11-2017

A Scalable & Energy Efficient Graphene-Based Interconnection Framework for Intra and Inter-Chip Wireless Communication in Terahertz Band

Sagar Saxena
ss6010@rit.edu

Follow this and additional works at: https://scholarworks.rit.edu/theses

Recommended Citation
A Scalable & Energy Efficient Graphene-Based Interconnection Framework for Intra and Inter-Chip Wireless Communication in Terahertz Band

by

Sagar Saxena

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering

Supervised by

Dr. Amlan Ganguly
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, NY
November 2017

Approved By:

Dr. Amlan Ganguly
Primary Advisor – R.I.T. Dept. of Computer Engineering

Dr. Sonia Lopez Alarcon
Secondary Advisor – R.I.T. Dept. of Computer Engineering

Dr. Andres Kwasinski
Secondary Advisor – R.I.T. Dept. of Computer Engineering
Dedication

I would like to dedicate this thesis to my parents Mr. Amresh Saxena and Mrs. Alka Saxena who have supported me from the beginning of my lifetime and my mentor and friends who have supported me throughout my academic endeavors.
Acknowledgements

I take this opportunity to express my profound gratitude and deep regards to my primary advisor Dr. Amlan Ganguly for his exemplary guidance, monitoring and constant encouragement throughout this thesis. Dr. Ganguly dedicated his valuable time to review my work constantly and provide valuable suggestions which helped in overcoming many obstacles and keeping the work on the right track. I would also like to express my deepest gratitude to Dr. Sergi Abadal for sharing their thoughts and suggesting valuable ideas which have had significant impact on this thesis. I am grateful for their valuable time and cooperation during the course of this work. I also take this opportunity to thank my research group member Deekshith Shenoy Manur for all the constant support and help provided.
Abstract

As the technology downscaling allows the integration of many cores in the same multicore chips challenges faced are of delay, power requirements and chip area utilization. Multicore processor architectures rely on complex memory systems in order to provide fast and efficient means for data access and sharing between cores. Several on-chip networks have been proposed to improve the communication efficiency of multicore system. As the number of cores on a chip increases, the performance is limited by the communication among and within the chips. Traditional wireline topologies become insufficient for guaranteeing desired latency conditions without significantly affecting other metrics of throughput, bandwidth, and energy per message.

A wide range of computing hardware such as servers to embedded systems use platform based designs with multiple multicore Systems-on-Chips (SoCs). Most computing platforms such as embedded systems to server blades comprise of multiple Systems-on-Chips (SoCs). Traditionally, these multichip platforms are interconnected using metal traces over a substrate such as a Printed Circuit Board (PCB). Communications in multichip platforms involves data transfer between internal nets and the peripheral I/O ports of the chips as well as across the PCB traces. Long distance data communication over multi-hop wireline paths in conventional Network-on-Chips (NoCs) cause high-energy consumption and degradation in performance. Also, the intra-chip and inter-chip communication architectures are separately designed to maximize design flexibility. Jointly designing them could, however, improve the communication efficiency significantly and yield better solutions.

To satisfy the increasing demand for high speed wireless communication, many emerging interconnect technologies such as 3D integration, photonic, Radio Frequency (RF) and wireless
interconnects have been envisioned to alleviate the issues of a metal/dielectric interconnect system. All these interconnect technologies have their own advantages along with some challenges in terms of fabrication process or associated area overheads. In this context, disruptive solutions are required to alleviate the limitations of Network-on-chips (NoCs) architecture in terms of latency, providing high bandwidth and maintaining affordable power and area overheads. Current implementations show several shortcomings related to the main enabler of wireless communication in network-on-chips i.e. on-chip antennas. The size of future metallic on-chip antennas, i.e. hundreds of micrometers might render unfeasible the approach of integrating at least one antenna per core. Also, bandwidth is inversely proportional to the antenna size, metallic antennas may not be able to provide enough bandwidth. These issues cannot be solved by further reducing the size of a metallic antenna, as this would impose the use of very high resonant frequencies, from the near infrared to the optical ranges.

Novel devices based on graphene structures capable of establishing wireless links are explored in recent literature to provide high performance on-chip interconnections. Graphene-based antennas are just a few micrometers in size, could provide intra and inter-chip communication in the Terahertz (0.1–10 THz) band. These characteristics will both enable size compatibility with each processor core and offer enough bandwidth. Graphene-based antennas support the propagation of tightly confined SPP waves. Expected to be few orders of magnitude smaller than metallic quarter wave antennas for the same resonant frequency. A few micrometer wide and long patch antennas could effectively radiate in the Terahertz Band. Such reduced dimensions are comparable with future core sizes, i.e. few hundreds of micrometers, enabling the integration of one or multiple antennas per core. So, we propose that massive multicore architectures can have wireless communication capabilities at the core level by making use of Graphene-based planar
antenna arrays that are able to radiate signals at the Terahertz band by utilizing lower chip area than its metallic counterparts. The employment of graphene-based antenna arrays for the design and development of flexible and scalable interconnection framework is being proposed, as the achieved performance capabilities and the high bandwidth with extremely low power as well as extremely low area overhead that offered by this approach could deliver a breakthrough in massive multicore architectures.

In this thesis, we present an innovative approach to enable THz WiNoC with low power wireless devices operating in the THz bands such as graphene based antennas. We also propose to extend graphene-based wireless links to enable energy-efficient, phase-based communication protocol to create a seamless, wireless interconnection fabric for multichip systems. As compared to the previous state of the art token based MAC protocol, the novelty of proposed phase based communication protocol is that multiple simultaneous wireless link can be made active at a time whereas only a single wireless link can be made active in token based system. Therefore, performance gains for our proposed graphene based wireless system are magnificent when compared to all other architectures compared in this paper. With cycle-accurate simulations we show that such a design with torus like folding based on THz links instead of global wires can outperform state-of-the-art wireline mesh and folded torus based multichip systems. We provide estimates that they are able to provide significant gains (about 3 to 4 times better in terms of achievable bandwidth, packet latency and average packet energy when compared to wired system) in performance and energy efficiency in data transfer in a NoC as well as multichip system. Thus, realization of these kind of interconnection framework that could support high data rate links in Tera-bits-per-second that will alleviate the capacity limitations of current interconnection framework.
Table of Contents

Dedication .. ii
Acknowledgements ... iii
Abstract .. iv
Table of Contents .. vii
List of Figures .. ix
List of Tables .. x
Glossary .. xi

Chapter 1 Introduction .. 1
1.1. Network-on-Chip Paradigm ... 1

 1.1.1 Network Parameters & Metrics ... 3
1.2. Inter & Intra-chip Communication ... 4
1.3. Emerging Multicore Integration Technology ... 5
1.4. Motivation ... 8
1.5. Research Contributions ... 9

Chapter 2 Background and Related Work ... 12
2.1. On Chip Interconnects ... 12
2.2. Emerging Multichip Integration Technologies .. 13
2.3. Graphene-Based Antennas ... 14

Chapter 3 Wireless Interconnection Framework .. 16
3.1. Topology .. 16

 3.1.1 Folded Wireless Network on Chip Topology (GFWiNoC) 16
3.1.2 Multichip System Topology ... 18
3.2. Physical Layer .. 21

vii
3.3. Wireless Communication Protocol .. 24

3.4. Flow Control and Routing .. 26

Chapter 4 Simulation Results and Analysis .. 27

4.1 Simulator Setup .. 27

4.2 Energy Per bit estimation for Graphene based wireless Links 29

4.3 Optimization of Phase Duration ... 31

4.4 Performance Evaluation with Synthetic Traffic 32

4.4.1 Peak Achievable Bandwidth per Core .. 34

4.4.2 Average Packet Latency ... 38

4.4.3 Average Packet Energy .. 40

4.5 Performance Evaluation with Application Specific Traffic 42

4.5.1 Average Packet Latency ... 43

4.5.2 Average packet Energy .. 45

4.6 Comparison with All-to-All Connected Topology 48

4.7 Area Overheads .. 50

Chapter 5 Performance Evaluation with Emerging Integration Technologies 51

Chapter 6 Conclusions & Future Work ... 54

Bibliography .. 58
List of Figures

Fig. 1: Network-on-Chip topologies ...2
Fig. 2: Folded WiNoC architecture with wireless link deployment.............................17
Fig.3: 4-chip system with wireless link deployment...18
Fig.4: Phase based wireless communication protocol..24
Fig.5: Peak achievable bandwidth per core as a function of phase duration...............31
Fig.6: Peak achievable bandwidth per core of single chip architectures35
Fig.7: Peak achievable bandwidth per core of multichip system................................36
Fig.8: Average packet latency of various single chip architectures............................38
Fig.9: Average packet latency for (a) 4-chip (b) 9-chip system38
Fig.10: Average packet energy for single chip architectures.....................................40
Fig.11: Average packet energy for multichip system..41
Fig.12: Percentage reduction in average packet latency w.r.t Folded Torus for application
specific traffic patterns...43
Fig.13: Average packet latency for application specific traffic for (a)4-chip (b)9-chip system...44
Fig.14: Average packet energy for application specific traffic for single chip45
Fig.15: Average packet energy for application specific traffic for (a)4-chip (b)9-chip system....47
Fig.16: Performance comparison with All-to-All Connected Topology......................49
Fig.17: Performance evaluation of a 4-chip system with alternative technologies..........52
Fig.18: IoT Application Domain..56
List of Tables

Table 1: Path Loss & Energy/bit for THz band with increasing distance ..30
Table 2: Average hop-count for different architectures ... 39
Table 3: Energy per bit for a single point-to-point link and possible aggregate bandwidth for different interconnect technologies ... 53
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NoCs</td>
<td>Network-on-Chips</td>
</tr>
<tr>
<td>SoCs</td>
<td>System-on-Chips</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>HPC</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>THz</td>
<td>Terahertz Band</td>
</tr>
<tr>
<td>SPP</td>
<td>Surface Plasmon Polariton</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon Nanotubes</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap for Semiconductors</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Unit</td>
</tr>
<tr>
<td>FDMA</td>
<td>Frequency Division Multiple Access</td>
</tr>
<tr>
<td>SDMA</td>
<td>Space Division Multiple Access</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to noise Ratio</td>
</tr>
<tr>
<td>OoO</td>
<td>Out-of-order Core</td>
</tr>
<tr>
<td>WiNoC</td>
<td>Wireless Network-on-Chip</td>
</tr>
<tr>
<td>MFWiNoC</td>
<td>mm-Wave Wireless Network-on-Chip</td>
</tr>
<tr>
<td>GFWiNoC</td>
<td>Graphene enabled Wireless Network-on-Chip</td>
</tr>
<tr>
<td>IoT</td>
<td>Internet of Things</td>
</tr>
</tbody>
</table>
Chapter 1 Introduction

1.1 Network on Chip Paradigm

Modern day multi-processor relies on buses to share the data and allow communication to happen between different cores on a single chip. However, with growing number of cores in subsequent technology node the buses do not scale well, and the contention delay of the buses rises when many or all the cores on chip request for the communication at the same time. This limitation paved the way to development of new architectures to scale single chip multiprocessors to large number of cores. One such method which has gained much attention in recent years is to route processing core-to-core and core to memory traffic using an interconnection network on chip based on routers and switches.

Network-on-Chip paradigm is an approach of designing a communication fabric between cores of a multicore chip with an inherent property of being scalable to larger network. It is a communication centric approach where the communication infrastructure is separated from the functionality of the cores. It separates the communication network from the processing elements and the data is routed over this network using intelligent switches or routers. Such an approach provides a scalable plug-and-play system, and facilitates reusability. Fig.1 depicts different Network-on-Chip architecture for a 16-core system.

Network-on-Chips (NoCs) have emerged as a communication infrastructure for the multi-core System-on-Chips (SoCs) [1]. Among different alternatives, Mesh based NoC architecture is primarily used in multicore products [2] as it is easy to design, verify, and manufacture. Despite its advantages, due to the multi-hop communication over the metal interconnects, traditional Mesh
based NoC architectures are not scalable in terms of performance and energy consumption. Folded architectures such as Torus and Folded Torus were proposed to improve the performance of Mesh based NoCs while retaining the regular tile-based structure for ease of manufacturing [3]. Long-range metal wires in a Mesh based NoC [4] and ultra-low-latency and low-power express channels between communicating cores [5] have also been proposed to improve the performance of conventional NoCs. However, the performance gain of these approaches is limited due to metal/dielectric based interconnection. If these long-range links are realized with emerging non-charge-transfer technologies like photonic, RF, surface-wave or wireless interconnects, the performance and energy-efficiency of NoCs can be significantly improved [6][7][8][9]. However, photonic and RF interconnects need the additional physically overlaid optical waveguides or micro-strip transmission lines to enable data transmission across the NoC. On the other hand, long-range wireless shortcuts operating in the millimeter-wave (mm-wave) do not require laying out of physical interconnects. Using such on-chip antennas embedded in the chip wireless NoC (WiNoC)
architectures have been proposed [9][10]. These architectures are shown to improve energy efficiency and bandwidth of on-chip data communications. However, the date rate of the mm-wave wireless channels is limited by the state-of-the-art power-efficient transceiver design.

Network-on-chips have many advantages over the conventional methods of on-chip communication:

1) Scalability and Replicability.
2) On chip wiring resources are shared between all cores thereby improving the efficiency of chip area used for wiring.
3) Wiring in NoCs has a more regular structure, allowing better optimization of electrical properties that would result in less cross-talk.
4) NoCs are modular and their interfaces can be standardized.

1.1.1 Network Parameters & Metrics

Before diving into the insights about interconnection systems, it is imperative to characterize the parameters that are utilized to define networks and the performance metrics that are used to gauge the network performance [3].

Flits: Wormhole routing is used to improve the network performance. In this routing, individual packets are divided in to smaller segments that are known as flits. Flit width is the number of bits per each flit and in general is equal to the width of the physical link.

Hop Count: Movement of a flit from one router to another is defined as a single hop. Hop Count is the total number of hops a flit makes from the source node to its destination node. Average hop count of an architecture is defined by considering all the source and destination pairs. In general,
hop count of a network should be low as this would ensure that the flits can reach their destination faster and hence the network if connected properly.

Network Diameter: The longest minimal hop between two communication cores in a network is known as the network diameter.

Peak Achievable Bandwidth per Core: The peak achievable bandwidth per core is measured as the maximum sustainable data rate in number of bits successfully routed per core per second at network saturation.

Average Packet Latency: It is the average number of clock cycles required to transmit a packet to the destination core successfully. Due to different average distances between cores in the different interconnection architectures, the latency characteristics are different for every network.

Average Packet Energy: Average packet energy is the energy consumed to transfer an entire packet from source to destination in the multichip system on average.

1.2 Intra & Inter-Chip Communication

A wide range of computing hardware such as servers to embedded systems use platform based designs with multiple multicore Systems-on-Chips (SoCs). With the increase in computational and functional complexity of these platforms, the number of individual SoCs or multicore chips increases manifold [11]. This makes the interconnection in these systems grow in both size and complexity. The performance and overall energy efficiency of these platforms therefore depend on the performance of the interconnection architecture that is responsible for the system integration. While intra-chip communication infrastructure is seeing a paradigm shift from bus-based systems to Network-on-Chip (NoC) architectures [1], inter-chip communication also needs to evolve at a rapid pace to cater to increasing bandwidth demands within the strict power and
thermal envelopes. Traditionally, inter-chip interconnections are realized using solder bumps or C4 interconnects placing individual chips on a substrate or Printed Circuit Board (PCB). Other chip-to-chip interconnects such as Peripheral Component Interconnect (PCI) is one of the most common standard local I/O bus technology to interconnect board-level multichip systems. Recently, PCI express (PCIe) is presented as next generation I/O technology [12].

Recent trends according to the International Technology Roadmap for Semiconductors (ITRS) predict that the pitch of the I/O interconnects in ICs is not scaling as fast as the gate lengths or pitch of on-chip interconnects [13]. However, the pitch and physical bandwidth density of on-chip global interconnects are scaling relatively better with technology. This implies a gap in density and performance of traditional I/O systems relative to on-chip interconnections. Moreover, longer and bulkier substrate traces for inter-chip communication due to the wiring complexity further aggravates the crosstalk and the signal integrity issues. Typically, inter-chip communication involves multihop paths over intra-chip global wires in both source and destination chips, I/O blocks and substrate traces. Often the intra and inter-chip communication protocols are also different to offer design flexibility to design teams. Due to these factors the efficiency of the multichip system in terms of bandwidth, latency and energy consumption is reduced.

1.3 Emerging Multicore Integration Technologies

Many emerging alternative interconnect solutions [14] like inter-chip photonics, vertically integrated monolithic 3D ICs [15] or silicon interposers [16] are envisioned as solutions to the off-chip interconnection challenges. However, the inability of the pitch scaling makes the adoption of photonic interconnects challenging for high complexity scalable multichip systems. Similarly, issues related complex thermal management techniques and low yields of 3D ICs have rendered
them infeasible for large scale adoption so far. The use of silicon-interposers which are themselves large dies with abundant wiring resources seem to emerge as a low-cost and high-yield alternative to photonic or monolithic 3D integration. Using the interposer multiple chips can be interconnected using its on-die wires which can implemented in the same technology node as the chips. The chips are typically packaged onto the interposer die using microbumps whose relatively smaller pitch compared to C4 bumps makes the interposer outperform traditional substrate based multichip systems [16].

On the other hand, recent research has brought to light novel graphene based antennas operating at THz frequencies [18] [19]. Due to the higher operating frequencies compared to mm-wave transceivers, the data rate that can be supported by these antennas are significantly higher. Using the plasmonic resonance in graphene, these antennas are able to provide high bandwidth (in the range of hundreds of Gbps). Moreover, higher operating frequencies imply that graphene based antennas are just hundred micrometers in size [19] compared to dimensions in the range of a millimeter of mm-wave antennas. Such reduced dimensions are suitable for integration of several such transceivers in a single NoC for relatively low overheads.

Recent research envisions wireless communication in the Terahertz band (0.1-10THz) as a key technology to satisfy the increasing demand for high speed communication in multicore chips [17]. Wireless data communication links up to several centimeters in length with graphene based antenna arrays are demonstrated are proposed in recent literature [19]. Due to growing interest in this communication technology, novel transmitting and receiving devices based on micro-scale graphene structures have been investigated [19]. It is demonstrated that such graphene based antenna structures are capable of establishing THz band wireless links which can be used for on-chip as well as off-chip seamless communication. THz band channel modeling has also been
developed in [20] which shows possible communication range of up to 10m. These wireless interconnections are shown to improve energy efficiency and bandwidth of on-chip data communication in multicore chips over state-of-the-art counterparts. In this work, we propose to use such graphene based THz band wireless interconnects to establish a seamless communication backbone which enables data exchange between cores in a single chip as well as between chips in a multichip system with dimensions spanning several centimeters. High efficiencies combined with micro-scale device geometries tuned to THz frequencies makes this graphene based transceivers ultra-low power. Therefore, graphene based wireless interconnections can improve the energy efficiency of multichip systems significantly.

We propose to extend the intra-chip NoC fabric across multiple chips where each chip is potentially a multicore system or SoC [16]. The same communication protocols used for data transfer in the intra-chip NoCs will be used for off-chip data as well, eliminating the need for protocol transfer. Few nodes inside the chips will be equipped with graphene based wireless transceivers, which will fold the overall extended NoC by communicating with other such nodes across multiple chips to reduce the diameter of the interconnection fabric. Here, we exploit the benefits of a regular NoC structure in conjunction with emerging wireless interconnect technologies. We explore the design of a folded Wireless NoC architecture and proposes integration of multichip systems that utilizes a novel phase based communication protocol and demonstrate that the proposed design outperforms traditional wired I/O based multichip systems. Through cycle-accurate system-level simulations, we demonstrate that the proposed design can outperform wireline and wireless counterparts while reducing the energy consumption in on-chip & off-chip data transfer.
1.4 Motivation

Long distance data communication over multi-hop wireline paths in conventional Network-on-Chips (NoCs) cause high-energy consumption and degradation in performance. Many emerging interconnect technologies such as 3D integration, photonic, Radio Frequency (RF) and wireless interconnects have been envisioned to alleviate the issues of a metal/dielectric interconnect system. Most computing platforms such as embedded systems to server blades comprise of multiple Systems-on-Chips (SoCs). Traditionally, these multichip platforms are interconnected using metal traces over a substrate such as a Printed Circuit Board (PCB). Communications in multichip platforms involves data transfer between internal nets and the peripheral I/O ports of the chips as well as across the PCB traces. This multi-hop communication leads to higher energy consumption, decrease in data bandwidth and increase in message latency.

To satisfy the increasing demand for high speed and low power interconnects, THz Wireless NoC (WiNoC) enabled with high-speed direct links between distant cores is desired.

Novel devices based on graphene structures capable of establishing wireless links are explored in recent literature [19] to provide high performance on-chip interconnections. Therefore, we present an innovative approach to enable a NoC as well as multichip systems of various size with low power wireless devices operating in the THz bands such as graphene based antennas. We propose to extend graphene based wireless links to enable energy-efficient, phase-based chip-to-chip communication to create a seamless, wireless interconnection fabric for multichip systems. With cycle accurate system-level simulations, we provide estimates that they provide significant gains in performance and energy efficiency in on-chip & chip-to-chip data transfer in NoC based chips and show that multichip system which can outperform state-of-the-art wireline systems.
1.5 Research Contributions

This thesis will explore the possibility of seamless inter and intra-chip wireless communication in Terahertz band by making use of graphene based THz band antenna array that are able to radiate in Terahertz band with very low power. It will be shown that wireless interconnects can be used to establish a seamless communication infrastructure for single chip and multichip systems within a single package by making use of graphene-based antennas. These graphene-based antennas are two orders of magnitude less than their metallic counterparts, so they are also able to provide a very large bandwidth as it is inversely proportional to the size of antenna. For communication to happen in terahertz band there is a high path loss problem along with the integration of these antennas that would be integrated with the standard CMOS process.

Current interconnection frameworks are not capable to fully exploit the true potential of this technology. As this field has seen many advancements in research recently, this thesis will explore the architecture and the interconnection framework for multichip communication along with a suitable MAC Protocol that would aid to harness the advantages of using graphene based antennas and available large bandwidth in Terahertz band. The wireless links will span distances from 20mm up to a few tens of centimeters, using the same communication protocols for both inter-chip and intra-chip data transfer. The developed architecture would enable efficient data sharing between cores in single chip as well as in multichip systems, thereby merging both the inter-chip and intra-chip networks. Novel phase based communication protocol has been employed for both inter and intra-chip data transfer. Wireless transceivers will be integrated in a select few cores in the chips, and each of these cores will be able to communicate directly with other such cores in a single hop, within the same or different chips. The internal cores to be equipped with the graphene antenna array are selected in such a way so that they fold the network efficiently reducing the
network diameter that would ultimately reduce the multihop communication as well as improve the energy efficiency.

The following points will summarize the contributions made during this work.

• **Proposed Interconnection Architecture**
 o Development of a methodology for seamless interconnection between on-chip and chip-to-chip data transfer by employing emerging graphene based THz band antennas.
 o Design of a seamless hybrid wired and wireless interconnection network for single chip as well as 4-chip & 9-chip systems.

• **Proposed Novel MAC Protocol: Phase based Communication**
 o Design of a novel wireless communication protocol to fully utilize the performance gain of highly directional graphene antenna arrays and avoiding interference between wireless links.

• **Wireless Link Budget Analysis for Energy/bit estimation of Graphene-based wireless links**

• **Evaluation of Wireless Single chip & Multichip Architectures**
 o Evaluation of peak achievable bandwidth for varying system size.
 o Evaluation of average packet latency & packet energy dissipation network for varying system size with synthetic traffic.
 o Analysis of packet latency and packet energy for the systems with Application specific traffic patterns.
 o Comparison of performance metrics of the proposed wireless multichip architecture with the state of the art wireline counterpart.
• **Development of simulation framework**

 o Development of a cycle accurate simulator to implement the wireless multichip architecture and monitor the progress of flits over the switches and links per cycle.

 o Include the power consumption parameters of both the wired and wireless links in the simulator to model the energy consumption in data exchange in the single as well as multichip system.

 o Obtain experimental results of the single chip and wireless multichip architecture in terms of the following metrics for performance evaluation:

 ▪ Peak achievable bandwidth per core
 ▪ Packet energy dissipation
 ▪ Average packet latency
Chapter 2 Background and Related Work

Related work has been discussed in three subsections. First subsection relates to the on chip interconnection and networks, second subsection relates to conventional multichip integration and emerging technologies for inter-chip communication whereas the third subsection discuss about the potential of THz band graphene-based antennas.

2.1 On chip Interconnection

NoC have emerged as a communication infrastructure for multi-core chips. As the number of cores increases on a single chip, interconnection of cores in such systems becomes complex. Despite its advantages performance and overall energy efficiency of these platforms therefore depend on the performance of the interconnection architecture that is responsible for the system integration. Several alternative technologies exist for realizing on-chip wireless interconnections [9][10][21][22]. Comprehensive surveys regarding various wireless NoC (WiNoC) architectures and their design principles is presented in [22]. Transmission line based Radio Frequency (RF) Interconnects, surface wave based communication channels are proposed in [7][23]. Energy efficient WiNoC architecture with Zigzag antenna and millimeter wave transceivers is proposed to design a mm-wave wireless NoC in [9][10][22]. In [21], mm-wave wireless NoC with directional log-periodic antenna is proposed. To increase the channel bandwidth, authors [24] has proposed an mm-wave WiNoC architecture with multiple non-overlapping channels to enable Frequency Division Multiple Access (FDMA) based Medium Access Control (MAC) mechanism. However, such FDMA based approach is non-trivial from the perspective of transceiver design and the number of concurrent channels is not easily scalable. All these mm-wave WiNoC architectures utilize metallic on-chip antennas, which may not be able to provide enough
bandwidth due to their size. Mm-wave antennas based on metal cannot be reduced further due to limitations in standard CMOS lithography process. Also, bandwidth is inversely proportional to the size of antenna. Therefore, to have much higher bandwidth, novel devices operating in THz band which are orders of magnitude lower in size as compared to the metallic antennas are being investigated.

2.2 Emerging Multichip Integration Technologies

According to ITRS, off-chip global wires does not scale proportionately with on-chip wires. Traditional methods to interconnect chips in multichip systems involve C4 bumps coupled with in-package transmission lines [13]. However, performance with transmission lines is limited by many factors such as crosstalk coupling effects, signal reflections, signal quality deteriorations due to microwave effects and frequency-dependent lines losses in the transmission lines. This in turn limits the number of concurrent high density inter-chip I/O which restricts the possible off-chip bandwidth. To further alleviate the problem of multichip integration with conventional I/O based system many alternatives technologies such as vertically integrated 3D integration [15], silicon interposer [16], photonic interconnects [15][14], RF interconnect [7] inductive or capacitive coupling based interconnects [25] and wireless interconnects [26] are being explored. In 3D stacked approach the individual dies need to be thinned to accommodate Through-Silicon-Vias (TSVs) through it which can induce die cracking leading to yield issues and the increased power density results in severe thermal challenges. Photonic and RF interconnects need the additional physically overlaid optical waveguides or micro-strip transmission lines to enable data transmission across the NoC.
On the other hand, long-range wireless shortcuts operating in the millimeter-wave (mm-wave) or Terahertz band do not require laying out of physical interconnects. High-Performance Computing (HPC) environment with wirelessly connected multichip module have been proposed in [26]. In [27] transceivers for 60GHz inter and intra-chip communications are designed. However, this work does not evaluate system-level performance. In [27] fast pre-bonding wafer testing was enabled by using on-chip wireless transceivers that provided direct accesses to components under test within the ICs. In [28] performance of intra and inter-chip communication of a multichip system was evaluated using mm-wave on-chip metallic antennas. Different medium access mechanisms ranging from simple token passing based protocol to more sophisticated CDMA based protocol have been explored for mm-wave wireless interconnects [29][30][31]. To exploit full potential of wireless interconnects, novel MAC protocol utilizing the full benefit of the topology needs to be investigated. Mm-wave antennas along with token based communication protocol have been shown to improve the performance of wireless system by enabling single wireless link at a time. However, mm-wave metallic on-chip antennas are limited in their bandwidth and the supported data rates are a few Gbps depending on the transceiver design. Therefore, to improve the bandwidth further novel devices working as transceivers and antennas such as graphene based nanostructures need to be investigated. In our work, we utilize simultaneous wireless communication as compared to single wireless link in token based system, which are aided by novel phase based communication protocol.

2.3 Graphene based Antennas

While metallic antennas have shown to improve the performance of wireless system, achievements in performance gain are impressive but these gains could be huge with some other technology. On-chip antennas from graphene or Carbon Nanotube (CNT) based structures are
predicted to provide high bandwidth wireless communication channels [18][19]. On-chip antennas realized by graphene based structures are predicted to operate both as modulators as well as antennas providing high bandwidth wireless communication in the THz frequency channels [18][19]. In [32][33] authors evaluated the feasibility of a Wireless NoC (WiNoC) architecture realized by graphene based omnidirectional antennas. However, the performance gain for such WiNoCs are limited as only a single wireless link can be active at any given point of time due to the omnidirectional nature of the antennas. Recently, directional array of graphene antennas has been explored in [19]. This will enable novel architectures and communication mechanisms using THz graphene antennas. We also propose a novel phase based communication protocol to enable simultaneous wireless links which would improve the performance of system drastically. Therefore, in this work, we propose a hybrid interconnection fabric for single chip & multichip systems using both on-chip wired links for intra-chip and low power high bandwidth THz-band directional array of graphene antennas for inter-chip communication.
Chapter 3 Wireless Interconnection Framework

3.1. Topology

Every core in each chip is integrated with a NoC switch, and the switches within each independent chip are interconnected using an intra-chip NoC architecture. The system is proposed with Mesh based intra-chip NoC topologies and their interconnection architectures are described below:

3.1.1. Folded Wireless Network on Chip Topology (GFWiNoC)

We present the design of a folded NoC architecture with wireless links in this section. The ideal approach for folding a NoC is to connect the switches directly that are farthest away from each other. On a planar Mesh NoC, these are the diagonally opposite switches. Interconnecting diagonally opposite switches are challenging with wired links due to unmanageable wire delays. Therefore, we propose to use the wireless links to enable the folding of the diagonally opposite switches. In order to establish point-to-point links between the diagonally opposite switches we envision the use of directional array of graphene antennas operating in the THz frequency bands. Due to the high operating frequency, the antenna arrays are very directional and also are relatively small in size compared to mm-wave counterparts. Therefore, in the proposed topology we place directional antenna arrays oriented towards each other for maximum coupling. In this way, the corners of the planar NoC are folded over resulting in 2 diagonal modes of communications as D1 and D2 in Fig. 2. In addition to the corners, we also want to enable folding of both opposite and adjacent edges of the NoC. In order to achieve this, the selected switches along the edges are equipped with similar directional antennas to directly communicate with the switches on opposite
and adjacent edges. Folding to connect opposite horizontal edges in Fig. 2 is achieved by deploying the antennas in switches along those edges enabling a vertical mode of communication marked as V. Similarly, folding to connect opposite vertical edges is achieved by deploying the antennas in switches along those edges enabling a horizontal mode of communication marked as H. Not all the switches along the edges are equipped with the graphene transceivers to avoid interference as discussed later in the section 3.3 on communication mechanism. Similar to folding opposite edges, the adjacent edges are also folded by introducing more diagonal links in both D1 and D2 modes as shown in Fig. 2.

The graphene antenna arrays operating in the same mode (H, V, D1 or D2) communicate concurrently in the same THz frequency band. Therefore, to avoid interference between them, transceivers in the same mode are not deployed in adjacent switches. This avoids multiple transceivers being in the range of the main lobe of the radiation pattern of an antenna array.

Fig. 2. Folded GFWiNoC architecture with wireless link deployment
Therefore, each link in the same mode can operate concurrently. The communication mechanism to coordinate between the four modes of communication is discussed in section 3.3.

3.1.2. Multi-Chip System Topology

The proposed wireless interconnection fabric consists of multiple multicore SoCs as shown in Fig. 3. Cores within each individual chip are interconnected by an intra-chip NoC. While the intra-chip NoC can be of any architecture such as regular tile-based mesh or irregular custom designs depending upon applications and design trade-offs, in this work the topology of the intra-chip

![4-chip system with wireless link deployment](image)

Fig.3. 4-chip system with wireless link deployment
NoCs is chosen as mesh as it is a conventional NoC topology used in several multicore based products and is relatively easy to design, verify and manufacture. To utilize the benefit of regular NoC structure while alleviating the issues of wireline inter-chip links we equip certain NoC switches in the multicore chips with emerging graphene based wireless transceivers. To create these inter-chip wireless interconnects we propose a toroidal folding approach by making use of the high bandwidth, directional point to point graphene antenna arrays that can directly connect distant switches in the multichip system with a single hop. In a planar mesh NoC fabric is simply extended to span multiple chips, the diagonally opposite switches will be far apart.

Multi-hop data transfer over such long-wired paths leads to unmanageable delays and energy dissipation. To avoid these delay and energy limitations we propose a toroidal folding approach by making use of wireless links to enable the folding of the diagonally opposite switches to reduce the distance between communicating cores. This will lead to lower delay and lower energy dissipation. We propose to use directional array of graphene antennas operating in the terahertz band to enable point to point wireless links between the farthest switches of the multichip system located along corners and edges. These arrays are shown to be highly directional [19] as discussed later in section 3.2.

The strategy to form the multichip system interconnection fabric can be understood as same as discussed in section 3.1.1 considering that the distant switches are now at the corners of different chips. First, the topology is folded along the diagonals which results in 2 different diagonal modes of communication D1 & D2 between switches at the corners of the chips as shown in Fig. 3. Following folding the diagonally opposite corners, the opposite edges are folded by equipping switches at the edges in each chip with the graphene array based transceivers to form the vertical and horizontal modes shown as V and H respectively in Fig. 3. Next, we also enable the folding
of adjacent edges by equipping the selected switches along the edges with graphene antenna arrays that are directed towards each other to augment the diagonal modes of communication D1 and D2. This is achieved by connecting the switches along the edges in addition to the corners. In this way folding along all the 4 edges results in 4 modes of communication namely, H, V, D1 and D2.

Another advantage of using this toroidal folding based approach is that it can be scaled well from a single chip system to a multi-chip system whose arrangement can be thought of as an array of chips considering the intra-chip NoC to span over the array of chips where inter-chip links are realized only with the graphene based links. In general, this folding approach can be extended for an NxN array of chips. Only few switches amongst all in the multichip system that help in toroidal folding the interconnection architecture have been selected and deployed with the graphene transceivers. This deployment is done in such a way that multiple links for a single mode of communication can be established without having any interference with each other. This deployment also allows concurrent communication in same THz frequency band of graphene antenna arrays which are operating in the same mode. Therefore, transceivers that would operate in same mode are not deployed in adjacent switches. This prevents multiple transceivers of the same mode to be in the range of main lobe of its radiation pattern of a particular antenna array. Thus, each link of the same mode is able to operate concurrently and the communication protocol for this concurrent communication in different modes will be discussed in section 3.3.
3.2. Physical Layer

The chosen on-chip antenna has to provide the best power gain for the smallest area overhead. However, state-of-the-art alternatives such as on-chip metallic antennas in the mm-wave bands can only provide a few tens of gigahertz of bandwidth [34]. The manufacturability of metallic structures on a die limits the size and hence operating frequencies and bandwidth of such antennas. We envision that multichip system which will enable seamless wired intra and wireless inter-chip communications. Intra-chip communication happens over the wireline NoCs. On-chip wireline links are realized with traditional global-wire based interconnects depending on the adopted mesh topology as discussed in section 3.1.1.

A few alternative technologies exist for realizing inter-chip wireless interconnections at high frequency bands over 10GHz. However, as the bandwidth is inversely proportional to the size of antennas, smaller antennas can provide higher data rates in multichip systems. Due to the limitations in manufacturability of antennas operating in THz frequencies using CMOS metal processes alternative devices are required which can operate in such high frequency bands. Graphene microstructures such as, an antenna array of 4x4 identical dipoles can be used for THz band wireless communications [19]. These arrays are formed using multiple single dipole antennas, each of which is made using a graphene layer with gold deposited on it [19]. This graphene structure is placed or grown over a SiO2/Si substrate making it compatible with CMOS processes. Each antenna is 100um in length and 120um wide. These antennas are placed 60um apart horizontally and 40um vertically from each other to form an array with directional gains [19].

Graphene can support propagation of Surface Plasmon Polariton (SPP) waves. Electric pulses representing the bit stream to be transmitted excites the resonance in the graphene structures for transmission. Consequently, the graphene structure operates both as the modulator as well as the
antenna. Therefore, on-off keying (OOK) based modulation is inherently adopted via the graphene based antenna structures as electrical pulses cause emission while an absence of a pulse does not. The characterization of the graphene based antenna array has been analyzed with different configurations in terms of power consumption and the area overhead [19]. The path loss of wireless communication with such antennas increases with the distance. Therefore, it is necessary to increase the antenna gain to compensate the high path loss problem with increasing distance for wireless communication. The antenna gains can be increased by using the array of graphene structures to create constructive interference patterns creating high directional gains. The radiation pattern of graphene based antenna arrays could be changed by turning off the first and the fourth row of a 4x4 array as shown in [19]. Due to this pattern, a gain of 10dB can be achieved with an efficiency of 89.14% while operating at 1.05 THz [19]. This is in deep contrast with any other type of antenna arrays which requires phase shifters. The high gain makes the antenna array highly directional which would support our architecture that requires directional wireless links enabling the toroidal folding based interconnection fabric. Even though the graphene antenna array will require multiple elements each element is only a few hundred microns in dimension (equal to \(\lambda/2 \) of the THz carrier) due to the high resonant frequency in the range of THz bands. This enables antenna arrays with 16 elements to be only a few hundred square microns which can decrease further with increase in carrier frequencies. This enables low area overheads by using these antenna arrays enabling the use of multiple antenna arrays in each chip.

The gain or directivity of an antenna is the ratio of radiation intensity averaged over all directions and the beamwidth is normally measured at the half power or -3dB point of the main lobe. The half power of the main lobe for these highly direction antenna arrays is so small that transmitted power at the side lobes becomes almost negligible to be able to cause any interference
with neighboring antenna arrays. Therefore, the radiation pattern and the beamwidth of these antenna arrays restricts the total number of these antenna arrays to 9 for a typical NoC size 20mmx20mm. The exact separation for acceptably low interference between multiple links depends on the chosen array and its radiation pattern. However, a separation by at least 2 nodes is assumed in this work. Sharper main lobes will enable denser link deployment with higher performance gains.

It is observed that the path loss at certain frequencies such as 1.21 THz, 1.28 THz, 1.45 THz etc. are very high due to the molecular absorption attenuation caused by the isotopologues of gases with different absorption coefficients at various frequencies. Channel modeling in THz bands requires development of novel models which can captures the effects due to environmental factors such as molecular absorption, pressure and temperature. It is known that loss due to molecular absorption is almost negligible for distances below one meter. Therefore, this graphene based antenna arrays could be deployed for designing a flexible and scalable multichip interconnection fabric that can achieve high bandwidth with extremely low area overheads. The area overheads are characterized in section 4.7.

We envision to use a quilt packaging system where, the package cover over each chip can be patterned to create a cavity over each antenna array [35]. These packaging systems allow wireless communication between chips with low insertion loss and hence provide higher performance compared to other conventional packaging systems [35]. This will enable the antennas to communicate through air medium. The propagation of THz band wireless channel is better understood and analyzed in free-space or air compared to any other medium like silicon [17]. Therefore, we envision quilt packaging to enable propagation through air medium for THz
communication between chips. The adoption of quilt packaging helps us to use the channel model for air propagation to estimate the required link budget and power consumption in section 4.2.

3.3. Wireless Communication Protocol

Several wireless channel access mechanisms tailored for wireless interconnections in NoC environments are known [9] [33]. In mm-wave interconnects wireless bandwidth is limited by the state-of-the-art transceiver design and on-chip antenna technology. To improve performance, multiple wireless transceivers need to access the wireless medium to communicate via the energy-efficient high bandwidth wireless interconnects. Consequently, for the proposed toroidal folding based approach we adopt a channel access mechanism that is suitable for the 4 modes of communication in this multichip system.

As discussed in the topology section and on the toroidal folding approach of the NoC, switches have been deployed with the directional graphene antennas in such a way that they enable four directions of wireless communication namely Horizontal (H), Vertical (V), Diagonal1 (D1) and Diagonal2 (D2). As all the graphene antennas are operating in the same frequency band and the transceiver that would be operating in different modes are very closely located in the adjacent tiles (closer than the minimum distance for acceptably low interference), only a single mode is enabled

![Phase based wireless communication protocol](image)

Fig. 4. Phase based wireless communication protocol
at a time to avoid interference amongst transceiver operating in different modes that are near to each other. So, communication happens in four phases which are H, V, D1 and D2 as shown in Fig. 4. Each phase is further divided into 2 sub-phases that would enable half-duplex communication between any pair using the same physical wireless channel. This is denoted by opposing arrows in Fig. 4. The duration of each phase also plays an important role in overall performance of the whole system. So, the duration of the phase has also been optimized to have the best performance. The results of the optimization of phase duration has been presented in results section 4.3. Wake signals that are being created by a simple state machine are used to enable the transceiver in their respective phase. Therefore, a combination of separation in both space (Space Division Multiple Access) and time (Time Division Multiple Access) enables the multi-modal communication in the proposed graphene enabled multichip system.

3.4. Flow Control and Routing

The routing protocol for the proposed wireless NoC as well as multichip system is a seamless intra and inter-chip data communication mechanism. Wormhole switching has been adopted for both wired as well as the wireless links in the multichip system where data packets are broken down into flow control units or flits [9]. Main advantage of using this kind of switching is that it reduces the buffer requirements at the switches as unlike packet switching the whole packet is not forwarded thereby making the switches consume less power with lower area overheads. All these switches have their own unique addresses and bidirectional ports for all the links that are attached to them. As the directional wireless links are point to point, even if partial packets are being transmitted the integrity of wormhole switching is maintained.
To optimize the network performance, we adopt a shortest path routing. A forwarding table based routing over pre-computed Dijkstra algorithm is used. The shortest path between any two pair of nodes is obtained by Dijkstra’s algorithm. The path between any two nodes depends on the start node for the algorithm. However, for a specific start node the shortest path along the extracted tree is always unique as the minimum spanning tree inherently eliminates loops. Consequently, deadlock is avoided by transferring flits along the shortest path routing tree extracted by Dijkstra’s algorithm, as it is inherently free of cyclic dependencies. Only header flit is forwarded to the next switch in the path to final destination. Rest of the body flits simply follow the path that is laid by the header flit based on the wormhole switching. So, each switch has local forwarding information rather than global routing information making the routing logic scalable with size.
Chapter 4 Simulation Results and Analysis

This section gives an overview of the experimental setup of the proposed system, and evaluates its performance in detail. The wireless architecture is a hybrid network with both wired and wireless interconnects. The system is considered to have 64 cores per chip, and the number of chips in the system is varied from one to a maximum of nine for this work’s experiments, yielding different systems of sizes 64, 256 and 576 cores. Every core in the multichip system is integrated with a NoC switch, and the switches within each independent chip are interconnected using an intra-chip NoC architecture as explained in Chapter 3. First, we discuss the optimization of the phase duration using this simulation platform and packet energy estimation for graphene based inter-chip wireless links followed by the performance evaluation in the next subsections.

4.1. Simulator Setup

In this section, we evaluate the performance and energy efficiency of the proposed wireless multichip system using a cycle accurate simulator. We compare the proposed wireless interconnect based WiNoC & multichip system with their wireline counterparts using both synthetic and application-specific traffic patterns.

The channel capacity of THz bands is shown to be more than 4Tbps for distances of 0.1mm [43]. However, THz transceivers such as [42] are able to exploit around 100Gbps data rates. Also, the maximum data rate on the wireless links is conservatively assumed to be 1/10th of the carrier frequency [36]. Using this assumption, it is possible to achieve a data rate up to 100Gbps for a distance of 10cm at 1 THz frequency. Hence, a wireless bandwidth of 100Gbps is used for this work. The power consumption of the wireless links is estimated from a link budget analysis as discussed in section 4.2. The network switches are synthesized from a RTL level design using
65nm standard cell libraries from Chip MultiProjects (http://cmp.imag.fr), using Synopsys. On the other hand, the delay and energy dissipation on the intra-chip wireline links is obtained through Cadence simulations considering the specific lengths of each link based on the established mesh topology in the individual chips considering 20mmx20mm dies. In the Mesh based intra-chip NoCs all wired links are considered to be single-cycle links. The delay and power dissipation including both dynamic and static power consumption of all these components of the multichip interconnection fabric are then incorporated in a cycle accurate simulator to evaluate the performance and energy efficiency of different multichip systems.

The simulator characterizes the multichip architecture and models the progress of the flits over the switches and links per cycle accounting for those flits that reach the destination as well as those that are stalled. Ten thousand iterations were performed eliminating transients in the first thousand iterations for the synthetic traffic patterns. For application-specific traffic, each kernel is run to completion. In our experiments, we consider each core to be connected to a three-stage pipeline network switch adopted from [37]. The switches are connected with other switches according to the proposed architecture. We consider each input and output port of a switch to have 8 VCs with a buffer depth of 4 flits for all the architectures considered in this paper. We consider a representative maximum packet size of 16 flits with a flit size of 32 bits in our experiments unless otherwise mentioned. While higher flit sizes are possible, it has been discussed in [38] that wide flits increase the performance of interconnection networks marginally while requiring high area and power overheads. All the digital components are driven by a 2.5GHz clock and 1V power supply, which are the nominal frequency and voltage in the 65nm technology node.
4.2. Energy Per bit estimation for Graphene based Intra & Inter-Chip Wireless Links

In this subsection, we estimate the energy consumption of the graphene based inter-chip wireless links used in our proposed multichip architecture. We develop our estimate of the energy consumption per bit over the THz channel using the graphene based transmitters and receivers based on the path loss model developed in [20]. To reduce the transmitted energy, we consider using directional array of graphene antennas as proposed in [19]. Path loss in Terahertz band for different distances are shown in [20], where, for a distance of 20mm & 10 cm at 1 THz, the path loss is shown to be around 50dB & 65dB respectively as shown in Table 1. An antenna with unity gain is used to estimate the path loss in [20]. Assuming free-space path loss model to be applicable between the openings created by the quilt packaging as described in section 3.2, the effective path loss, PL_g with the directional antenna array used in this work is

$$PL_g = PL_o - G_{tx} - G_{rx} \tag{1}$$

Where PL_o is the sum of path loss of unity gain, and G_{tx}, G_{rx} are the directional gains of transmitter and receiver respectively. The path loss obtained from the above model is used to calculate the power required at the transmitter. A Signal-to-Noise ratio (SNR) of 20dB is assumed for our calculations as it provides a BER of less than 10^{-9} with non-coherent OOK modulation adopted in the graphene based transmitters. The required received power for a given SNR can be computed by

$$P_r = \frac{N_T}{E_R} 10^{\left(\frac{SNR}{10}\right)} \tag{2}$$

Where, P_r is the minimum power received by the receiver to maintain an SNR of 20dB, E_R is the antenna efficiency of the receiver, and N_T is the noise power. E_R refers to the ratio of the received wireless power on the antenna to the electronic signal power after conversion. This is an inherent
property of the graphene structure [19]. The noise power considered, is primarily due to the thermal noise in the channel and can be calculated by

\[N_T = KTB \]

(3)

Where, \(k \) is the Boltzmann constant, \(T \) is the absolute temperature and \(B \) is the bandwidth. The transmitted power, \(P_t \), can be calculated as

\[P_t = P_r P_L g \]

(4)

The energy required to transmit a bit from a transmitter to receiver through any wireless link is defined as Energy per bit, \(E_{bit} \) and is given by:

\[E_{bit} = P_t t E_T \]

(5)

Where, \(t \) is the bit duration, which is inverse of data rate and \(E_T \) is the antenna efficiency of the transmitter, which is the ratio of the radiated wireless power to the electronic power. Using (1) - (5), the \(E_{bit} \) for a graphene based wireless link is found to be 0.0481pJ/bit considering the antenna efficiency of 89.14\% [19] and a physical bandwidth or data rate of 100 Gbps. This energy consumption per bit is incorporated in the simulator to estimate the average packet energy of the wireless multichip architecture proposed in this paper.

<table>
<thead>
<tr>
<th></th>
<th>Single Chip</th>
<th>Multichip Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20mm X 20mm</td>
<td>10cm X 10cm</td>
</tr>
<tr>
<td>Path loss with distance</td>
<td>50db</td>
<td>65dB</td>
</tr>
<tr>
<td>Energy/bit Estimate</td>
<td>0.00461pJ/bit</td>
<td>0.0481pJ/bit</td>
</tr>
</tbody>
</table>

Table 1. Path Loss & Energy/bit for THz band with increasing distance
4.3. Optimization of Phase Duration

In our proposed architectures, only a single mode is enabled for communication at a time to avoid interference among transceivers in different modes as explained in section 3.3. In this section, we optimize the duration of the phase (total duration of communication in both directions between any pair) to provide the best performance in the NoC. We use system level simulation to analyze the performance of the proposed systems in terms of the peak achievable bandwidth per core at network saturation using uniform random traffic as a function of phase duration for a proposed system of varying sizes. The peak achievable bandwidth per core is measured as the maximum sustainable data rate in number of bits successfully routed per core per second at network saturation. Longer phase durations will provide longer access of the wireless channel to each wireless interface (WI) equipped with the graphene antennas potentially improving performance. However, increasing the phase duration will eventually increase the interval between two consecutive channel accesses by a particular WI in a specific mode.

![Peak achievable bandwidth per core as a function of phase duration](image)

Fig. 5. Peak achievable bandwidth per core as a function of phase duration
This will result in degradation in performance. This is evident from Fig. 5, where the peak achievable bandwidth per core with different phase duration for a 1, 4 and 9 chip systems are shown. It can be seen the peak achievable performance of the proposed wireless architecture is maximum for the phase duration of 20 cycles. For this reason, we use phase duration of 20 for our later simulations.

4.4. Performance Evaluation with Synthetic Traffic

There are three metrics being considered for performance evaluation of the multichip system: Peak achievable bandwidth per core, packet energy dissipation and average packet latency. The \textit{peak achievable bandwidth per core} is given as the peak sustainable data rate in number of bits successfully routed per core per second at network saturation. This is given as B,

$$B = t\beta f$$

Where, t is the maximum throughput in number of flits received per core per clock cycle at network saturation, β is the number of bits in a flit, and f is the clock frequency. The throughput is directly obtained from system level simulations performed by the cycle accurate simulator. The \textit{average packet energy dissipation} is defined as the average energy dissipated in transmission of a packet from source to destination. It is given by adding the energy dissipation of all the components in the multichip system (buffers, switches, links, etc.) and dividing this sum by the total number of packets that were successfully routed. This total sum will always include the energy dissipation of the WIs as they are always active in the wireless multichip system. However, for the wireline multichip system, the energy dissipated is added to the sum only when a flit traverses.

In the following subsections, the performance of the proposed wireless single and multichip system is evaluated based on the above-mentioned metrics. Furthermore, this performance is
compared with that of the wireline and Interposer based multichip system. This comparison involves different interconnect architectures in total due to the consideration of single chip system as well as different topologies for each multichip system.

i) **Mesh:** The first selected wireline architecture is Mesh based architecture, where each switch, except those are in the edges, are connected with other switches in its cardinal directions (NSEW) using wireline interconnection to form a tile based regular network. All links have the same length, this type of topology eases the physical design process

ii) **Folded Torus:** This topology is an extension of Torus architecture. Unlike Torus, where the switches at the edges are connected to the switches at the opposite edge through wrap-around channels, in Folded Torus architecture, each switch is connected to its every alternative switch in both horizontal and vertical direction. Hence, in this architecture, the links are essentially arranged in a folded manner to yield equal link lengths.

iii) **Mesh + Interposer:** The intra-chip NoCs in all the chips is a regular mesh topology. The intra-chip NoCs is then extended through a silicon interposer by connecting switches along the boundaries of neighboring chips. We have considered an interposer based wired system as it is shown to be suitable for extending the NoC across multiple chips and outperform traditional substrate based wired systems. The interposer itself is a bare silicon die with metal routing layers to provide interconnection between the chips

iv) **Folded Torus + Interposer:** In this architecture, the intra-chip communication occurs through the folded Torus based NoC and the inter-chip communication happens through an interposer based wired system as it is shown to be suitable for extending the NoC across multiple chips and outperform traditional substrate based wired systems.
v) Mesh + Graphene: In this architecture intra-chip communication happens through wired mesh whereas the inter-chip communication happens through graphene based wireless interconnects. This is the proposed hybrid architecture with both wired as well as wireless links connecting cores in different chips.

4.4.1 Peak Achievable Bandwidth per Core

In this section, we evaluate the proposed Graphene-based Folded NoC (GFWiNoC) architecture and graphene enabled proposed multichip system in term of peak achievable bandwidth per core and compare it with several wired and wireless NoC architectures.

We consider three different configurations for a comparative evaluation with respect to our proposed GFWiNoC. Among these three, two are wireline architectures and one is a wireless architecture. Both the wireline architecture has regular, tile-based topology. The first selected wireline architecture is Mesh based architecture, where each switch, except those are in the edges, are connected with other switches in its cardinal directions (NSEW) using wireline interconnection to form a tile based regular network. The Mesh is chosen as it is a conventional NoC topology used in several multicore based products [2] and is relatively easy to design, verify, and manufacture. Moreover, as all links have the same length, this type of topology eases the physical design process. The second wireline architecture chosen is a Folded Torus based topology. This topology is an extension of Torus architecture. Unlike Torus, where the switches at the edges are connected to the switches at the opposite edge through wrap-around channels, in Folded Torus architecture, each switch is connected to its every alternative switch in both horizontal and vertical direction. Hence, in this architecture, the links are essentially arranged in a folded manner to yield equal link lengths. The third one is a Mesh based hybrid WiNoC architecture, where the mm-wave wireless interconnects are overlaid on top of the Mesh topology by deploying the WIs at some of
the NoC switches. We choose mm-wave WiNoC as these energy-efficient architectures have shown to improve performance over their metallic counterpart [9][10]. The wireless interconnects are realized using metal mm-wave zigzag antenna operating at 60GHz. A token based medium access mechanism is adopted from [9] for the mm-wave WiNoC architecture to access the wireless channel in a distributed fashion, without the need for precise synchronization or centralized arbitration while avoiding collision. In this architecture, we deploy the wireless nodes on top of the Mesh topology such a way that it will fold the network similar to the proposed folded graphene based WiNoC architecture. For this, we first deploy the wireless nodes at the corner switches to fold the network diagonally and then at one of the selected center switches along each edge to fold it across the edges. This is the exact equivalent topology of the GFWiNoC. The only difference is that in the GFWiNoC each folding point has multiple WIs operating in a specific mode. Due to the non-directional nature of the mm-wave transceivers only a single WI at each of these locations is enough to construct the equivalent NoC topology.

Fig. 6 shows the peak achievable bandwidth per core for different architectures at network saturation using uniform random traffic for a 64-core system. As explained earlier, the peak

Fig. 6. Peak achievable bandwidth per core of single chip architectures.
achievable bandwidth is determined as the average number of bits successfully routed to the destination cores per second from each source core. Among the wireline architectures, the Folded Torus based topology improves the performance over the wireline Mesh based architecture because of the shorter distance in hops between switches in folded topology. However, the multi-hop communication over the metal interconnects restricts the potential gain in performance of such Folded Torus architecture. Folding the network using wireless interconnect can improve the performance as can be seen from the figure. This is because in both wireless architecture, the wireless nodes connect distant switches directly over the single hop links, hence, results in lower hop counts. However, for the mm-wave MFWiNoC architecture, due to the token-based wireless communication, only a single wireless link is active at any given point of time restricting performance benefits of the mm-wave wireless interconnection. On the other hand, in GFWiNoC architecture, multiple wireless links can operate at the same time without interference due to the directional nature of the antennas and the adopted phase-based communication, resulting in higher performance than that of the MFWiNoC architecture.

![Graph showing peak achievable bandwidth per core of multichip systems.](image)

Fig.7. Peak achievable bandwidth per core of multichip systems.
Fig. 7 shows peak achievable bandwidth for multichip system at network saturation using uniform random traffic for system with different number of chips (4 & 9 in our case). Peak bandwidth per core for the wired folded torus architecture is slightly better than the wired mesh system for all system sizes. This is because links are arranged in a folded manner to yield equal link lengths resulting in lower latency with a higher throughput and lower energy than the wired mesh architecture.

It can be seen from the figure that peak bandwidth per core for the wired system decreased drastically with increasing system size. This is because with increase in size the average path length between source and destination cores increases resulting in longer multi-hop communication. However, for the proposed wireless system, peak bandwidth per core decreases, but marginally with increasing system size when compared to their wired counterparts. This is mainly due to single hop, direct point to point wireless links that reduce the distance between the farthest core in comparison to longer multihop communication for the wired architectures. Wireless interconnect fabric outperforms the wired architecture (folded torus) by approximately 1.44x, 1.32x and 2.4x for 1-chip, 4-chip and 9-chip system respectively.

4.2. Average Packet Latency

The packet latency is the average number of clock cycles required to transmit a packet to the destination core successfully. The advantages of the proposed THz graphene antenna enabled folded WiNoC architecture is more evident in Fig. 8 where the average packet latency at different injection load is shown for the different architectures for uniform random traffic. Due to different average distances between cores in the different interconnection architectures, the latency characteristics are different.
This is demonstrated by the average latencies at low injections loads. It can be observed that the proposed GFWiNoC architecture realized with directional graphene antenna arrays has the lowest latency compared to the systems with wireline and token-based mm-wave wireless interconnection. This is because of the multiple concurrent communications using the directional graphene based antenna arrays folding the NoC, enabled by phased based communication protocol.

Fig. 8. Average packet latency of various single chip architectures.

Fig. 9. Average packet latency for (a) 4-chip (b) 9-chip system.
Fig. 9 shows where the average packet latency at different injection loads for multichip system of different sizes for uniform random traffic. Due to different average distances between cores in the different interconnection architectures, the latency characteristics are different. This is demonstrated by the average latencies at low injection loads. It can be observed that the proposed wireless system realized with directional graphene antenna arrays has the lowest latency compared to the systems with wireline counterparts for all sizes. Moreover, the relative gain in latency also increases with increase in number of chips in the system. The latency characteristics for wireless graphene-based system for all sizes are much better than the already existing wired folded torus architecture. This is because of the folded architecture reduces the worst-case and average hop-counts of the network as shown in the Table.2 and the multiple concurrent communications using the directional graphene-based antenna arrays enabled by the phase based communication protocol.

<table>
<thead>
<tr>
<th></th>
<th>Wired Mesh</th>
<th>Folded Torus</th>
<th>GF_Wireless</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Chip</td>
<td>5.33</td>
<td>4.06</td>
<td>3.32</td>
</tr>
<tr>
<td>4-Chip</td>
<td>10.66</td>
<td>8.03</td>
<td>5.03</td>
</tr>
<tr>
<td>9-Chip</td>
<td>16.32</td>
<td>12.27</td>
<td>8.14</td>
</tr>
</tbody>
</table>

Table 2: Average hop-count for different architectures.
4.4.3. Average Packet Energy

Average packet energy is the energy consumed to transfer an entire packet from source to destination on average. Fig. 10 shows the average packet energy of the different interconnection architectures in presence of uniform random traffic pattern at network saturation. From the figure, it can be seen that the average packet energy of the proposed GFWiNoC architecture is about 3.4x, 3.10x, and 2.4x lower than that of the Mesh, Folded Torus, and mm-wave MFWiNoC architecture respectively. This improvement in energy efficiency is due to the presence of extremely low power, directional point-to-point, high-bandwidth graphene antenna based wireless links and adopted phase based communication protocol, which enables multiple wireless links to access the wireless medium simultaneously. Although, compared to the mm-wave wireless links, the energy-efficiency of the graphene based links is orders of magnitude better, the overall packet energy is dominated by the contribution of the electronic switches and links in the hybrid GFWiNoC. Therefore, the reduction in packet energy is limited due to the hybrid nature of the GFWiNoC fabric.

![Average packet energy for single chip architectures](image-url)
Fig. 11. Average packet energy for multichip systems

Fig. 11 shows the average packet energy for the multichip system of different sizes. Packet energy of the wired system shows a huge increase (shown in log-scale). This is because with increase in size, the average path length between source and destination cores increases resulting in longer multi-hop communication. The average packet energy dissipation for all system sizes including the single-chip case is lower for the wireless multichip systems compared to all the wired multichip systems. Alternatively, the average packet energy in the wirelessly connected system does not increase as drastically as the wired system with increase in the number of chips. This is due to the direct energy-efficient low power one-hop wireless links between cores embedded in different chips incorporated due to the folding topology made possible by THz wireless links.

The multi-hop communication over the metal interconnects restricts the potential performance of such systems with wired interconnects. Folding the network using wireless interconnect instead of global wires can improve the performance because in the wireless architecture, the wireless links connect distant switches instantly over single hop links resulting in lower hop counts. Folding a large network with wired links would not improve the performance as much due to
significant increase in latency of long wires. Moreover, in the proposed wireless architecture, multiple graphene-based links can operate simultaneously without any interference due to the directional nature of antenna and the phase based communication protocol which results in higher performance for the system compared to that of the wired architecture.

4.5. Performance Evaluation with Application Specific Traffic

Having established the performance of the wireless single chip and multichip system under uniform random traffic, this section analyzes the performance of the proposed wireless system with non-uniform traffic patterns.

We evaluate the performance of the proposed graphene enabled folded GFWiNoC architecture and the proposed multichip system with application specific traffic patterns from PARSEC and SPLASH2 benchmark suites. To generate the application specific traffic patterns, we consider a multicore chip with 16 memory cores and 16 out-of-order (OoO) processing cores. Each core consists of a 32KB of L1 and 512KB of L2 cache running a Directory-Based MOESI cache coherency protocol. This core configurations are then used to extract the core-to-memory and memory-to-memory cache coherency traffic for the PARSEC [44] and SPLASH2 [44] benchmark applications when they are executed till completion using SynFull [39]. To map these traffic patterns to the 1 chip system (64-core) we consider 16 equal sized clusters where each cluster contains 1 shared Last Level Cache (LLC) cores and 3 OoO cores with private L1 Cache. For the 4-chip system (256-core) we considered 16 equal sized clusters where each cluster contains 8 shared Last Level Cache (LLC) cores and 8 OoO cores with private L1 Cache. Similarly, for the 9-chip system (576-core) 16 equal sized clusters where each cluster contains 12 shared Last Level Cache (LLC) cores and 24 OoO cores with private L1 Cache were considered. Three, eight and
twenty-four threads of the same application are then executed on the 1, 4, and 9-chip systems so that each core in a cluster runs a certain portion of a thread and the memory cores in the clusters are shared among the threads.

4.5.1. Average Packet Latency

The percentage reduction in average packet latency for graphene enabled folded GFWiNoC and mm-wave MFWiNoC architecture with respect to the Folded Torus for different application specific traffic patterns is shown in Fig. 12. The latency best represents the performance in these cases as the interconnection network is not saturated in the steady-state. The reduction in average packet latency for both the wireless architectures vary between applications due to the variation in traffic patterns. For all application-specific traffic patterns considered here, the performance of the both wireless NoCs are better than the Folded Torus configuration due to the presence of single hop wireless interconnect. Between the wireless architectures, for all application-specific traffic patterns, GFWiNoC outperforms MFWiNoC architecture and on average, the reduction in average packet latency for both wireless architectures is shown in Fig. 12.

Fig. 12. Percentage reduction in average packet latency w.r.t Folded Torus for application specific traffic patterns.
packet latency compared to the Folded Torus NoC is 25.78% and 11.66% for GFWiNoC and MFWiNoC respectively.

The reduction in average packet latency for graphene enabled folded 4-chip & 9-chip wireless system with respect to their respective wired architecture for different application specific (a)

![Graph showing average packet latency for 4-chip system](image)

(b)

![Graph showing average packet latency for 9-chip system](image)

Fig. 13. Average packet latency for application specific traffic for (a) 4-chip system and (b) 9-chip system.
traffic patterns is shown in Fig. 13. The latency best represents the performance in these cases as the interconnection network is not saturated in the steady-state. The reduction in average packet latency for the wireless architectures vary between applications due to the variation in traffic patterns. On an average, the latency of a 4-chip wireless system is better than wired mesh configuration and wired folded torus by about 3.20x and about 2.17x times respectively. Similarly, the latency of a 9-chip wireless system is better than wired mesh configuration and wired folded torus by about 6.41x and about 3.91x times respectively. This is due to the presence of single hop wireless interconnects folding the multichip interconnect architecture. These performance gains are aided by the proposed phase based communication protocol, which enables concurrent communication links realized by high bandwidth directional graphene-based wireless interconnects to fold the network efficiently.

4.5.2. Average Packet Energy

Similar energy efficiency trend can also be seen from Fig. 14 where the average packet energy for GFWiNoC and Folded Torus are shown in presence of the application specific traffics.
Although for all application-specific traffic patterns considered here the NoCs are not in saturation in the steady state, the average packet energy of the proposed GFWiNoC architecture is on average 1.53x lower than the baseline Folded Torus Architecture. Although for all application-specific traffic patterns considered here the NoCs are not in saturation in the steady state, the average packet energy of the proposed GFWiNoC architecture is on average 1.53x lower than the baseline Folded Torus architecture. This improvement in energy efficiency is due to the presence of extremely low power, directional point-to-point, high-bandwidth graphene antenna based wireless links and adopted phase based communication protocol, which enables multiple wireless links to access the wireless medium simultaneously. Although, compared to the mm-wave wireless links, the energy-efficiency of the graphene based links is orders of magnitude better, the overall packet energy is dominated by the contribution of the electronic switches and links in the hybrid GFWiNoC. Therefore, the reduction in packet energy is limited due to the hybrid nature of the GFWiNoC fabric.

Fig.15 shows the average packet energy for a folded 4-chip and 9-chip wireless system with respect to the 4-chip and 9-chip wireline system in the presence of application specific traffics. Whereas the average packet of energy for a 4-chip wireless system is about 4.18x and about 2.82x times lower than that of wired mesh and wired folded torus architecture respectively. Similarly, the average packet of energy for a 9-chip wireless system is about 1.89x and about 1.25x times lower than that of wired mesh and wired folded torus architecture respectively. The packet energy for wired system increases drastically from 4-chip to 9-chip system. However, for the proposed wireless system the increase in energy is not much when compared to wired counterparts.
These improvements in energy are due to the presence of extremely low power, directional point-to-point, high bandwidth graphene antenna based concurrent wireless links.

Fig. 15. Average packet energy for application specific traffic for (a) 4-chip system and (b) 9-chip system.
4.6. **Comparison with All-to-All Connected Topology**

In this section, we compare the performance of our proposed GFWiNoC (single chip) with respect to All-to-All connected topology as proposed by one of the authors in related work section. Authors in [32] consider different antenna excitation method which need a separate on-chip laser source for antenna excitation. Also, their proposed WiNoC architecture is All-to-All connected topology in which every core is connected to every other core. Hence, they proposed a token based MAC to utilize their architecture. Also, they do not have any standard energy per bit estimation model for wireless link budget analysis and they have a device centric approach.

Fig. 16 shows the comparison of performance of both the architecture for single chip case in terms of bandwidth achieved per core, average packet latency and the average packet energy. It can be seen from the plots that our proposed architecture GFWiNoC outperforms the All-to-All connected architecture because of our proposed folding based approach which is also aided by the proposed phase based communication protocol for maximum utilization of the wireless channels leading to much higher bandwidth with much lower latency and reduced packet energy dissipation. While with the All-to All network topology, due to the token based MAC the waiting time of the token period adds to the latency thereby degrading the performance. While in token based system only one wireless link being made active at a time which improves the performance over the wired NoCs but is still much worse than our proposed architecture. For the average packet energy, the excitation mechanism of their on-chip antenna requires separate on chip laser source which also adds to the power dissipation as well as area requirement. These factors do not make All-to All connected architecture a viable option for scalable and energy efficient wireless communication.
Fig. 16. Performance comparison with All-to-All Connected Topology (a) Peak bandwidth per Core, (b) Average packet energy and (c) Average packet latency.
4.7. Area Overheads

For the single chip case (GFWiNoC) the advantages in performance and energy are achievable for a relatively low area overhead of about 0.36mm2 per graphene antenna array amounting to about 2.1% of a typical 400mm2 NoC.

While for the multichip system (4-Chip system) these advantages in performance and energy are achievable for a relatively low area overhead of about 0.36mm2 per 4x4 graphene antenna array. In our architecture 9 such antenna arrays are required in a single chip with 64 cores, which amounts to 0.81% of the area of a typical chip of size 400mm2.
Chapter 5 Comparative Evaluation with Emerging Integration Technologies

In this section, performance of multichip system with 4 chips that uses graphene based antennas has been compared with few other emerging alternatives multichip integration technologies such as token based system and system integrated with photonic waveguide. In the proposed token passing based wireless medium access mechanism, only a single transmitter can access the wireless channel at any given instant of time while multiple transceivers are deployed over the entire system. This limits the potential performance benefits of wireless architecture. Enabling concurrent communication channels without any interference can ensure better utilization of the available bandwidth. This can be achieved by either designing a MAC protocol like Direct Sequence Spread Spectrum (DSSS) based Code Division Multiple Access (CDMA) channel access mechanism [30] [26]or Frequency Division Multiple Access (FDMA). To study the potential performance improvement with these advanced techniques we evaluate the same interconnection framework with mesh intra-chip NoCs, just replacing the token-based wireless transceivers with CDMA based.

Off-chip photonic interconnects has emerged as another enabling technology for chip-to-chip communication [40]. Hence, we compare the proposed wireless interconnection architecture with a photonic multichip system as well. In the photonic multichip system, the inter-chip communication happens through high bandwidth photonic interfaces with intra-chip NoCs with each chip (Photonic). To connect these interface switches through a single waveguide, we consider these switches to be located at one edge of the chip. For our experiment, we consider four photonic
interfaces per chip and one waveguide with 16-way Wavelength Division Multiplexing (WDM) channels.

The energy/bit for a single point-to-point link and possible aggregate physical bandwidth provided by each of these technologies are summarized in Table 3. Fig. 17 shows the peak bandwidth per core and overall system average packet energy for 4-chip systems with these different interconnect technologies. It can be seen that, mm-Wave system has the lowest bandwidth per core and highest average packet energy among all the configurations considered here. This is because only a single transmitter can access the wireless channel at any given instant of time. Designing more complex MAC schemes like CDMA or using a novel antenna technology can improve this bandwidth to an extent due to concurrent communication among the WIs. Due to the more efficient physical layer the photonics based system provides higher bandwidth and consumes lower average packet energy compared to the token based system.

Fig. 17. Performance evaluation of a 4 chip system with alternative technologies
It can be seen from the Fig.17 that the proposed graphene based system outperforms both the mm-Wave and photonics based wireless multichip system due to presence of high bandwidth concurrent links. This is due to the fact that data packets can get routed from internal switches using the wireless links. Where as in case of the photonic system, the data packets will have to reach the photonic interfaces of the chip in its periphery. These improvements in performance as well as in energy efficiency are due to extremely low power, high bandwidth graphene antennas based wireless links thus making graphene antennas a promising solution for multichip integration as well as future research.

<table>
<thead>
<tr>
<th></th>
<th>Token-based Wireless Interconnects</th>
<th>CDMA-based Wireless Interconnects</th>
<th>Inter-chip Photonic Interconnects</th>
<th>Inter-chip Graphene Interconnects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>2.3pJ/bit</td>
<td>3.43pJ/bit</td>
<td>0.43pJ/bit</td>
<td>0.048pJ/bit</td>
</tr>
<tr>
<td>Aggregate Physical Bandwidth</td>
<td>16Gbps</td>
<td>6Gbps</td>
<td>160Gbps</td>
<td>100Gbps</td>
</tr>
</tbody>
</table>

Table 3: Energy per bit for a single point-to-point link and possible aggregate bandwidth for different interconnect technologies.
Chapter 6 Conclusions & Future Work

A wide range of computing hardware such as servers to embedded systems use platform based designs with multiple multicore Systems-on-Chips (SoCs). The number of individual SoCs or multicore chips increases manifold with the increase in computational and functional complexity of these platforms, therefore interconnection in these complex systems becomes challenging when system grow in size and complexity. Interconnection framework for these system is the main factor responsible for the overall performance of the system in terms of energy efficiency as well as latency. Traditional inter-chip interconnections are realized using solder bumps or C4 interconnects placing individual chips on a substrate or Printed Circuit Board (PCB). Other chip-to-chip interconnects such as Peripheral Component Interconnect (PCI) is one of the most common standard local I/O bus technology to interconnect board-level multichip systems.

The energy efficiency and data bandwidth of multichip system are severely restricted by I/O based interconnections. To overcome these high energy and high latency condition in these larger system, we propose to use wireless link in order to alleviate the capacity limitations in terms of multihop nature of communication. These wireless links are also capable of establishing a seamless hybrid and wireless system with dimensions spanning from 20 mm up to a few 10 cms. Therefore, to overcome the performance limitations of these traditional system with conventional interconnects, we present the design of a hybrid graphene based wireless NoC architecture and wireless multichip interconnection fabric based on a toroidal folding strategy. Using low power and high bandwidth graphene based WIs the performance and energy efficiency of multichip system can be significantly improved.
With cycle accurate simulation, we have compared many different state-of-the-art architectures utilizing different communication protocols and were able to show that our proposed graphene based wireless system has the highest improvement amongst traditional wireline counterparts as well as other wireless system utilizing mm-wave antennas. It is also demonstrated that proposed NoC and multichip architectures utilizing a novel phase based communication protocol increases the bandwidth while reducing the energy consumption while comparing their respective wireline counterparts. In this work, we have also compared graphene based multichip system to other emerging interconnect technologies such as Token based system, photonics based system. It is shown that energy/bit estimates for graphene based wireless links are 10 times lower for the same system size that employed photonics waveguide. With such unprecedented gains in all the performance metrics of peak bandwidth achieved per core, average packet latency and average packet energy, the future of graphene based wireless interconnects looks promising.

In this work we have seen graphene based antenna being used in multichip integration through low power single hop point to point wireless links. The interconnection fabric in this work is also scalable for increasing system size. Therefore, in future this work can be easily extended to larger computing environments with many multichip modules in it. Another application where these miniature antennas can be used in “Internet of Things”. Smart machines embedded with sensors, actuators that can communicate wirelessly are increasing day by day. There has been a rapid increase in the wireless data traffic due to the way we share and consume information. Also, there has been an increasing demand for high speed wireless communication. Wireless data rates have doubled over last eighteen months. Therefore, there is a need for new spectral bands and physical layers to support these high data rates. As shown in this work that graphene based antennas can support higher data rates while maintaining lower latency and lower energy dissipation. Being
orders of magnitude smaller than that of metallic antennas, these can be easily integrated with almost any smart machines. So, Internet of nano-things is yet another application that is being explored in recent times. Application scope for IoT is shown in Figure.18.

Fig.18. IoT Application Domain

With as many advantages, the fact that adoption of graphene as the basis of new generation also opens variety of research challenges. These challenges need to be addressed for the development of new generations of multi core processors. One such issue is that it is not clear how silicon substrate would affect the propagation of SPP waves and the radiation characteristics. Another issue to be investigated is the integration of graphene antenna with transceiver with fundamental challenge to identify heterogeneous integration techniques that would make it possible to integrate graphene in a semiconductor environment. While replicability is an important
factor to be considered from fabrication point of view. In our work, since all the antenna array employed in this work have the exact same dimensions therefore, it is easy to replicate them rather than having a customize design that would further complicate the fabrication process. In general graphene device technology is compatible with CMOS device technology. In the future, better channel modeling considering many other factors such as crosstalk, ISI and other type of losses etc. for more accurate estimates of the devices can improve the estimates of performance and packet energy in graphene based wireless systems.
Bibliography

