

∫
eC0I+C1J

√
ArAl

dφr dφl dAr dAl + LÂl

∫
eC0I+C1JAr cos (φ̂l − φr)√

ArAl

dφr dφl dAr dAl

+LÂr

∫
eC0I+C1JAl cos (φ̂r − φl)√

ArAl

dφr dφl dAr dAl − L
∫
eC0I+C1JArAl cos (φr − φl)√

ArAl

dφr dφl dAr dAl ,

(4.1.10)

where we have done a �rst order Taylor expansion of eC2 in the third line.

We will now examine each integral of equation (4.1.10) separately. Looking at the �rst term and

substituting in the form of C0I + C1J , we have

∫
eC0I+C1J

√
ArAl

dφr dφl dAr dAl =

∫ ∞

0

∫ ∞

0

∫ 2π

0

e−
1
2 IA

2
r
− 1

2JA
2
l

√
ArAl

eIArÂr cos (φ̂r−φr)

∫ 2π

0

eJAlÂl cos (φ̂l−φl) dφl dφr dAr dAl

(4.1.11)

Now using the Jacobi-Anger expansion (see [40]), we can show that
∫ 2π

0
ex cos θdθ = 2πI0(x) which

allows us to perform the angular integrals of equation (4.1.11) and get

∫
eC0I+C1J

√
ArAl

dφr dφl dAr dAl = 4π2

∫ ∞

0

∫ ∞

0

e−
1
2 IA

2
r
− 1

2JA
2
l

√
ArAl

I0(IArÂr)I0(JAlÂl) dAl dAr

= 4π2

∫ ∞

0

e−
1
2 IA

2
r

√
Ar

I0(IArÂr)

∫ ∞

0

e−
1
2JA

2
l

√
Al

I0(JAlÂl) dAl dAr .

(4.1.12)

Its worth noting that, even though the term inside the cosine function is actually (constant−θ) instead

of just θ, since the integral is over the entire unit circle the results will be the same regardless of the

phase shift. The integrals over Ar and Al can also be done analytically, using identity 11.4.28 of [40],

which states that

∫ ∞

0

e−a
2t2tµ−1Jν(bt)dt =

Γ( 1
2ν + 1

2µ)( 1
2
b
a )ν

2aµΓ(ν + 1)
1F1

(
1

2
ν +

1

2
µ, ν + 1,− b2

4a2

)

for Re (µ+ ν) > 0 and Re (a2) > 0 .

(4.1.13)
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Here, Γ(z) is the gamma function, Jn(x) is the Bessel function of the �rst kind and 1F1(a, b, z) is the

con�uent hypergeometric function of the �rst kind whose series form is given by

1F1(a, b, z) =

∞∑

k=0

(a)k
(b)k

zk

k!
, (4.1.14)

where (a)k and (b)k are Pochhammer symbols expressible as (x)n = x(x+ 1) . . . (x+ n− 1).

If we use the fact that In(x) = i−nJn(ix) and assume an imaginary b, we are able to write the

above identity in terms of modi�ed Bessel functions of the �rst kind as follows,

∫ ∞

0

e−a
2t2tµ−1Iν

(
bt

i

)
dt =

Γ( 1
2ν + 1

2µ)( 1
2
b
a )ν

2aµΓ(ν + 1)iν
1F1

(
1

2
ν +

1

2
µ, ν + 1,− b2

4a2

)

for Re (µ+ ν) > 0, Im (b) and Re (a2) > 0 ,

(4.1.15)

If we let ν = 0, µ = 1/2, b = iJÂl and a2 = (1/2)J we can evaluate the Al integral and equation

(4.1.12) becomes

∫
eC0I+C1J

√
ArAl

dφr dφl dAr dAl = 4π2

∫ ∞

0

e−
1
2 IA

2
r

√
Ar

I0(IArÂr)

[(
Γ( 1

4 )

2
3
4 J

1
4

)
1F1

(
1

4
, 1,

1

2
JÂ2

l

)]
dAr .

(4.1.16)

If we do the same thing for the Ar integral we arrive at our �nal result for integration of the �rst term

of equation (4.1.10),

First Term:

∫
eC0I+C1J

√
ArAl

dφr dφl dAr dAl = 4π2

[
Γ( 1

4 )2

2
3
2 (IJ)

1
4

]
1F1

(
1

4
, 1,

1

2
IÂ2

r

)
1F1

(
1

4
, 1,

1

2
JÂ2

l

)
.

(4.1.17)

Now examining the second integral of the simpli�ed B-statistic, we see that the form of the φl

integral is the same as for the �rst integral so it can be carried out the same way. Thus, we have that

LÂl

∫
eC0I+C1JAr cos (φ̂l − φr)√

ArAl

dφr dφl dAr dAl

= 2πÂlL

∫ ∞

0

∫ ∞

0

∫ 2π

0

e−
1
2 IA

2
r
− 1

2JA
2
lAr√

ArAl

eIArÂr cos (φ̂r−φr) cos (φ̂l − φr)
[
I0(JAlÂl)

]
dφr dAr dAl .

(4.1.18)

If we set θ = φ̂r − φr, then cos (φ̂l − φr) becomes

cos (φ̂l − φr) = cos (θ − (φ̂r − φ̂l)) = cos θ cos (φ̂r − φ̂l) + sin θ sin (φ̂r − φ̂l) . (4.1.19)
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If we plug this back into equation (4.1.18), the term involving sines will integrate to zero since its the

symmetric integral of the product of an even and odd function. However the integral involving cosines

will not be zero since cosine is an even function. The φl integral can now be evaluated using a more

general result of the Jacobi-Anger expansion which tells us that
∫ 2π

0
ex cos θ cos (nθ)dθ = 2πIn(x) (see

identity 10.32.3 of [41]). With this, we see that

LÂl

∫
eC0I+C1JAr cos (φ̂l − φr)√

ArAl

dφr dφl dAr dAl

= 4π2LÂl cos (φ̂r − φ̂l)
∫ ∞

0

∫ ∞

0

e−
1
2 IA

2
r
− 1

2JA
2
lAr√

ArAl

I0(JAlÂl)I1(IArÂr) dAl dAr .

(4.1.20)

The Al and Ar integrals can be evaluated the same way as before, only with ν = 1 and µ = 3/2 in

the case of the Ar integral. Note that since ν is no longer zero for the Âr integral, the term (b/a)ν

in the coe�cient of equation (4.1.15) will now contribute and give rise to imaginary values, since b is

itself imaginary, but this will be canceled out by the i−ν term. This give us the following result for

the second integral:

Second Term: LÂl

∫
eC0I+C1JAr cos (φ̂l − φr)√

ArAl

dφr dφl dAr dAl

= 4π2LÂlÂr cos (φ̂r − φ̂l)
[

Γ( 1
4 )Γ( 5

4 )

2
3
2 (IJ)

1
4

]
1F1

(
1

4
, 1,

1

2
JÂ2

l

)
1F1

(
5

4
, 2,

1

2
IÂ2

r

)
.

(4.1.21)

Upon inspection, its clear that the third term of equation (4.1.10) is the same as the second, only with

the dependencies on Ar and Al reversed. This implies that the result of the third integral is

Third Term: LÂr

∫
eC0I+C1JAl cos (φ̂r − φl)√

ArAl

dφr dφl dAr dAl

= 4π2LÂlÂr cos (φ̂r − φ̂l)
[

Γ( 1
4 )Γ( 5

4 )

2
3
2 (IJ)

1
4

]
1F1

(
1

4
, 1,

1

2
IÂ2

r

)
1F1

(
5

4
, 2,

1

2
JÂ2

l

)
.

(4.1.22)

Finally, we turn our attention to examining the fourth term of the B-statistic integral. Using the

trigonometric identity

cos(A−B+C) = cosA cosB cosC+ cosA sinB sinC− sinA cosB sinC+ sinA sinB cosC , (4.1.23)
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it can be simpli�ed as

L

∫
eC0I+C1JArAl cos (φr − φl)√

ArAl

dφr dφl dAr dAl

= L

∫
eC0I+C1J

√
ArAl cos

[
(φr − φ̂r)− (φl − φ̂l) + (φ̂r − φ̂l)

]
dφr dφl dAr dAl

= L

∫
eC0I+C1J

√
ArAl cos(φr − φ̂r) cos(φl − φ̂l) cos(φ̂r − φ̂l) dφr dφl dAr dAl

+ L

∫
eC0I+C1J

√
ArAl cos(φr − φ̂r) sin(φl − φ̂l) sin(φ̂r − φ̂l) dφr dφl dAr dAl

− L
∫
eC0I+C1J

√
ArAl sin(φr − φ̂r) cos(φl − φ̂l) sin(φ̂r − φ̂l) dφr dφl dAr dAl

+ L

∫
eC0I+C1J

√
ArAl sin(φr − φ̂r) sin(φl − φ̂l) cos(φ̂r − φ̂l) dφr dφl dAr dAl .

(4.1.24)

Now, the last three of these integrals all involve the sine of φr or φl. When looking at the integrals over

these two quantities, the equations will have the integral over all space of an even function (ecos(x))

times an odd function (sin(x)) where x = (φr − φ̂r) or x = (φl − φ̂l). Because of this, the angular

integrals of the terms involving sines of the CPF-polar coordinates will vanish, leaving us with only

the �rst of the above integrals which can be evaluated using the same methods as were used for the

�rst three integrals of this section.

L

∫
eC0I+C1JArAl cos (φr − φl)√

ArAl

dφr dφl dAr dAl

= L

∫
eC0I+C1J

√
ArAl cos(φr − φ̂r) cos(φl − φ̂l) cos(φ̂r − φ̂l) dφr dφl dAr dAl

= 4π2L cos (φ̂r − φ̂l)
∫ ∞

0

∫ ∞

0

e−
1
2 IA

2
r
− 1

2JA
2
lAr√

ArAl

I1(IArÂr)I1(JAlÂl) dAl dAr

= 4π2LÂlÂr cos (φ̂r − φ̂l)
[

Γ( 5
4 )2

2
3
2 (IJ)

1
4

]
1F1

(
5

4
, 2,

1

2
IÂ2

r

)
1F1

(
5

4
, 2,

1

2
JÂ2

l

)
.

(4.1.25)

So we �nd that

Fourth Term: L

∫
eC0I+C1JArAl cos (φr − φl)√

ArAl

dφr dφl dAr dAl

= 4π2LÂlÂr cos (φ̂r − φ̂l)
[

Γ( 5
4 )2

2
3
2 (IJ)

1
4

]
1F1

(
5

4
, 2,

1

2
IÂ2

r

)
1F1

(
5

4
, 2,

1

2
JÂ2

l

)
.

(4.1.26)

If we now combine equations (4.1.17), (4.1.21), (4.1.22) and (4.1.26), we can write the complete
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B-statistic integral as

B(x) ∝ 1F1

(
1

4
, 1,

1

2
IÂ2

r

)
1F1

(
1

4
, 1,

1

2
JÂ2

l

)[
1 + cos (φ̂r − φ̂l)

(
Γ( 5

4 )

Γ( 1
4 )

)
 1F1

(
5
4 , 2,

1
2IÂ

2
r

)

1F1

(
1
4 , 1,

1
2IÂ

2
r

)


 ÂlÂrL

+ cos (φ̂r − φ̂l)
(

Γ( 5
4 )

Γ( 1
4 )

)
 1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)


 ÂrÂlL

− cos (φ̂r − φ̂l)
(

Γ( 5
4 )2

Γ( 1
4 )2

)
 1F1

(
5
4 , 2,

1
2IÂ

2
r

)

1F1

(
1
4 , 1,

1
2IÂ

2
r

)




 1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)


 ÂrÂlL

]
.

(4.1.27)

Since any quantity of the form ln(A[1 + Bx+ O(x2)]) can be written as ln(A) + Bx+ O(x2), we can

rewrite this as

ln

[B(x)

B(0)

]
= ln 1F1

(
1

4
, 1,

1

2
IÂ2

r

)
+ ln 1F1

(
1

4
, 1,

1

2
JÂ2

l

)

+ ÂrÂlL cos (φ̂r − φ̂l)
[(

Γ( 5
4 )

Γ( 1
4 )

)
 1F1

(
5
4 , 2,

1
2IÂ

2
r

)

1F1

(
1
4 , 1,

1
2IÂ

2
r

)


+

(
Γ( 5

4 )

Γ( 1
4 )

)
 1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)




−
(

Γ( 5
4 )2

Γ( 1
4 )2

)
 1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)




 1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)



]
.

(4.1.28)

Now we can use this along with the fact that Γ(1+z)
Γ(z) = z to express ln(B(x)/B(0)) for the K = 0 part

of our approximation in its most compact form as

ln

[B(x)

B(0)

]
= ln 1F1

(
1

4
, 1,

1

2
IÂ2

r

)
+ ln 1F1

(
1

4
, 1,

1

2
JÂ2

l

)

+
1

4
ÂrÂlL cos (φ̂r − φ̂l)

[
1F1

(
5
4 , 2,

1
2IÂ

2
r

)

1F1

(
1
4 , 1,

1
2IÂ

2
r

) +
1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)

−
(1

4

) 1F1

(
5
4 , 2,

1
2IÂ

2
r

)

1F1

(
1
4 , 1,

1
2IÂ

2
r

)
1F1

(
5
4 , 2,

1
2JÂ

2
l

)

1F1

(
1
4 , 1,

1
2JÂ

2
l

)
]
.

(4.1.29)

Now, considering the L = 0 piece, we can use the same integration techniques we used for theK = 0

piece. The only di�erence is that we will get a factor of sin (φ̂r − φ̂l) instead of the cos (φ̂r − φ̂l) factor

we had before, which comes about from the sine functions in the log-likelihood ratio replacing the
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cosines. Combining the two parts, we arrive at the �nal equation for our B-statistic approximation:
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(4.1.30)

4.2 Checks on B-Statistic Approximation

4.2.1 Limiting Cases

Before doing any analysis with our approximation, we must make sure that it follows what we would

expect given various limiting conditions on both the amplitude metric and on the maximum likelihood

points, Âr and Âl. The �rst is a rather trivial check from the Whelan et. al paper ([14]) which states

that, if it happens the metric elements K and L are both equal to zero, then the B-statistic can be

calculated exactly using the following equation

ln
B(x)

B(0)
= ln 1F1

(
1

4
, 1,

1

2
IÂ2

r

)
+ ln 1F1

(
1

4
, 1,

1

2
JÂ2

l

)
. (4.2.1)

This is can be clearly seen by examining the form of equation (4.1.30).

Considering some of the other limiting cases, we want to look at how our approximation behaves

when Âr and Âl approach zero, and when they approach in�nity. This amount to �guring out the

limiting forms of the hypergeometric functions. Considering the limiting case of zero �rst, the hyper-

geometric function involving Âr take on the following form (see equation (4.1.14)):

lim
Âr→0

1F1

(
1

4
, 1,

1

2
IÂ2

r

)
= lim
Âr→0
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k=0

( 1
4 )k

(1)k

( 1
2IÂ

2
r
)k

k!
= 0 (4.2.2)

with an identical equation for the hypergeometric function involving Âl. This implies the approxima-

tion equals zero under these conditions, agreeing with the true B-statistic which also vanishes.

In order to deal with the large parameter case, we need to consider another result from the Whelan
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et al paper. They found that the B-statistic can be approximated by

lnB(x) ≈ F(x)− 3

2
ln
(
Âr(x) Âl(x)

)
+ const (4.2.3)

as long as the maximum likelihood points are �far enough� away from circular polarization, i.e. as long

as Âr(x) and Âl(x) are not close to zero. The exact value at which the approximation starts to break

down is not the same in all cases and depends on the choices of parameters used (see section VI C in

[14]). Now looking at the situation when the maximum likelihood points become large, we see that
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2
r
/2 (4.2.4)
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by identity (13.1.4) of [40]. This implies that

lim
Âr→∞
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IÂ2

r

)
=

1
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r
− 3

2
ln Âr + constant , (4.2.6)

again with a similar equations for Âl. Combining these equations and substituting them into equation

(4.1.30), we �nd that our approximations does indeed reduce to the desired form.

4.2.2 F-Statistic Prior

Moving away from examining speci�c cases of parameter extremes, we now investigate the e�ect

choosing a di�erent prior distribution has on our approximation. Up until now, we have been assuming

a prior which is uniform in the physical coordinates. However, as we saw in section section 3.3.1, if we

instead assume a prior which is uniform in the JKS ({Aµ}) coordinates then ln(B(x)
B(0) ) is exactly equal

to the F-statistic (see equation (3.3.6)). If we assume this new prior, then our approximation should

reduce to the F-statistic as well.

A prior uniform in the JKS coordinates will result in a prior of the form (ÂrÂl) given the Jacobian

between JKS and CPF-polar coordinates found in [14]. This new prior will not change the form of the

likelihood function ((4.1.6)) so, following the process of section section 4.1, the B-statistic integral can
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now be expressed as

B(x) ∝
∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0

eΛ({φr φl Ar Al};x)ArAl dφr dφl dAr dAl . (4.2.7)

If we again consider only the K = 0 piece of the likelihood function and Taylor expand the integrand,

we see that

B(x) ∝
∫
eC0I+C1JeC2ArAl dφr dφl dAr dAl

=
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(4.2.8)

Following through the previous derivation of the approximation, we can see that the only change this

prior will have on each integration simpli�cation is that it will change the value of µ in the identity

of equation (4.1.15). All other parts of the simpli�cations can be carried in the exact same way as

section section 4.1.

With this prior, it can be shown that the four integration terms in the above equation reduce to

First Term:

∫
eC0I+C1JArAl dφr dφl dAr dAl = 4π2

[
1

IJ

]
1F1

(
1, 1,

1

2
IÂ2
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Second Term: LÂl
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Third Term: LÂr
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Fourth Term: L

∫
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(4.2.12)
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Combining these four terms together, we can express ln(B(x)
B(0) ) for the K = 0 part as
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2
l

)

1F1

(
1, 1, 1

2JÂ
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(4.2.13)

If we carry out the same computation on the L = 0 piece, we get a similar result. Combining the two

as we did before, we the following equation:
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(4.2.14)

Using a straightforward identity for the con�uent hypergeometric functions (identity 13.6.1 of [41])

which states that 1F1(a, a, z) = ez, we see that this is, in fact, equal the F-statistic.

ln
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2
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2
JÂ2

l
+ ÂrÂl

(
L cos(φ̂r − φ̂l) +K sin (φ̂r − φ̂l)

)
= F(x) . (4.2.15)

We have now shown that, not only will this approximation have the proper limit when Âr and

Âl are large (via (4.2.6)), when K = L = 0 (via (4.2.1) and when the maximum likelihood points Âr

and Âl go to zero (via (4.2.2)), but it will also have the correct behavior given a speci�c choice of

prior distribution of the parameters. This is all a strong indication that we have not made any errors

in the calculation of our approximation. In the remainder of this paper, we will be directly comparing

this approximation against the exact B-statistic and well as the F-statistic to determine which is more

e�ective in distinguishing signal from noise.
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4.3 Analysis of Statistics

Now that we have an equation for our approximation, the next step is to determine how useful it is

as a replacement for the B-statistic. This amounts to three main points: 1) Is our equation a good

approximation to the B-statistic? 2) Is it as powerful a detection statistic as is the B-statistic? and 3)

Is it more e�cient to calculate? The �rst two points are explored in the following sections.

Speaking about the last point, the calculation e�ciency will depend on the type of programing

software one uses. Our analyses were done using the Python computing language in which we did

timing tests for each statistic. Taking the average over 5 trails, we found that the average computation

time for the exact B-statistic was about 1.8 milliseconds, compared to the approximation whose average

time was around .11 milliseconds: a factor of 10 increase in e�ciency. For completeness, we also did the

same tests for the F-statistic and found its average computation time was roughly .061 milliseconds.

We expect similar results in any computing language where entities like the hypergeometric functions

are already tabulated.

4.3.1 Comparison

Here we examine how the F-statistic (equation (3.2.17)), B-statistic (equation (3.3.17)) and our B-

statistic approximation (equation (4.1.30)) described in the previous sections compare to each other

for various points in parameter space. In �gure 4.1, the three statistics are plotted against Âr/hdet and

Âl/hdet, where the coordinates have been scaled by the characteristic detector amplitude, hdet, to make

them dimensionless. Here hdet has been set to 1√
I
(which follows from its de�nition in [14]) and the

source declination has been set to zero degrees. The statistics are evaluated at equal false alarm rates,

which is indicated on the contour line. Instead of considering the statistics dependencies on φ̂r and φ̂l

separately, we instead look at how they depend on the combined quantity (φ̂r − φ̂l) = 4ψ̂, where ψ̂ is

the maximum likelihood value of the polarization angle. This is shown in �gure 4.2, whose sub-plots

each use a alternate phase di�erence ranging from zero to π. Note that �gure 4.1 is equivalent to the

top left plot of this �gure. In both of the �gures mentioned above, the right ascension and declination

of the GW source have been set to α = 12 hours and δ = 0◦ respectively.
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Figure 4.1: Contour plot of the F-statistic, B-statistic and B-statistic approximation at equal false
alarm probabilities. On the x and y axes are the right and left CPF-polar maximum likelihood points
Âl and Âr scaled by hdet = 1√

I
to make them dimensionless. The line style corresponding to each

statistic is given by the legend and the corresponding false alarm rates are shown by the labels on the
contour lines. The source right ascension and declination have been set to α = 12 hours and δ = 0◦

respectively, with L/I = −.117 and K/I ≈ 0 for this sky position. We show that our equation a good

approximation to the exact B-statistic over the whole {Âr, Âl} parameter space and is much closer to
the B-statistic than is the F-statistic.
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Â
R
∗√

I

.5

.05

.005

5e-4
(φ̂R − φ̂L) = π/4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 4.2: Contour plot of the F-statistic, B-statistic and B-statistic approximation at equal false
alarm probabilities. On the x and y axes are the right and left CPF-polar maximum likelihood points
Âl and Âr scaled by hdet = 1√

I
to make them dimensionless. The line style corresponding to each

statistic is given by the legend and the corresponding false alarm rates are shown by the labels on the
contour lines. Each sub-plot is made at a di�erent values of (φ̂r− φ̂l). The source right ascension and
declination have been set to α = 12 hours and δ = 0◦ respectively. One can see that our approximation
is nearly identical to the B-statistic for all phase di�erences and values of Âr and Âl, being perfectly
identical for values of (φ̂r − φ̂l) which are odd multiples of π/2.

If the GW source is �face-on� (for example with cos(ι̂) = 1), then Âl = 0 and we are in the realm

of circular polarization. If we examine the form of equation (4.1.29), its clear that when Âl = 0 the

cross term vanishes, and we are left with only the term quadratic in Âr (the opposite is also true

if cos(ι̂) = −1 so that Âr = 0 instead). In addition, equation (4.2.1) tells us that in a circularly
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polarized system the exact B-statistic and the ansatz should be equal. This is con�rmed in the �gures,

speci�cally by looking on the Âr and Âl axes. Alternatively, an �edge on� system will have a cos(ι̂)

value of zero which implies Âr = Âl and the system will be linearly polarized. In this case, the �gure

shows there is some deviation from the exact B-statistic. However the two are still in agreement, with

the approximation following the behavior of the exact B-statistic much more closely than does the

F-statistic.
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Figure 4.3: Graph of the F-statistic, B-statistic and B-statistic approximation as a function of the
declination of the GW source, measured in degrees. The values of Âr/hdet and Âl/hdet have been set

to 4 and each sub-plot is made at a di�erent values of (φ̂r − φ̂l). We �nd that our approximation to
the B-statistic is accurate over all declinations. The F-statistic is also larger in value than the other
two for all declinations.

A few interesting features can be seen in �gure 4.1 and �gure 4.2. The �rst is in agreement with

something �rst pointed out in [14], namely that a nearly circularly-polarized signals (those with small

Âr or Âl) produce a B-statistic value more signi�cant than their F-statistic value, which is clearly also

the case in our plots. This is the result of the fact that a prior distribution constant in the physical
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coordinates (i.e. the B-statistic) weights circular polarization more heavily does than a prior uniform

in the JKS coordinates (i.e. the F-statistic). We can also see that the approximation is uniformly

larger than the exact B-statistic for all declinations and value of (φ̂r − φ̂l).
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Figure 4.4: Graph of the residuals |B-statistic - F-statistic| and |Approximation - F-statistic| as a

function of the declination of the GW source, measured in degrees. The values of Âr/hdet and Âl/hdet
have been set to 4and each sub-plot is made at a di�erent values of (φ̂r − φ̂l).

Since all the statistics are functions of the components of the amplitude metric {I, J,K,L} and

these are determined entirely by the declination of the GW source, it is also useful to examine how

the three vary with declination. This is shown in �gure 4.3. In addition, the forms of the residuals

|B-statistic - F-statistic| and |Approximation - F-statistic| are shown in �gure 4.4. Looking at the

�gures, we can see that the accuracy of the approximation depends very little on the declination. In

addition the F-statistic appears to have a larger value for all sky positions, however (as we will see)

this does not necessarily imply that it will be a more powerful detection statistic than the other two.
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4.3.2 Fractional Error of Approximation

Continuing our analysis of the di�erent statistics, we will now directly examine how the B-statistic

and its approximation compare by looking at the fractional error of the two. �gure 4.5 shows the error

as a function of Âr for di�erent phase di�erences. In this plot, Âl

hdet
has been set to a constant value

of 4 so the majority of the graph represents linear polarization of the GW source. On the other hand,

as Âr

hdet
approaches zero, we move closer to a circularly polarized source.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
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Figure 4.5: This is a graph of the fractional error (1 − approx.
B−stat ) between the B-statistic and the B-

statistic approximation plotted against the right CPF-polar maximum likelihood point Âr (scaled by

hdet) for di�erent values of φ̂r− φ̂l. Here, Âl/hdet has been set to 4. Our equation seems to be a very
good approximation to the true B-statistic, with errors only as large as .5 percent over the parameter
space. Its also clear that the local maximum error occurs at some Âr/hdet value between 2 and 3 and

that the error approaches zero as Âl/hdet approaches zero (i.e. near circular polarization).

The graphs shows that our approximation is very accurate, with errors topping out at around .5

percent. The error is, in general, much higher in the case elliptical polarization than it is for the pure

linear or circular variety. Note that for pure circular polarization, the two statistics are equal and their

fractional error approaches zero. The plot also shows that the maximum error decreases as the value

of φ̂r − φ̂l goes from zero to pi, which is to be expected given that this term is contained within a
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cosine function.
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Figure 4.6: This is a graph of the fractional error |(1 − approx.
B−stat )| between the B-statistic and the B-

statistic approximation plotted against the declination of the source for di�erent values of φ̂r − φ̂l.
Here, Âr/hdet = Âl/hdet = 4 so we are dealing with a linearly polarized source. Overall, the errors
are small, being less than .3 percent over the entire parameter space. The error decreases as the phase
di�erences goes zero to π. This is expected from the equations which show the phase di�erence term
is contained inside sinusoidal functions.

Alternatively, �gure 4.7 and �gure 4.6 show the error as a function of the declination of the GW

source for di�erent phase di�erences. The values of (Âr/hdet, Âl/hdet) have been set to (4,4) and

(4,0.1) for linear and near-circular polarizations respectively. In each case, the graphs show that the

fractional error roughly follows a bell curve which is centered on a declination of zero. In general, the

approximation seems to again do very well, with errors which max out at less than 0.3 percent.

58 4.3. Analysis of Statistics



4.4. Monte-Carlo Simulation

−90 −45 0 45 90

Declination [degrees]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

F
ra

ct
io

na
lE

rr
or

0 Phase Difference

−90 −45 0 45 90

Declination [degrees]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

F
ra

ct
io

na
lE

rr
or

π/4 Phase Difference

−90 −45 0 45 90

Declination [degrees]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

F
ra

ct
io

na
lE

rr
or

π/2 Phase Difference

−90 −45 0 45 90

Declination [degrees]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

F
ra

ct
io

na
lE

rr
or

π Phase Difference

Near-Circular Polarization

Figure 4.7: This is a graph of the fractional error |(1 − approx.
B−stat )| between the B-statistic and the B-

statistic approximation plotted against the declination of the source for di�erent values of φ̂r − φ̂l.
Here, Âl/hdet = 4 and Âl/hdet = 0.1 so we are very near circular polarization. The errors in this case
are smaller then those for linear polarization, being only as large as .02 percent. Again, the error in
each case varies sinusoidally.

4.4 Monte-Carlo Simulation

4.4.1 Estimating ROC Curves

We will be considering the Neyman-Pearson framework in which the most powerful test is de�ned

as the test with the highest detection probability for a given false alarm rate upper bound. In this

framework, one can compare the detection probabilities of the various statistics for some false alarm

probability.Our simulation will give us their detection probabilities for some underlying population of

signal parameters.

The procedure for estimating the detection e�ciency (or power) of any detection statistic with a
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Monte-Carlo simulation is relatively basic. First a large sample of N random draws of the statistic for

the no signal hypothesis H0 must be generated. With this sample, we can estimate the false alarm

probability fA as

fA(D∗) ≈
Nthresh
N

, (4.4.1)

where Nthresh is the number of random draw values that are greater than your detection threshold.

Similarly for the signal hypothesis H1, we randomly draw our signal parameters from some assumed

prior population M times and from these generate M corresponding random draws of the statistic.

From this distribution, we can estimate the detection probability of our statistic as

fD(D∗) ≈
Mthresh

M
, (4.4.2)

where Mthresh is de�ned in the same way as Nthresh. If we then invert the equation for false alarm

rate to obtain D∗(fA), then we recover the ROC (receiver operation characteristic) curve fD(fA).

4.4.2 Parameters used in Simulation

This section outlines the speci�c values of each of the parameters used in our Monte-Carlo simulation.

In targeted searches the Doppler parameters λ of the signal are known, and for simplicity of this

example we �xed these parameters to constant values. We set the right ascension and declination to

α = 12 hours and δ = 0◦ respectively and used a constant frequency without spindown. We assumed a

multi-detector system with detectors located at LIGO Hanford and LIGO Livingston, a one-sided noise

power spectrum constant of Sn = 1× 10−47 in units of [strain2/hertz] and an observation duration of

Tobs = 25 hours.

The resulting numerical values from equation (3.2.12) which make up the components of the am-

plitude metric Mµν vary depending on the source declination. To give an example, the values for

a declination of zero degrees are found as: I = J = Tobs
Sn

(.742) and L = Tobs
Sn

(−.087), with all other

components (approximately) zero. In addition, we used Ndraws = 1x105 random draws for each dis-

tribution and set the signal amplitude h0 to the constant value of h0 = 5
√

Sn
Tobs

≈ 2x10−27 in units

of strain. This equation for h0 is very close to h0 = 11.4
√

Sn
Tobs

, the well known sensitivity estimation

formula for 90 percent detection probability and 1 percent false-alarm rate (see [27]). Note that these

parameters are given for the sake of completeness, the qualitative conclusions do not depend on these

choices.
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4.4.3 Simulation Results

Here, we discuss the resulting ROC curves of our Monte-Carlo simulations. Because the signal hy-

pothesis HS is composite, it will depend on the choice of injected signal population. Some of the more

unphysical populations (for example with all sources having circular polarization) were considered

in papers like [9], so here we will restrict ourselves to considering the physically motivated isotropic

prior (equation (3.3.11)) with a constant signal amplitude. The result of the simulations are shown

in �gure 4.8, which compare the ROC curves of the F-statistic, B-statistic, and the B-statistic ap-

proximation. The range of false alarm probabilities is the same as those used in previous studies of

detection statistics.
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Figure 4.8: ROC curves comparing the F-statistic ((3.2.17)), B-statistic ((3.3.17)) and the B-statistic
approximation ((4.1.29)). The chosen signal populations contain randomly distributed ψ and χ, in ac-
cordance with the isotropic prior (cf. section section 3.3.1), with a �xed amplitude of h0 = 5

√
Sn/Tobs.

The values of right ascension and declination have been set to α = 12 hours and δ = 0◦ respectively.
We show that the approximation is not only a strong approximation to the true B-statistic but that it
is also more powerful than the F-statistic in the case of a constant signal amplitude.
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The �gure shows that the approximation to the B-statistic is both accurate over the entire perimeter

space and is also just as powerful as the true B-statistic (i.e. having the same detection probability

for a given false alarm rate). Since the metric components are largest for declination of zero (see

�gure 3.2), this plot represents the worst case scenario in terms of how close the approximation and

exact B-statistic are (i.e. for any other sky position the results will improve).

In addition, the plot shows that the approximation is uniformly more powerful than the F-statistic,

despite the fact that the F-statistic is larger in value than the ansatz. However this not true in every

case. It is true in the case of a constant signal amplitude h0 as we have assumed here, but (as stated in

previous sections) it has been shown (see [9]) that, given other initial conditions or prior distributions,

the F-statistic can be more powerful. However, these often represent unphysical situations.

4.5 Range of Validity of B-Statistic Approximation

Recall that in section 3.2.1 we discussed the fact that the metric elements K and L are small compared

to I and J as well as K being approximately zero. As previously stated, we believe this is a result of

assuming that the computation of the metric components averages perfectly over a whole sidereal day.

However since these components being small is the whole foundation for the expansion involved in

deriving our approximation, its reasonable to ask if this assumption is actually valid. In this section,

we explore the extent to which this assumption is true by examining how the metric components evolve

given di�erent lengths of sidereal observing time.

In �gure 4.9, we show the forms of the metric components plotted against the declination of the GW

source. Each sub-plot uses a di�erent length of sidereal observing time, indicated by the plot title. The

�rst box (top left) shows the components under the assumption of averaging over exactly 1 sidereal

day (i.e. what we have been assuming so far). The second box (top right) shows the components

evaluated using sidereal times computed from Short Fourier Transforms (SFTs) of actual strain data

from the S5 run of the 4 kilometer LIGO Hanford detector (labeled as H1). In more detail, the SFTs

are a list of 68,897 GPS times which conform to lengths of small observing runs, each of which is a

sub-run in a larger run covering the whole observing time span (about 1 year). These GPS times were

then converted to Greenwich mean sidereal times which are then averaged over to compute the values

of I, J,K,L. Since this is the only case which does not use synthetic data, we will use this as our �real

world� example.

The third plot (center left) shows what happens when a 25 hour sidereal time is assumed. It should
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Figure 4.9: These plots compare the forms of the metric components plotted against the source decli-
nation for di�erent lengths of sidereal observing time. Top left : Components under the assumption of
averaging over exactly 1 sidereal day. Top right : Components evaluated using sidereal times computed
from Short Fourier Transforms (SFTs) of actual strain data from the O5 run of the 4 kilometer LIGO
Hanford detector (�real world� example). Center left : A 25 hour sidereal time is assumed, corresponds
to the values used by Prx and Krishnan in [9]. Center right : A 10 hour sidereal time is assumed.
Bottom left : A 5 hour sidereal time is assumed. Bottom right : Uses a single sidereal time. Its clear
that as sampling of a sidereal day becomes more even, K and L become larger compared to I and
J . However, our real world example is in agreement with our initial assumption of perfect averaging,
which implies our assumption is valid.

be noted that this plot corresponds to the values used by Prix and Krishnan in [9]. The fourth (center

right) and �fth (bottom left) plots use 10 and 5 hour sidereal times respectively and the �nal plot

(bottom right) uses a single sidereal time. Since the quantities we are really interested in are L/I and

K/I, we have also shown there values in each of the above situations in �gure 4.10.

These �gure shows exactly the behavior expected, namely that for long observing times the values

of K and L are small for all declinations (being minimal when the time is exactly 1 sidereal day),

but as the observing length decreases this is no longer the case. The reason is that the sampling of a

full sidereal day becomes less even (i.e. we are only focused on a part of the day). This implies that

our approximation will not be e�ective in these cases. That does not mean for short observing times
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Figure 4.10: These plots compare the forms of ratios of the metric components plotted against the
source declination for di�erent lengths of sidereal observing time. Top left : Components under the
assumption of averaging over exactly 1 sidereal day. Top right : Components evaluated using sidereal
times computed from Short Fourier Transforms (SFTs) of actual strain data from the O5 run of the
4 kilometer LIGO Hanford detector (�real world� example). Center left : A 25 hour sidereal time
is assumed, corresponds to the values used by Prx and Krishnan in [9]. Center right : A 10 hour
sidereal time is assumed. Bottom left : A 5 hour sidereal time is assumed. Bottom right : Uses a single
sidereal time. The plots show the values of the two ratios are much smaller in the case of more evenly
sampled sidereal times. Also, the top two plots seem to agree, i.e. the real world example matches our
assumption.
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there wont be speci�c values where the components can still be small (for example a declination of

-45 degrees in the bottom left plot), but this will not hold for any declination. In addition, the plot

which uses real sidereal time data (top right) appears to be in agreement with the plot showing perfect

averaging. This implies that using real world data gives roughly the same kinds of K and L values

given if perfect averaging is assumed, which justi�es our assumption.

4.6 Comparison to Other Approximations

So far, we have shown that our formula is a good approximation to the B-statistic. However, ours is not

the only approximation to this statistic which has been proposed. One such equation was presented in

a recent paper by Dhurandhar, Krishnan and Willis (see [42]). They showed how the marginalization

of the B-statistic can be done analytically by combining the four amplitude parameters into a set

of complex amplitudes {B1,B2,B3,B4} if one assumes that the signal strength is very large. In this

section, we will compare their result to our approximation in order to determine which is more powerful

as a detection statistic.

In their paper, Dhurandhar, Krishnan and Willis de�ned the following complex amplitudes in terms

of the physical coordinates:

B1 = h0e
−2iφ0

(1 + χ)2

4
e−2iψ, B2 = h0e

−2iφ0
(1− χ)2

4
e2iψ,

B3 = h0e
2iφ0

(1− χ)2

4
e−2iψ, B4 = h0e

2iφ0
(1 + χ)2

4
e2iψ .

(4.6.1)

From these equations we can clearly see that B1 = B∗4 and B2 = B∗3 . In CPF-polar coordinates, these

complex amplitudes have the form

B1 = Are
− i

2 (3φr+φl), B2 = Ale
− i

2 (φr+3φl),

B3 = Ale
i
2 (φr+3φl), B4 = Are

i
2 (3φr+φl) .

(4.6.2)

Instead of the amplitude parameter metric we have been using in our analysis,Mµ̆ν̆ , they instead use

a matrix N, de�ned as

N ≡ {Nµν} =
1

2




ξ κ∗ 0 0

κ ξ 0 0

0 0 ξ κ∗

0 0 κ ξ




, (4.6.3)
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where

ξ =
∑

Xl

Tobs
SXl (f0)

[(aXl )2 + (bXl )2] , (4.6.4a)

κ =
∑

Xl

Tobs
SXl (f0)

(aXl + ibXl )2 , (4.6.4b)

and aXl and bXl are the AM coe�cients for detector X in time segment l as before. From the above

equations, its clear that ξ ≡ I, J

The equation Durrandar, Krishnan and Willis calculated (when neither B̂1 or B̂2 are zero) was the

following:

B(x) ≈
(

π2

2(ξ2 − k2)

)[
e

1
2 B̂

†
NB̂

(|B̂1||B̂2|) 3
2

]
, (4.6.5)

where k is de�ned as k = |κ|. This implies that k2 = |κ|2 = κκ∗. In the special case when, for example,

B̂1 = 0 the above equation becomes singular. In this case, we must use the equation

B(x) ≈
(

2
1
4 Γ( 1

4 )π2

16ξ
3
4 (ξ2 − k2)

1
4

)[
e

1
2 B̂

†
NB̂

|B̂2| 32

]
. (4.6.6)

There is an analogous equation for the situation when B̂2 = 0 which is the same except for replacing

B̂2 with B̂1.

Given that B̂ = [B̂1, B̂2, B̂3, B̂4], I computed that

1

2
B̂†NB̂ =

1

4

[
B̂1(ξB̂∗1 + κB̂∗2) + B̂2(κ∗B̂∗1 + ξB̂∗2) + B̂3(ξB̂∗3 + κB̂∗4) + B̂4(κ∗B̂∗3 + ξB̂∗4)

]

=
1

4

[
B̂1(ξB̂∗1 + κB̂∗2) + B̂2(κ∗B̂∗1 + ξB̂∗2) + B̂∗2(ξB̂2 + κB̂1) + B̂∗1(κ∗B̂2 + ξB̂1)

]

=
1

2

[
ξB̂1B̂∗1 + κB̂1B̂∗2 + κ∗B̂∗1B̂2 + ξB̂2B̂∗2

]
,

(4.6.7)

which matches equation 64 from their paper.

4.6.1 Determination of Scaling Constant

Despite having the basic equation for this alternative approximation, we cannot directly compare it to

our approximation due to the fact that the assumed scaling factor is not the same in both papers. So,

in order to compare them, we must determine this scaling constant.

To do this, we will compare an equation from [42] (in which it was assumed that the metric

components K and L are zero and that they were in the large signal limit) to the equations from this
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paper which match the same situation (equation (4.2.4) with the pieces for Âr and Âl combined). The

equation resulting from this paper is the following:

B(x)

B(0)
=

(
1

Γ( 1
4 )

)2 [
I2J2

8
ÂrÂl

]−3/2

eIÂ
2
r
/2+JÂ2

l
/2 . (4.6.8)

We will be comparing this to equation 74 from [42], which states that

B(x) =
π2

16
ξ [ρ1ρ2]

− 3
2 e

2
ξ (ρ21+ρ22) . (4.6.9)

To do this, we will need to compute the forms of ρ1 and ρ2 as functions of Âr and Âl. Looking at

their paper, they are de�ned as ρ1 = |y1| and ρ2 = |y2| where

y1 =
1

2
(x1̆ − ix2̆) (4.6.10a)

y2 =
1

2
(x3̆ − ix4̆) (4.6.10b)

and xµ̆ refers to the components of the data vector as usual, which has the following form when

K = L = 0,

x1̆ = IÂr cos φ̂r , x2̆ = IÂr sin φ̂r , x3̆ = JÂl cos φ̂l , x4̆ = JÂl sin φ̂l . (4.6.11)

Plugging these in, we can see that

y1 =

(
1

2
IÂr cos φ̂r

)
− i
(

1

2
IÂr sin φ̂r

)
=

1

2
IÂre

−iφ̂r , (4.6.12)

and

y2 =

(
1

2
JÂl cos φ̂l

)
− i
(

1

2
JÂl sin φ̂l

)
=

1

2
JÂle

−iφ̂l . (4.6.13)

Since, by de�nition, |x+ iy| =
√
x2 + y2, we can compute from the above equations that

ρ1 = |y1| =
√

(
1

2
IÂr cos φ̂r)2 + (

1

2
IÂr sin φ̂r)2 =

1

2
IÂr

ρ2 = |y2| =
√

(
1

2
JÂl cos φ̂l)2 + (

1

2
JÂl sin φ̂l)2 =

1

2
JÂl .

(4.6.14)
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Now we can plug these back into (4.6.9). Noting that ξ = I = J , the exponent has the form

2

ξ
(ρ2

1 + ρ2
2) =

2

I

(
1

4
I2Â2

r
+

1

4
I2Â2

l

)
=

1

2
IÂ2

r
+

1

2
IÂ2

l
, (4.6.15)

which exactly matches equation (4.6.8). For the coe�cient, we get that

ξ[ρ1ρ2]−
3
2 = I

[(
1

2
IÂr

)(
1

2
IÂl

)]− 3
2

= I−2

[
ÂrÂl

4

]− 3
2

(4.6.16)

With the exponent and coe�cient, we now can write the full expression for the alternative B-statistic

of equation (4.6.9) as

B(x) =

(
π2

16

)
I−2

[
ÂrÂl

4

]− 3
2

e
1
2 IÂ

2
r
+ 1

2 IÂ
2
l . (4.6.17)

In order to �nd the scaling factor, we only need to divide equation (4.6.8) (B1) by the above equation

(B2), the result being

Scaling Factor =
B1

B2
=

[
4

πΓ( 1
4 )

]2

I
1
2 2

3
2 . (4.6.18)

Now we have determined that the approximation of [42] does have the correct limiting behavior

in the case when K = L = 0. However, even if their equations does have the correct limiting forms,

they still have two separate functions (one in the case of B1 or B2 equaling zero and one when both

are non-zero) and no way to interpolate between them. Also, due to singularities in their equations,

they can not handle the case when B1 = B2 = 0. Since our approximation does not have any of these

limitations or singularity issues, it would be much more useful in general.

4.6.2 Test of Alternate Approximation

Now we want to compare the e�ectiveness of our approximation to the alternate one from [42]. In

terms of its computational e�ciency, we took the average computing time over 5 trials (as was done

in section 4.3 for the B-statistic and our approximation). We found that their approximation took an

average of .28 milliseconds compared to the .11 millisecond average which our approximation possesses,

which implies our approximation is computationally more e�cient to calculate.

We also examine how the approximations compare in parameter space. In �gure 4.11, we show

the two approximations and the B-statistic plotted against the source declination. The lower panel is

simply a zoomed in version of the top panel about a declination of zero. It shows that our approximation
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is uniformly closer to the exact B-statistic than the alternate DKW approximation is.
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Figure 4.11: Graph of the B-statistic, B-statistic approximation and the alternate (DWK) approxima-

tion as a function of the declination of the GW source, measured in degrees. The values of Âr/hdet
and Âl/hdet have been set to 4 and the value of (φ̂r − φ̂l) is zero.

Along the same lines, we also examine how the three compare when plotted against Âr/hdet in

�gure 4.12. It shows that our approximation does a much better job at following the exact B-statistic.

In addition, due to the large signal requirement of the derivation done by Dhurandhar, Krishnan and

Willis, their approximation becomes even worse as the amplitude parameters approach zero. Since our

approximation does not have this problem, it adds to the evidence that ours is more useful, in general.

Further tests to determine which approximation is better (both in terms of error relative to the

true B-statistic and power as a detection statistic) are currently underway.
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Figure 4.12: Graph of the B-statistic, B-statistic approximation and DKW approximation against
Âr/hdet. In these plots, the value of Âr/Âl has been set to the constant value of 1. The line style
corresponding to each statistic is given by the legend. Each sub-plot is made at a di�erent values of
(φ̂r − φ̂l). The source right ascension and declination have been set to α = 12 hours and δ = 0◦

respectively. Its clear that our approximation follows the exact B-statistic much more closely than
does the DKW approximation.
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Chapter 5

Summary and Conclusions

In this paper, we have presented an analytic approximation to the traditional Bayesian detection

statistic used in targeted searches for continuous GWs. By Taylor expanding the resulting integrand,

we have shown that the marginalization of the B-statistic can be done exactly with minimal simplifying

assumptions. This expansion is possible because of the fact that the components of the amplitude

metric K and L are small compared to I and J , something which we �nd is the result of long observing

runs (i.e. averaging over a full/nearly-full sidereal day). We showed that this approximation �ts well

with the exact B-statistic over the parameter space as well as having the correct form in various limiting

cases. In addition, using Monte-Carlo simulations, we were able to show that the approximation

performed just as well as a detection statistic with similar detection probabilities at given false alarm

rates.

We have also shown that this approximation is also sensitive to the length of the observing time

over which the GW data was obtained. As the length of this time period decreases, the assumption

of the data averaging over all sidereal time will not longer be valid. This will result in a non-zero K

value which will increase as the observing length decreases. Thus there will come point when K is

no longer small compared to I and J , which implies the Taylor expansion in powers of K and L will

not hold true. Since GWs from compact binary coalescence (CBC) will be very short lived compared

to continuous waves, this implies that this method might not be useful in detecting GWs from CBC

events. However, using actual data from continuous wave searches on one of the LIGO detectors, we

were able to show that the metric components have roughly the same values as in the ideal case of

perfect averaging, which is an indication of its bene�ts in a real world setting.
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Speaking now to its usefulness to the LIGO collaboration, the coherent F-statistic is very widely

used. However, it's the basis for things like the stack-slide and Hough methods ([4]) rather than

a principal detection statistic. In addition, targeted searches like the ones we have been assuming

here are generally limited to neutron stars with available Ephemeris data, typically known pulsars.

Searches for unknown neutron stars or neutron stars without su�ciently accurate Ephermerides are

done by semi-coherent all-sky searches which are sensitive to only a portion of the signal and do not

assume a known sky position. However, since these methods still use the F-statistic as their basis, if

our approximation becomes e�cient to calculate it could be used as a replacement for the F-statistic

in some of these semi-coherent methods. The increased detection probabilities of the approximation

would allow not only for improved detection in any new LIGO data, but possibly new detections in

past data as well.

In terms of future work, there is still more to be done in order to determine the real world usefulness

of this approximation and even improve upon it. For example, the next logical step would be to conduct

more in depth computational timing tests to determine exactly how much more e�cient computing

our approximations is compared to either the F-statistic or exact B-statistic. However, as of now the

scripts I am using are written in only the Python computing language, while much of the code used

by the LIGO collaboration is written in languages like C or C++. In order to conduct accurate tests,

my scripts would need to be put into one of those languages (although it should be more e�cient

in any language where entities like the hypergeometric functions are already tabulated). In addition,

exploration of a more involved prior distribution on the physical parameter h0 based on the physics of

the GW source would result in a more accurate description of the data and could lead to an improved

detection statistic. However both of these things are beyond the scope of this paper
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