Deep Learning for Semantic Video Understanding

by

Sourabh Kulhare

May 2017

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Engineering

Supervised by
Dr. Raymond Ptucha
Department of Computer Engineering
Kate Gleason College of Engineering
Rochester Institute of Technology
Rochester, New York
May, 2017

Approved By:

Dr. Raymond Ptucha
Primary Advisor – R.I.T. Dept. of Computer Engineering

Dr. Emily Prud’hommeaux
Secondary Advisor – R.I.T. Dept. of Liberal Arts

Dr. Amlan Ganguly
Secondary Advisor – R.I.T. Dept. of Computer Engineering
Dedication

I would like to dedicate this thesis work to my family for their continuous support and belief in me.
Acknowledgements

Foremost, I would like to express my deepest appreciation to my advisor Dr. Raymond Ptucha for his patience, enthusiasm, knowledge and help during every step of this thesis work. I would also like to thank him for his continuous efforts to establish a learning environment in lab which helped me a lot to foster my passion for machine learning and deep learning. I would also like to take this opportunity to thank committee members Dr. Emily Prud'hommeaux and Dr. Amlan Ganguly for their interest and valuable suggestions.
I am also grateful to Shagan Sah and other lab members for useful discussions, comments and all the fun.
Last but not the least, I would like to thank my roommates Priyank Singh and Nistha Ahuja for their continuous support and dealing with my unusual schedule before the deadlines.
Abstract

The field of computer vision has long strived to extract understanding from images and videos sequences. The recent flood of video data along with massive increments in computing power have provided the perfect environment to generate advanced research to extract intelligence from video data. Video data is ubiquitous, occurring in numerous everyday activities such as surveillance, traffic, movies, sports, etc. This massive amount of video needs to be analyzed and processed efficiently to extract semantic features towards video understanding. Such capabilities could benefit surveillance, video analytics and visually challenged people.

While watching a long video, humans have the uncanny ability to bypass unnecessary information and concentrate on the important events. These key events can be used as a higher-level description or summary of a long video. Inspired by the human visual cortex, this research affords such abilities in computers using neural networks. Useful or interesting events are first extracted from a video and then deep learning methodologies are used to extract natural language summaries for each video sequence. Previous approaches of video description either have been domain specific or use a template based approach to fill detected objects such as verbs or actions to constitute a grammatically correct sentence. This work involves exploiting temporal contextual information for sentence generation while working on wide domain datasets. Current state-of-the-art video description methodologies are well suited for small video clips whereas this research can also be applied to long sequences of video.

This work proposes methods to generate visual summaries of long videos, and in addition proposes techniques to annotate and generate textual summaries
of the videos using recurrent networks. End to end video summarization immensely depends on abstractive summarization of video descriptions. State-of-the-art neural language & attention joint models have been used to generate textual summaries. Interesting segments of long video are extracted based on image quality as well as cinematographic and consumer preference. This novel approach will be a stepping stone for a variety of innovative applications such as video retrieval, automatic summarization for visually impaired persons, automatic movie review generation, video question and answering systems.
Table of Contents

Dedication .. ii
Acknowledgements .. iii
Abstract .. iv
List of Figures ... viii
List of Tables .. ix
Glossary ... x

Chapter 1 Introduction .. 1

Chapter 2 Thesis Objective .. 9

Chapter 3 Background .. 10
 3.1. Convolutional Neural Networks ... 10
 3.2. Multi-stream CNN Architectures ... 11
 3.3. Attention Models ... 14
 3.4. Recurrent Neural Networks ... 15
 3.5. Long Short Term Memory Units .. 16
 3.6. Language Modeling ... 17

Chapter 4 Key Frame Segmentation and Multi-Stream CNNs 19
 4.1. Past Work ... 19
 4.2. Dataset .. 26
 4.3. Methodologies .. 28
 4.3.1 Early Fusion ... 29
 4.3.2 Color Stream .. 31
 4.3.3 Motion Stream .. 31
 4.3.4 Key Frame Extraction .. 32
 4.3.5 Multi-Stream Architecture .. 34
 4.3.6 Software Setup ... 35
 4.3.7 Training .. 36
 4.4. Results .. 37
 4.4.1 Evaluation ... 37
 4.4.2 Filter Visualization ... 41

Chapter 5 Video Summarization .. 43
 5.1. Past Work ... 44
 5.2. Methodology .. 48
 5.2.1 Super frame Segmentation ... 49
 5.3. Video Clip Captioning ... 53
 5.4. Text Summarization ... 56
 5.4.1 Extractive Summarization ... 56
 5.4.2 Abstractive Summarization ... 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.3</td>
<td>Summarization Metric: Rouge-2</td>
<td>61</td>
</tr>
<tr>
<td>5.5.</td>
<td>Datasets</td>
<td>63</td>
</tr>
<tr>
<td>5.6.</td>
<td>Results</td>
<td>66</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Human Evaluation</td>
<td>67</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Extractive vs. Abstractive Summarization</td>
<td>69</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Evaluating Super frame cut selection</td>
<td>71</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Evaluating Key Frame Selection</td>
<td>73</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Conclusion</td>
<td>74</td>
</tr>
<tr>
<td>6.1.</td>
<td>Key Frame Extraction and Multi-Stream CNNs</td>
<td>74</td>
</tr>
<tr>
<td>6.2.</td>
<td>Video Summarization</td>
<td>74</td>
</tr>
<tr>
<td>6.3.</td>
<td>Abstractive Summarization</td>
<td>75</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>76</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Overview of Video Captioning system</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Key-frame extraction for activity recognition</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>CNN for image classification</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Different fusion schemes for temporal information fusion</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Multi Stream CNN Network for Video Classification</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Generic Attention Mechanism</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>Recurrent Neural Network Unit</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Long Short Term Memory Unit Structure</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>Detecting spatio-temporal interest points: a player heading the ball [58]</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>Dense Trajectory of a short video clip [31]</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>3D ConvNet architecture with LSTM Classifier [59]</td>
<td>22</td>
</tr>
<tr>
<td>12</td>
<td>Two separate streams for multi-stream input [1]</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>Different fusion schemes for video sequences [1]. Red, Green and Blue boxes</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>indicate convolutional, normalization and pooling layers respectively.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>101 action classes [27]</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>Number of Videos distributed per class [27]</td>
<td>28</td>
</tr>
<tr>
<td>16</td>
<td>Data Representation from video clips.</td>
<td>29</td>
</tr>
<tr>
<td>17</td>
<td>Magnitude of motion over the entire video</td>
<td>32</td>
</tr>
<tr>
<td>18</td>
<td>Magnitude of motion over the entire video</td>
<td>33</td>
</tr>
<tr>
<td>19</td>
<td>(a) single stream, (b) double stream, (c) generic multi stream architecture</td>
<td>35</td>
</tr>
<tr>
<td>20</td>
<td>Learned filters from first convolutional layer</td>
<td>42</td>
</tr>
<tr>
<td>21</td>
<td>Overview of Video Summarization</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>Exploiting local temporal structure [4]</td>
<td>46</td>
</tr>
<tr>
<td>23</td>
<td>Super Frame Segmentation</td>
<td>49</td>
</tr>
<tr>
<td>25</td>
<td>Encoder-Decoder Set Up [97]</td>
<td>54</td>
</tr>
<tr>
<td>26</td>
<td>Neural Network Model with Contextual Encoder</td>
<td>59</td>
</tr>
<tr>
<td>27</td>
<td>Neural Language Model with contextual encoder</td>
<td>60</td>
</tr>
<tr>
<td>28</td>
<td>Visual story-telling dataset [91]</td>
<td>64</td>
</tr>
</tbody>
</table>
List of Tables

Table 1: Single Stream Results. ... 38
Table 2: Two Stream Results. .. 39
Table 3: Three Stream Results, *Epochs=15.. 40
Table 4: ROUGE Scores. ... 67
Table 5 ROUGE Scores. .. 68
Table 6: Human Evaluation. .. 69
Table 7: Summarization Types Evaluations. ... 69
Table 8: Summarization Types Evaluation on Open IMDB dataset.. 70
Table 9: Summarization Type Evaluation on New York Times Corpus Dataset 71
Table 10: Feature evaluation on SumMe dataset.. 72
Table 11: Evaluation scores for key frame selection. High ratio is better............................ 73
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition of the term as used in the thesis.</th>
</tr>
</thead>
</table>
Chapter 1 Introduction

Decreasing hardware costs, advanced functionality and prolific use of video in the judicial system has recently caused video surveillance to spread from traditional military, retail, and large scale metropolitan applications to everyday activities. For example, most homeowner security systems come with video options, cameras in transportation hubs and highways report congestion, retail surveillance has been expanded for targeted marketing, and even small suburbs, such as the quiet town of Elk Grove, CA utilize cameras to detect and deter petty crimes in parks and pathways. Ease of use, instant sharing, and high image quality have resulted in abundant amounts video capture not only on social media outlets like Facebook and YouTube, but also personal devices including cell phones and computers. Around the world people upload 300 hours of videos per minute just on YouTube\(^1\). If a video is not tagged properly as per the content, it might lose its usability. Several solutions are available to manage, organize, and search still images. Applying similar techniques to video works well for short snippets, but breaks down for videos over a few minutes long. While computer vision techniques have significantly helped in organizing and searching still image data, these methods do not scale directly to videos, and are often computationally inefficient. Videos those are tens of minutes to several hours long remain a major technical challenge. Ensuring that important moments are preserved, a proud parent may record long segments of their baby’s first birthday party. While the videos may have captured cherished moments, they

\(^1\) http://www.statisticbrain.com/youtube-statistics/
may also include substantial amounts of transition time and irrelevant imagery.

Natural language summarization of a video has been gaining attention due to its direct applications in video indexing, automatic movie review generation and describing movies for visually challenged people. Recent video captioning frameworks [66, 69] have demonstrated great progress at creating natural language descriptions of a video clip, but extending such methods to long videos can be very time and resource consuming. This thesis investigates captioning video sequences that are several hours long. Popular attention models are used to identify key segments in a video. Attention models let deep learning networks focus on a subsection of an input image or video sequence. This research emphasizes visual attention [5] mechanisms for temporal attention to identify where to look in time. Such mechanisms can identify key segments of a video. Key segments are clips extracted from longer videos. These clips are used to represent nearly all visual information available in video. Long Short Term Memory (LSTM) units are used to generate a brief textual description of each segment. Subsequent language models combine each segment textual description to generate a higher-level text description which can summarize the entire video; as shown in Figure 1.
Detection and recognition of objects and activities in video is critical to expanding the functionality of these systems. Advanced activity understanding can significantly enhance security details in airports, train stations, markets, and sports stadiums, and can provide peace of mind to homeowners, Uber drivers, and officials with body cameras. Security officers can do an excellent job at detecting and annotating relevant information, however they simply cannot keep up with the terabytes of video being uploaded daily. Automated video analytics can be very helpful to organize and index such very large video repositories. This work scrutinizes every frame, databasing a plethora of object, activity, and scene based information for subsequent video analysis. To achieve this goal, there is a substantial need for the development of effective and efficient automated tools for video understanding.

To mitigate these problems, we propose techniques that leverage recent advances in video summarization [15, 26, 48, 49], video annotation [3, 4, 11], and text summarization [28, 5], to summarize hour long videos to a substantially short visual and textual summary. Video processing has been well studied problem in the field of computer vision. Every video analytics
solution starts with analyzing each frame and then combine information
gathered from every frame to exploit temporal dependencies. Various video
analytics solutions perform either frame wise analysis or consider collection
of frames as 3D visual data and process the 3D data. Frame wise analytics
can be either object detection, activity classification, salient feature extraction,
etc. Conventional methods use hand-crafted features such as motion SIFT [17]
or HOG [2] to classify actions, object, scene, etc for each frame. Recent
successes of deep learning [3, 4, 5] in the still image domain have influenced
video research. Researchers have introduced varying color spaces [6], optical
flow [7], and implemented clever architectures [8] to fuse disparate inputs.
This study analyzes the usefulness of the varying input channels, utilizes key
frame extraction for efficacy, identify interesting segments from long videos
using image quality and consumer preference. We smartly pick segments from
longer videos, these segments are feature rich and provide comprehensive
information about entire video. Beforehand computation of these key-
segments is essential because large scale video classification demands
excessive computational requirements. Karpathy et al. [8] proposed several
techniques for fusion of temporal information. However, these techniques
process sample frames selected randomly from full length video. Such random
selection of samples may not consider all useful motion and spatial
information. Simonyan and Zisserman [23] used optical flow to represent the
motion information to achieve high accuracy, but with steep computational
requirements. For example, they reported that the optical flow data on 13K
video snippets was 1.5 TB.
We validated our hypothesis that key-segments save computational
requirements with a series of experiments on the UCF-101 dataset. We first
compute key frames of a video, and then analyze key frames and their
neighbors as a surrogate for analyzing all frames in a video. Key frames, or the important frames in a video, can form a storyboard, in which a subset of frames are used to represent the content of a video. We hypothesize that deep learning networks can learn the context of the video using the neighbors of key frames. Voting on key frame regions then determines the temporal activity of a video snippet. Some events can be represented by fewer key frames whereas complex activities might require significantly more key frames. The main advantage with this approach is the selection of frames which depend on context of the video and hence overcome the requirement to train a network on every frame of a video.

Figure 2: Key-frame extraction for activity recognition.

We experimented with multi-stream Convolutional Neural Network (CNN) architectures as described in Figure 2. Our multistream CNN architecture is biologically inspired by the human primary cortex. The human mind has always been a prime source of inspiration for various effective architectures such as Neocognitron [25] and HMAX models [26]. These models use predefined spatio-temporal filters in the first layer and later combine them to form spatial (ventral-like) and temporal (dorsal-like) recognition systems. Similarly
in multistream networks, each individual slice of a convolution layer is dedicated to one type of data representation and passed concurrently with all other representations.

Our work does not focus on competing state-of-the-art accuracy rather we are interested in evaluating the architectural performance while combining different color spaces over key-frame based video frame selection. We extended the two stream CNN implementation proposed by Simonyan and Zisserman [23] to a multi-stream architecture. Streams are categorized into color streams and temporal streams, where color streams are further divided based on color spaces. The color streams use RGB and YCbCr color spaces. YCbCr color space has been extremely useful for video/image compression techniques. In the first spatial stream, we process the luma and chroma components of the key frames. Chroma components are optionally downsampled and integrated in the network at a later stage. The architecture is defined such that both luma and chroma components train a layer of convolutional filters together as a concatenated array before the fully connected layers. Apart from color information, optical flow data is used to represent motion. Optical flow has been a widely accepted representation of motion, our multi-stream architecture contains dedicated stream for optical flow data.

This study shows that color and motion cues are necessary and their combination is preferred for accurate action detection. We studied the performance of key frames over sequentially selected video clips for large scale human activity classification. We experimentally support that smartly selected key frames add valuable data to CNNs and hence perform better than conventional sequential or randomly selected clips. Using key frames not only provides better results but can significantly reduce the amount of data being
processed. To further reduce computational resources, multi-stream experiments advocate that lowering down the resolution of chrominance data stream does not harm performance significantly. Our results indicate that passing optical flow and YCbCr data into our multistream architecture at key frame locations of videos offer comprehensive feature learning, which may lead to better understanding of human activity.

We extended our optical flow based key-frame method with the addition of interesting segments from long videos using image quality and consumer preference. Key frames are extracted from interesting segments whereby deep visual-captioning techniques generate visual and textual summaries. Captions from interesting segments are fed into extractive methods to generate paragraph summaries from the entire video. The paragraph summary is suitable for search and organization of videos, and the individual segment captions are suitable for efficient seeking to proper temporal offset in long videos. Because boundary cuts of interesting segments follow cinematography rules, the concatenation of segments forms a shorter summary of the long video. Our method provides knobs to increase and/or decrease both the video and textual summary length to suit the application.

While we evaluate our methods on egocentric videos and TV episodes, similar techniques can also be used in commercial and government applications such as sports event summarization or surveillance, security, and reconnaissance.

Text summarization is an ongoing challenge in the field of natural language processing. The task of condensed representation of longer text is challenging due to the demand of huge structured datasets and the necessity to exploit core story-flow from the unforeseen data. Various past summarization approaches involve extractive or scoring based summarization systems where individual confidence scores from parts of text are extracted and stitched together to
generate a condensed summary. Whereas, this work is inspired by the recent success of neural language models and attention based encoders. This approach is fully data driven and requires less information about sentence structure. It can learn latent soft story-flow alignment between input text and generated summaries.
Chapter 2 Thesis Objective

The Primary objective of this work is to explore efficient solutions for video activity classification and video to text summarization. Our key-frame experiments answer the following questions:

- Does the fusion of multiple color spaces perform better than a single-color space?
- How can one process less amount of data while maintaining model performance?
- What is the best combination of color spaces and optical flow for better activity recognition?

We further extend our optical flow based frame selection with various cinematographical feature scores and temporal attention for video summarization application. The novel contributions of this research include:

- The ability to split a video into super frame segments, ranking each segment by image quality, cinematography rules, salient motion and consumer preference;
- Advancing the field of video annotation by combining recent deep learning discoveries in image classification, recurrent neural networks, and transfer learning;
- Adopting textual summarization methods to produce human readable summaries of video.
- Providing knobs such that both the video and textual summary can be of variable length.
Chapter 3 Background

3.1. **Convolutional Neural Networks.**

Convolutional Neural Networks (CNNs) are a class of neural networks that have proved very precise not only for image recognition and classification, but also in complex systems such as identifying faces, image to text description, Q&A systems, etc. Recent advancements in the field of self-driving cars, virtual assistants, health care assistants, recommendation systems, intelligent robots, smart video surveillance, etc. have been entirely supported by ground breaking successes of CNNs.

CNNs are biologically inspired by the human visual cortex. The human brain contains billions of neurons connected to each other. These neurons have the unique functionality of being active/excited for specific visual or any sensory stimulus. Later, experiments\(^2\) show that neurons show plasticity behavior in their functionality. This means a neuron responsible for being excited after seeing dogs can be retrained to be excited when seeing cats.

CNNs are a mathematical way to represent these neurons and their connections. The mathematical representation of neurons involves some learnable weights and biases. Groups of neurons accepting one kind of input represent a layer in a CNN network. The entire CNN network contains several layers, each layer optionally followed by a nonlinear activation function such as \textit{ReLU}\(^3\) or \textit{tanh}\(^4\). Figure 3 displays a network diagram of a CNN model\(^5\) for image classification problem. Sometimes a convolutional layer is followed by

2 https://www.linkedin.com/pulse/neuroplasticity-three-easy-experiments-david-orban
4 https://theclevermachine.wordpress.com/tag/tanh-function/
a pooling layer, which can also be considered as a subsampling layer. The pooling operation is essential because it provides a type of translation invariance and it is an efficient way to reduce the dimensionality of preceding layers while retaining the most important information. Fully connected layers as shown in Figure 3 mimic the traditional multi-layer perceptron model, where every neuron in the previous layer is connected to every neuron in the current layer. CNN layers represent the input data into higher-level features, the purpose of these fully connected layers is to add additional non-linearity and use these higher-level features for classification. The entire network can be thought of as a complex mathematical function; whereby the internal state of this function can be varied by adjusting network weights. The overall goal of training a CNN network is to optimize this complex function in order to achieve an optimal state in which it is able to minimize the classification error.

![Figure 3: CNN for image classification](http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/)

3.2. Multi-stream CNN Architectures

Although deep neural networks have shown remarkable success in so many aspects of computer vision and natural language processing, recent findings [92, 93] have shown that combining knowledge from external sources during the training process can improve the system performance further. One way of combining knowledge during the training process is the fusion of CNN features. Often data representation includes unseen intrinsic separations; for example, video data comprises color information, intensity information and motion information. Fusion methods explore optimized ways to fuse these separations.

The two-stream network suggested by Simonyan et al. [23] is an example of a successful attempt to mimic the human visual cortex for video classification. One stream is responsible for learning spatial features through RGB data and another stream learns temporal features through Optical Flow data. The way we combine these different features is a crucial factor in multi-model CNN architectures. Karpathy et al. [1] investigated different CNN architectures as shown in Figure 4 for understanding temporal connectivity patterns in a CNN network. Averaging the outputs of each stream is called “Late Fusion”.

7 Explored approaches for fusing information over temporal dimension through the network. Red, green and blue boxes indicate convolutional, normalization and pooling layers respectively. In the Slow Fusion model, the depicted columns share parameters.
combining frames all together and process as 3D data is called “early fusion” and combination of these two is called “slow fusion” as described in Figure 4. Results show slow fusion models consistently perform better than early and late fusion as slow fusion takes the hierarchical approach to classify spatio-temporal information.

It is an interesting field of research to explore different types of fusion schemes. For example, for a soccer video, a spatial stream will learn identifying players or ball and temporal stream will learn their motion. It would be interesting to learn the motion associated with the ball or player in context.

Wu et al. [94] utilizes multimodal information for video classification. They learn three individual models for spatial, short-term motion and audio
information. Outputs from these models are then fused to learn the best set of weights for action classification with video data.

3.3. **Attention Models**

Attention models are recent trends in deep learning community. Similar to other deep learning traits, attention mechanism is also biologically inspired by the human brain’s reaction to visual data. The mammalian brain uses attention to focus certain parts of the visual input at the same time, giving more or less emphasis to parts of visual input which are more or less important at a given point in time. It gives deep learning models the ability to focus on parts that are giving feature rich information and getting rid of parts contributing less.

![Generic Attention Mechanism](https://blog.heuritech.com/2016/01/20/attention-mechanism/)

Figure 6 displays a generic setting of an attention system. The attention model accepts an input Y (which depends on n features) and a context information C and returns a response vector Z. The response vector Z can be considered as the weighted arithmetic mean of input features (y_1, y_2, \ldots, y_n). Learning an attention model is equivalent to finding the best possible set of weight values given the context C. Such kind of attention is called “soft attention” as it is
fully differentiable where gradients can propagate through the entire network. A stochastic way of dealing with this problem is called "hard attention". Instead of forming a linear combination of all the feature points, it selects one single sample y_i (out of n) and the associated probability P_i to propagate the gradients. Recent research has been favored to soft attention as it is completely differentiable process instead of relying on a stochastic approach.

3.4. Recurrent Neural Networks

![Image of Recurrent Neural Network Unit](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Recurrent Neural Networks (RNNs) are a class of neural networks which are suitable for sequential information. In the traditional neural network, we often assume that output of a sample is totally independent from the output of other samples. In contrast, sequential data requires the knowledge of the past to estimate the output sequence. For example, in an image captioning system, the prediction of the next word will highly depend on the prior words generated.

Recurrent neural networks not only take the current input, but also information from one step back in time in the decision-making process for the next time step as described in Figure 7. RNNs chain these structures in time which is natural architecture for sequential problem solving.
3.5. **Long Short Term Memory Units**

One major problem with RNNs is the “vanishing gradient problem”. We assume that RNNs can encapsulate the entire history of all past time steps in order to compute the next step. If the history goes more than a handful steps in time, RNNs are often prone to show unusual results. At each time step, *gradients* express the change in weights with regards to the change in error. Backpropagation involves multiplication of these *gradients* as we go back in time. As we keeping multiplying consecutive small numbers (<1), the result becomes considerably small. Such *gradients* often become too small for computers to work with or even for a network to learn. At the point, back in time when *gradients* become small, those associated weights contribute very little or nothing to the current task of computing the next time step. Therefore, RNNs sometime struggle to take advantage of long term dependencies. This problem is termed as the Vanishing Gradient Problem as first identified by Bengio et al. [95].

In the mid-90s, Hochreiter et al. [96] introduced a variation of RNNs named Long Short Term Memory units (LSTMs). LSTMs offered a solution to the vanishing gradient problem. LSTM worked really well with variety of problems and are currently widely used in sequence modeling.

The key to LSTMs are gated cell structures which are responsible to control the information flow inside the network as shown in Figure 8. By opening and closing operations of these gates, the network can decide which information to store, read or write, which information to block and which information to pass. At the bottom of Figure 8, there are three inputs fed to the network and also to three gates on the right side. Arrows contain present input and past state of the network.
The block dots are also gates. These gates decide whether to allow input, whether to erase current cell state and whether allow the network’s state to impact the output. \(S_c \) is the current state of the memory cell. This is the secret sauce of any LSTM network- helping the network to preserve the error when it must be propagated back in the network.

3.6. Language Modeling.

Language modeling is one of the oldest but most challenging problem studied in statistical Natural Language Processing (NLP). Language modeling understands the formation of a language. Essentially it estimates the distribution of words. Given a sequence of words \((w_1, w_2, \ldots, w_n) \), it associates a probability \(P(w_1, w_2, \ldots, w_n) \) to generate the entire sentence. A

10 https://deeplearning4j.org/lstm.html
language modeling problem always starts with having a lot of text information in the corresponding language. Further, we define a vocabulary of given text \(V \). This vocabulary contains all the words present in the text. In English, the vocabulary can be something like this

\[V = \{ \text{person, dog, car, walking, \ldots \ldots \ldots, guitar, rain} \} \]

In general, \(V \) is quite large as it may contain almost every occurring word in the language- but it is a finite set. A sentence will be sequence of words taken from a vocabulary. According to the definition\(^{11}\) “A language model consists of a finite set \(V \) and a function \(p(x_1, \ldots, x_n) \) such that:

- For any \(\langle x_1, \ldots, x_n \rangle \in V \), \(p(x_1, \ldots, x_n) \geq 0 \)
- In addition,

\[
\sum_{\langle x_1, \ldots, x_n \rangle \in V} p(x_1, \ldots, x_n) = 1
\]

Therefore, \(p(x_1, \ldots, x_n) \) is a probability distribution over the sentences formed by vocabulary set \(V \).

Chapter 4 Key Frame Segmentation and Multi-Stream CNNs

Surveillance cameras have become big business, with most metropolitan cities spending millions of dollars to watch residents, both from street corners, public transportation hubs, and body cameras on officials. Watching and processing the petabytes of streaming video is a daunting task, making automated and user assisted methods of searching and understanding videos critical to their success. Although numerous techniques have been developed, large scale video classification remains a difficult task due to excessive computational requirements.

In this work, we conduct an in-depth study to investigate effective architectures and semantic features for efficient and accurate solutions to activity recognition. We investigate different color spaces, optical flow, and introduce a novel deep learning fusion architecture for multi-modal inputs. The introduction of key frame extraction, instead of using every frame or a random representation of video data, make our methods computationally tractable. Results further indicate that transforming the image stream into a compressed color space reduces computational requirements with minimal effect on accuracy.

4.1. Past Work

Video classification has been a longstanding research topic in the multimedia processing and computer vision fields. Efficient and accurate classification performance relies on the extraction of salient video features. Conventional methods for video classification [53] involve generation of video descriptors
that encode both spatial and motion variance information into hand-crafted features such as Histogram of Oriented Gradients (HOG) [18], Histogram of Optical Flow (HOF) [28], and spatio-temporal interest points [55]. These features are then encoded as a global representation through a bag of words [29] or fisher vector based encoding [30] and then passed to a classifier [31]. Bag-of-words is a popular approach in video processing where each feature is placed into quantized buckets of features. These buckets are learned through K-means or other popular clustering algorithms. Later, a classifier is trained to classify these bag-of-words representation of video data to ground truth classes. These feature extraction methods along with classification methods such as SVMs produced state-of-the-art methods for image classification before the deep learning boom. Various image features have been extended to video data such as 3D-SIFT [55], 3D-HOG [56] and extended SURF[57]. Laptel et al. [58] was one of the earliest work on space-time interest points. They extended the notion of special interest points into space-time domain, the approach was built on Harris and Forstner interest points [60] to identify the places where there is significant local variation in space and time domain.

Figure 9: Detecting spatio-temporal interest points: a player heading the ball [58].
Wang et al. [31] introduced the concept of dense trajectories. For dense trajectory, we first identify key-points in a starting frame and then track these key-points over the time domain. A collection of these tracks of key-points is called dense trajectory. This approach is an efficient way to extract dense trajectories. They track densely sampled points using optical-flow displacement information. A global smoothing constraints among the points in dense optical flow field makes the approach robust.

As described in the Figure 10, HOG, HOF and MBH features were calculated in the local co-ordinate system of key-point tracklets. Convolutional Neural Networks have performed exceptionally well with images. Ji et al. [36] uses an intuitive way to handle video data with CNNs for human action recognition. They developed 3D CNN model for action recognition. This model is capable of extracting spatio-temporal features by performing 3D convolutions and 3D subsampling. It accepts collection of input frames instead of a single RGB image. This automatic extraction of 3D
features was shown to outperform prior action recognition methods on TRECVID12 and KTH13 action datasets.

Gkioxari and Malik \cite{41} extend the concept of interesting points into regions. They first detect image regions which are more motion salient and likely to have objects and actions. Further temporal connection of these features extracts a spatio-temporal tube like structure. Around 2011 timeframe, \textit{deep models} were developing interest in 3D vision community. These models are able to learn multiple level of feature hierarchies and extract useful features automatically. M. Baccouche et al. \cite{59} produced very inspiring work of using two-steps of neural-based deep models for human action recognition. This work introduced the concept of 3D CNN features with recurrent neural networks even before the historical Alexnet \cite{19} work.

![3D ConvNet architecture with LSTM Classifier \cite{59}](image)

Figure 11 describes the formation of 3D CNN features those are later passed sequentially to a LSTM classifier for action classification. It accepts a collection of gray scale frames (34×54×9) as input. First convolutional layer C1 consists of five filters of size 28×28×5 pixels. Eventually, the final layer

12 http://trecvid.nist.gov/
13 http://www.nada.kth.se/cvap/actions/
C3 consist of five feature maps of size $3 \times 8 \times 1$ encoding the input raw data to a vector of size 120. This vector can be used as salient spatio-temporal feature for a nine frame video clip. Later, these spatio-temporal features extracted from different parts of video were passed into a *Recurrent Neural Network* architecture with one hidden layer of LSTM cells. Such an arrangement outperformed action recognition on the KTH1 and KTH2 datasets. These datasets contain only gray scale video frames; it will be interesting to perform these experiments with RGB video data. Additionally, KTH1 and KTH2 datasets are small and contain videos from a narrow domain range. One of the first large scale video classification efforts was done by Karpathy et al. [1]. They provide an in-depth study about CNNs performance for large-scape video classification with various deep learning fusion architectures.

![Figure 12: Two separate streams for multi-stream input [1].](image)

First, they address the issue of runtime performance by modifying the CNN architecture to a two-stream architecture where one stream is a *context* stream which learns features on lower resolution and the second stream is *fovea* stream which operates on zoomed part of image center region. This decreases
the total input dimensionality by the factor of two. Such design takes the advantage of camera bias problem; where the video camera is focused on object in center. Later, activations output from each stream are concatenated just before the fully connected layer. This set up increases the runtime performance by the factor of 2.4 due to the lower dimensional input data while keeping the classification accuracy same. The biggest question with video processing is, how to combine information in temporal dimension? A naïve approach is to use a voting scheme to vote for features over different parts of video. Voting takes the holistic representation of video data but it does not connect information with variable temporal distance. Karpathy et al. [1] Describes multiple ways to connect temporal information by experimenting with various deep learning architectures.

Figure 13 displays four different options to fuse information in temporal dimension. The Single Frame model accepts a single frame of a video and performs sequentially with each frame from a video clip. The Single Frame model works as a baseline for subsequent fusion techniques. It accepts a single
frame of size 170×170×3 as input. Every scheme uses Alexnet [19] as base CNN architecture. Early fusion is achieved by combining input frames across time initially on the pixel level. Instead of a frame as input now the model accepts a volume data (224×224×3×10) as input. This is implemented by modifying first convolutional layer by extending the convolutional filters to time domain 11×11×3×10. The claim that early fusion of temporal information allows the network to learn local motion direction and speed information. Late fusion takes two frames those are separated by 15 frames apart and pass them through individual CNN models. Later, they combine the features of last CNN layer from each model and pass this combined features to the fully connected layers. It shows that a single stream of a video frame is incapable of detecting motion information but the first fully connected layer can compute the global motion information by comparing the output of both CNN streams. Slow Fusion is the combination of early and late fusion. It accepts a volume of frames as input and passes them through parallel streams. The number of parallel streams gets decreased as the model extracts lower level abstract features. The Slow Fusion architecture outperformed the other fusion mechanism for action classification on Sports-1M \(^{14}\) dataset. Karpathy et al. [1] states that stacking of frames over time gives similar results as treating them individually, indicating that spatial and temporal data may need to be treated separately.

Recent work by Simonyan and Zisserman [23] decomposes video into spatial and temporal components. The spatial component works with scene and object information in each frame. The temporal component signifies motion

\(^{14}\) https://github.com/gtoderici/sports-1m-dataset
across frames. Ng et al. [23] evaluated the effect of different color space representations on the classification of gender. Interestingly, they presented that gray scale performed better than RGB and YCbCr spaces. Very recent work by Tran et al. [61] proposes that 3D ConvNets are suitable for spatio-temporal feature learning whereby a small size (3×3×3) convolutional kernel outperforms a best performing 3D ConvNet. They [61] named these learnt features as C3D (Convolutional 3D). These C3D features are current-state-of-the-art spatio-temporal features for variety of video processing applications. A simple linear classifier proceeded after C3D gives significant results for action classification with UCF-101 dataset.

4.2. Dataset

Experiments were performed on UCF-101 [27], one of the largest annotated video datasets with 101 different human actions. It contains 13K videos, comprising 27 hours of video data. The dataset contains realistic videos with natural variance in camera motion, object appearance, pose and object scale. It is a challenging dataset composed of unconstrained videos downloaded from YouTube which incorporate real world challenges such as poor lighting, cluttered background and severe camera motion. Video clips from single class were divided into 25 groups, video clips in a group share some common information such as same background, same person, same environment, etc. The number of videos per class is reasonably distributed as shown in Figure 15. Every clip has fixed framerate of 25 FPS with resolution of 320×240 pixels. Average video length for UCF-101 is 6.6 seconds. We used UCF-101 split-1 to validate our methodologies. Experiments deal with two classes of data representation: key frame data and sequential data. Key frame data includes clips extracted around key frames where sequential data signifies 12
clips extracted around 12 equally spaced frames across the video. 12 equally spaced frames were chosen as that was the average number of key frames extracted per video. We will use the terms key frame data and sequential data to represent the extraction of frame locations. Both types of data include grouping of 10 neighboring frames.

Figure 14: 101 action classes [27].
Activity classification with video data is an interesting problem to solve. If we capture a person on a street, from the perspective of image view it is just a picture of a person on street, but if there is temporal information available, we can more easily tell whether that person is walking, jogging or running. Temporal information plays a huge contribution into identifying actions in video streams. We explored UCF-101 video data, where each video is approximately six seconds long containing 150 frames. We further explore, do we need to process all 150 frames? Is there a better or more efficient way to represent video frames and what type of Convolutional Neural Networks perform well for activity classification?

In this section, we describe our learning models for large scale video
classification including pre-processing, multi-stream CNN, key frame selection and the training procedure in detail. At test time, only the key frames of a test video are passed through the CNN and classified into one of the activities. This helps to not only show that key frames are capturing the important parts of the video but also that the testing is faster as compared to passing all frames though the CNN. A video clip passed through our trained model gives a certain output. We named this output of a clip “clip level output”. Voting amongst clip level outputs over the entire length of video gives us “video level output”. In this work, we present accuracy on both levels.

4.3.1 Early Fusion

Figure 16: Data Representation from video clips.
The early fusion technique combines the entire 10 frame time window of the filters from the first convolution layer of the CNN. We adapt the time constraint by modifying the dimension of these filters as $F \times F \times CT$, where F is the filter dimension, T is the time window (10) and C is the number of channels in the input (3 for RGB). This is an alternate representation from the more common 4-dimensional convolution.

Figure 16 describes data representation mechanism. Our key frame method gives us a frame index of the motion salient video frame. We collect ten frames around a key frame index and name such a group of frames a video clip. Each video clip is represented into four different types of data representations. By default, video clip frames are RGB, therefore concatenating ten frames back to back over the color channel direction will give us 30 channels of data. Similarly, RGB data transformed into YCbCr color space gives us 30 channels of data but we separated luminance information and formed a luminance representation which is also ten channels and remaining information is chrominance data which is 20 channels of data. Separating luminance information from chrominance gives us the freedom to process both color spaces as independent streams in the Convolutional Neural Networks. This idea is inspired by the human-eye brain which perceives intensity and color information differently. Each data representation has one dedicated stream of inside the CNN; whereby each stream can be an Alexnet [19] or similar architecture.
4.3.2 Color Stream

Video data can be naturally decomposed into spatial and temporal information. The most common spatial representation of video frames is the RGB (3-channel) data. In this study, we compare RGB performance with the Luminance and Chrominance color space and their combinations thereof. YCbCr space separates the color into the luminance channel (Y), the blue-difference channel (Cb), and the red-difference channel (Cr).

Color stream of the architecture accept spatial information of the video data. The spatial representation of the activity contains global scene and object attributes such as shape, color and texture. The CNN filters in the color stream learn the color and edge features from the scene. The human visual system has lower acuity for color differences than luminance detail. Image and video compression techniques take advantage of this phenomenon, where the conversion of RGB primaries to luma and chroma allow for chroma sub-sampling. We use this concept while formulating our multi-stream CNN architectures. We sub-sample the chrominance channels by factors of 4 and 16 to test the contribution of color to the framework.

4.3.3 Motion Stream

Motion is an intrinsic property of a video that describes an action by a sequence of frames, where the optical flow could depict the motion of temporal change. We use an OpenCV implementation [40] of optical flow to estimate motion in a video. Similar to Gkioxari et al. [25], we stack the optical
flow in the x- and y- directions. We scale these by a factor of 16 and stack the magnitude as the third channel.

4.3.4 Key Frame Extraction

We use the optical flow displacement fields between consecutive frames and detect motion stillness to identify key frames. A hierarchical time constraint ensures that fast movement activities are not omitted. The first step in identifying key frames is the calculation of optical flow for the entire video and estimate the magnitude of motion using a motion metric as a function of time [12].

![Figure 17: Magnitude of motion over the entire video.](image)
Figure 18: Magnitude of motion over the entire video.

Motion metric function is calculated by aggregating the optical flow in the horizontal and vertical direction over all the pixels in each frame. This is represented in (4.1):

\[M(t) = \sum \sum |O_x(i, j, t)| + |O_y(i, j, t)| \]

where \(O_x(i, j, t) \) is the \(x \) component of optical flow at pixel \((i, j) \) in frame \(t \), and similarly for \(y \) component. As optical flow tracks all points over time, the sum is an estimation of the amount of motion between frames. The gradient of this function is the change of motion between consecutive frames and hence the local minimas and maximas would represent stillness or important activities between sequences of actions. Maximas represent frames that have maximum amount of motion around them and minimas are frames where we have stillness in the video. We hypothesize that if motion is still for a long time it means there must be an important event to capture at that moment. An example of this gradient change from a UCF-101 [14] video is shown in Figure 17. For capturing fast moving activities, a temporal constraint between
two selected frames is applied during selection [28], which evenly distributes the important frames over the video length. Frames are dynamically selected depending on the content of the video. Hence, complex activities or events would have more key frames, whereas simpler ones may have less.

4.3.5 Multi-Stream Architecture

We propose a multi-stream architecture which combines the color-spatial and motion channels. Figure 19 illustrates examples of the multi-stream architecture. Figure 19(a) is modified Alexnet architecture. It accepts a 3D input of size \(T \times 224 \times 224 \) where \(T \) defines the number of channels (10-Y,20-CbCr,30-RGB,3-OF). The individual streams have multi-channel inputs, both in terms of color channels and time windows. Two stream networks were inspired by Simonyan and Zisserman [23]. This research experimented with various two stream combinations such as Y & RGB, Y & OF, RGB & OF, etc. Comparative analysis of each combination is presented in the Results section. In multi-stream networks, we let the first three convolutional layers learn independent features but share the filters for the last two layers. Such type of fusion scheme is called “late fusion”.

![Diagram of multi-stream architecture](a)
Figure 19: (a) single stream, (b) double stream, (c) generic multi stream architecture.

4.3.6 Software Setup

This framework works on the top of torch715 deep learning library. Torch7 is based on the Lua language which is fast, optimized and lightweight language suitable for embedded devices applications with strong CPU and GPU backends. Torch7 is an open source framework, mostly community maintained and supported by top machine learning engineers around the globe including members of the Facebook AI research team. Torch7’s module “nn” is most suitable for developing various deep learning architectures and fusing CNN features. Our entire codebase is available at RIT gitlab server. Our repository includes Lua modules for various deep learning architectures and

15 http://torch.ch
Python modules for optical flow computation with video frames. Optical flow was calculated using the Python front end to OpenCV. The step-by-step process to train our CNN network is as follows:

1. Install torch7, also install luarocks package manager to install other dependencies.
 1.1. Torch installation:
 1.1.1 git clone https://github.com/torch/distro.git ~/torch --recursive
 1.1.2 cd ~/torch; bash install-deps;
 1.1.3 ./install.sh
 1.2. Other dependencies installation:
 1.2.1 luarocks install package-name

2. Git clone video classification repository with following link:
 git@kgcoe-git.rit.edu:sk1846/Video_Classif.git

3. This repository contains directories named as Y, YCbCr, YRGB, etc. For example, Y and RGB represent a single stream CNN network, where as YCbCr and YOF signify a two stream CNN network.

4. Inside each directory there are four major “lua” scripts:
 a. dataset.lua: This creates a dataset class to perform various operations such as data pre-processing, batch processing, etc.
 b. donkey.lua: Performs data fetching operations on dataset object.
 c. opt.lua: Stores all the model parameters and flags.
 d. main.lua: This calls train/test scripts.

4.3.7 Training
As discussed, our baseline architecture is similar to [13], but accepts inputs with multiple stacked frames. Consequently, our CNN models accept data,
which has temporal information stored in the third dimension. For example, the luminance stream accepts input as a short clip of dimensions 224×224×10. The architecture can be represented as C(64,11,4)-BN-P-C(192,5,1)-BN-P-C(384,3,1)-BN-C(256,3,1)-BN-P-FC(4096)-FC(4096), where \(C(d,f,s) \) indicates a convolution layer with \(d \) number of filters of size \(f \times f \) with stride of \(s \). P signifies max pooling layer with 3×3 region and stride of 2. BN denotes batch normalization [44] layers. The learning rate was initialized at 0.001 and adaptively gets updated based on the loss per mini batch. The momentum and weight decay were 0.9 and 5e\(^{-4}\), respectively.

The native resolution of the videos was 320 × 240. Each frame was center cropped to 240 × 240, then resized to 224 × 224. Each sample was normalized by mean subtraction and divided by standard deviation across all channels.

4.4. Results

We demonstrate our key frame methods for activity classification on the UCF-101 dataset. We further compare key frame results with sequentially separated video data. We explored different color spaces and their combination for multi-stream CNN architectures.

4.4.1 Evaluation

The model generates a predicted activity at each selected frame location, and voting amongst all locations in a video clip is used for video level accuracy. Although transfer learning boosted RGB and optical flow data performance, no high performing YCbCr transfer learning models were available. To ensure fair comparison among methods, all model results were initialized with
random weights.

Table 1: Single Stream Results.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Sequential</th>
<th>Key Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y-Only</td>
<td>39.72%</td>
<td>42.04%</td>
</tr>
<tr>
<td>2</td>
<td>CbCr-Only</td>
<td>35.04%</td>
<td>35.04%</td>
</tr>
<tr>
<td>3</td>
<td>RGB-Only</td>
<td>38.44%</td>
<td>46.04%</td>
</tr>
<tr>
<td>4</td>
<td>OF-Only</td>
<td>42.90%</td>
<td>45.54%</td>
</tr>
</tbody>
</table>

The first set of experiments quantify the value of using key frames with single stream architectures. Table 1 shows that key frame data consistently outperforms the sequential data representation. Table 1 shows that optical flow data is perhaps the single best predictor. Optical flow data contains very rich information for motion estimation, which is important for activity recognition. Parameter training with three channel optical flow representation required less computational resources because it represents information of 10 video frames with only $224 \times 224 \times 3$ size of data. The ten frame stacked RGB-only model ($10 \times$ the 1st layer memory of OF-only) resulted in similar accuracy, but took three more days to train than the optical flow model. The luminance only and chrominance only models gave less promising results.
Table 2, which uses two stream architectures, similarly shows that key frame data is able to understand video content more accurately than sequential data. These experiments validate that there is significant informative motion and spatial information available around key frames.

Table 2: Two Stream Results.

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Sequential</th>
<th>Key Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y + CbCr</td>
<td>45.30%</td>
<td>47.13%</td>
</tr>
<tr>
<td>2</td>
<td>Y + CbCr/4</td>
<td>-</td>
<td>43.40%</td>
</tr>
<tr>
<td>3</td>
<td>Y + CbCr/16</td>
<td>-</td>
<td>42.77%</td>
</tr>
<tr>
<td>4</td>
<td>Y + OF</td>
<td>41.68%</td>
<td>44.24%</td>
</tr>
</tbody>
</table>

Table 2 demonstrates multiple channel results. The fusion of luminance data with chrominance data is the best performing dual stream model. CNNs can take weeks to learn over large datasets, even when using optimized GPU implementations. One particular factor strongly correlated with training time is pixel resolution. It has long been known that humans see high resolution luminance and low resolution chrominance. To determine if CNNs can learn with low resolution chrominance, the chrominance channels were subsampled by a factor of four and sixteen. As shown in the Table 2, lowering chrominance resolution did not have a big impact on accuracy. Despite this small change in accuracy, the training time was reduced dramatically.

To further understand what combination of channel representations will provide best activity understanding, Table 3 contrasts three stream CNN architectures. Once again, the usage of YCbCr is superior to RGB, with a
47.73% top-1 accuracy on UCF-101 [14]. These multi-stream networks are huge and contain millions of parameters to learn. One three stream network experiment took an entire one week to train 50 epochs.

Table 3: Three Stream Results, *Epochs=15.

<table>
<thead>
<tr>
<th>Data</th>
<th>Sequential</th>
<th>Key Frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Y + CbCr + OF</td>
<td>48.13%</td>
<td>49.23%</td>
</tr>
<tr>
<td>2 Y + OF + RGB</td>
<td>45.33%*</td>
<td>46.46%*</td>
</tr>
</tbody>
</table>

Deep learning models contain a large number of parameters, and as a result are prone to overfitting. A dropout [45] ratio of 0.5 was used in all experiments to reduce the impact of overfitting. Trying a higher dropout ratio may help the model to generalize well, as our learning curves indicate the UCF-101 data may be overfitting. We used batch normalization [44], which has shown to train large networks fast with higher accuracy. As the data flows through the deep network, the weights and parameters adjust the data to minimize internal covariance shift between layers. Batch normalization reduces this internal covariance shift by normalizing the data at every mini-batch, giving a boost in training accuracy, especially on large datasets.

For multi-stream experiments, we experimented with transfer learning and fine-tuned the last few layers of the network. Unfortunately, there were no pre-trained models for YCbCr data. A color conversion of pre-trained RGB filters to YCbCr filters yielded low YCbCr accuracy. As a result, we trained all models from scratch for a fair comparison.

We also experimented with Motion History Images (MHI) in place of optical
flow. A MHI template collapses motion information into a single gray scale frame, where intensity of a pixel is directly related to recent pixel motion. Single stream MHI resulted 26.7% accuracy. This lower accuracy might be improved by changing the fixed time parameter during the estimation of motion images; we used ten frames to generate one motion image.

Our main goal was to experiment with different fusion techniques and key frames, so we did not apply any data augmentation. All results in Tables 1 through III, except for the Y+OF+RGB, trained for 30 epochs so that we can compare performance on the same scale. The Y+OF+RGB model was trained for 15 epochs. We did observe the trend that running with higher number of epochs increased the accuracy significantly. For example, the single stream OF-only with key frames in Table 1 jumped to 57.8% after 117 epochs.

This work can be helpful with applications where speed is more important than accuracy. In our experience, we saved computational time by a factor of two and only used 60% of the entire UCF-101 dataset while keeping the accuracy the same as the model trained on complete UCF-101 dataset. Current state-of-the-art result [98] on UCF-101 is 93.1% by taking advantage of very deep hybrid convolutional neural networks. Such networks can take weeks to optimize. Whereas our biggest CNN architecture took only four days of learning time.

4.4.2 Filter Visualization
Figure 20: Learned filters from first convolutional layer.

Figure 20 illustrates examples of trained (11×11) filters in the first convolutional layer. The luminance filters are 10 channels and the optical flow filters are x-, y- and magnitude. It can be observed that the filters capture the motion change over the x- and y- directions. These filters allow the network to precisely detect local motion direction and velocity.
Chapter 5 Video Summarization

Long videos captured by consumers are typically tied to some of the most important moments of their lives, yet ironically are often the least frequently watched. The time required to initially retrieve and watch sections can be daunting. In this further work, we propose novel techniques for summarizing and annotating long videos. Existing video summarization techniques focus exclusively on identifying keyframes and subshots, however evaluating these summarized videos is a challenging task. Our work proposes methods to generate visual summaries of long videos, and in addition proposes techniques to annotate and generate textual summaries of the videos using recurrent neural networks. Interesting segments of long video are extracted based on image quality as well as cinematographic and consumer preference. Key frames from the most impactful segments are converted to textual annotations using sequential encoding and decoding deep learning models. Our summarization technique as shown in Figure 21 is benchmarked on the VideoSet dataset, and evaluated by humans for informative and linguistic content. We believe this to be the first fully automatic method capable of simultaneous visual and textual summarization of long consumer videos. The novel contributions of this work include:

1) The ability to split a video into superframe segments, ranking each segment by image quality, cinematography rules, and consumer preference.

2) Advancing the field of video annotation by combining recent deep learning discoveries in image classification, recurrent neural networks, and transfer learning.
3) Adopting textual summarization methods to produce human readable summaries of video.

4) Providing knobs such that both the video and textual summary can be of variable length.

Figure 21: Overview of Video Summarization.

5.1. Past Work

Video summarization research has been largely driven by parallel advancements in video processing methods, intelligent selection of video frames, and state-of-the-art text summarization tools. Lu et al. [60] generates story driven summaries from long unedited egocentric videos. They start with a static-transit procedure to extract subshots from a longer egocentric video and extract entities that appear in each subshot to maximize an order of k selected subshots while preserving influence over time and individual
important events. In contrast, Gygli et al. [61] works with any kind of video (static, egocentric or moving), generates superframe cuts based on motion and further estimates interestingness of each superframe based on attention, aesthetic quality, landmark, person and objects. They select an optimal set of such superframes to generate an interesting video summary. Song et al. [62] uses video titles to find most important video segments. Their framework search for visually important shots uses at title-based image search. It takes advantage of the fact that video titles are highly descriptive of video content and therefore serve as a good proxy for relevant visual video content. Zhang et al. [47] explores a nonparametric supervised learning approach for summarization and transfers summary structure to novel input videos. Their method can be used in a semi-supervised way to comprehend semantic information about visual content of the video. Determinantal Point Process has also often been used in video summary methods [62, 63, 47].

Using key frames to identify important or interesting regions of video has proven to be a valuable first step in video summarization. For example, Ejaz et al. [16] used temporal motion to define a visual attention score. Similarly, Hou et al. [15] utilized spatial saliency at the frame level. Gygli et al. [61] introduced cinematographic rules which pull segment boundaries to locations with minimum motion. KE et al. [65] favored frames with higher contrast and sharpness, Datta et at. [66] favored more colorful frames, Ghosh et al. [67] studied people and object content, while Ptucha et al. [68] studied the role facial content plays in image preference. [67] further tracked objects across a long video to discover story content.

Large supervised datasets along with advances in recurrent deep networks have enabled realistic description of still images with natural language text
The extension of this to video can be done by pooling over frames [3] or utilizing a fixed number of frames [4]. Venugopalan et al. [3] proposes a method to translate pixel level video content to language with a single neural network. Deep CNN architectures usually require huge amounts of supervised data to learn descriptive features. [3] addresses this problem by transferring learnt features from different open domain tasks. However, this method is not able to exploit long term temporal information. Li et al. [4] uses a temporal attention mechanism to understand the global temporal structure of video. In addition, they also use appearance and action features through a 3-D Convolutional Neural Network (CNN) which encodes local temporal structure as shown in Figure 22.

![Figure 22: Exploiting local temporal structure [4].](image)

Every video clip is divided into grids where the size of each grid is $16 \times 12 \times 2$ (width \times height \times time steps). Each grid is later represented by concatenation of Histograms of Oriented Gradients, oriented flow and Motion boundary (HoG, HoF, MbH) [18, 49]. Such representation of short video clip extracts local temporal features while reducing the further computation for the 3D
Most recently, Venugopalan et al. [11] described a technique, S2VT, to learn a representation of a variable sequence of frames which are decoded into natural text. Recently, Yu et al. [71] demonstrated a hierarchical recurrent neural network to generate paragraph summaries from relatively long videos. These videos were still limited to a few minutes long. We use a variation of the S2VT captioning approach in our work.

Given descriptive captions at key frame locations, we explore extractive methods for summarization. Extractive methods analyze a collection of input text to be summarized, typically sentences. These sentences are selected to be included in the summary using various measurements of sentence importance or centrality. Early seminal summarization research by Luhn [72] used word frequency metrics to rank sentences for inclusion in summaries, while Edmundson [73] expanded this approach to include heuristics based on word position in a sentence, sentence position in a document, and the presence of nearby key phrases. More recent extensions of the word frequency models, including SumBasic [74] and KL-Sum [75], typically incorporate more sophisticated methods of combining measures of word frequency at the sentence level and using these composite measures to rank candidate sentences. Other approaches, such as LexRank [76] and TextRank [77] focus on centroid-based methods of sentence selection, in which random walks on graphs of words and sentences are used to measure the centrality of those sentences to the text being summarized. A good review of these techniques and others can be found in [78, 79]. The latest research on single document summarization has utilized both dependency based discourse tree trimming [80] as well as compression and anaphoricity constraints [81].
Natural language summarization can be classified into two types of methods: extractive summarization and abstractive summarization. Extractive summarization involves giving confident scores to each sentence/group of sentences and determine the importance of each sentence/group of sentences in the given text and later concatenate these filtered parts of given text to form a shorter version. The importance of individual parts is driven by statistical and linguistic features present in each part. In contrast, abstractive summarization [88] tries to understand the main centralities in the document and constitutes the sentences that convey the main context while preserving the amount of necessary information being expressed. In this work, we prove that abstractive summarization methods are well suited for video summarization.

5.2. Methodology

Our proposed approach consists of four main components:

- Identification of interesting segments from the full video;
- Key frame extraction from these interesting segments;
- Annotation generation of key frames using a deep video-captioning network;
- Annotation summarization to generate a paragraph description of the sequence of events in the video.

The annotations from the key frames form powerful search descriptors, both for finding the appropriate video, and for quickly jumping to the appropriate frame location in the video. The selected interesting segments form a visual
summary of the long video. The generated paragraph is the textual summary of the long video. Next, we describe each of these modules in detail.

5.2.1 Super frame Segmentation

![Figure 23: Super Frame Segmentation.](image)

Most work on extracting key segments from video has been done on extracting aesthetically pleasing, informative, or interesting regions. Realizing these key segments will ultimately be stitched, we additionally observe cinematographic rules which prefer segment boundaries with minimum motion [46], which are termed superframe cuts.

As videos used in this research are several hours long, every ten frames are first averaged. The resulting low pass filtered and shortened video is split into fixed length segments. Optical flow motion estimates are generated, then using cinematographic rules from Gygli et al. [46], the segment boundaries gravitate towards areas of local minimum motion. Figure 23 shows eleven superframe cuts from a typical video.
Given s superframe cuts, we need to decide which are worthy of inclusion in the final summary, and which will be edited out. Worthiness will be determined by a non-linear combination of scores measuring a superframe cut’s fitness regarding Boundary, Attention, Contrast, Sharpness, Saturation, and Facial impact. Each of these will be described next.

5.2.1.1 Boundary Score

A Boundary score, B is computed for each superframe region, where the score is inversely proportional to the motion at each boundary neighborhood. Similar to Zhang et al. [64], we stack the optical flow between consecutive frames in the x- and y- directions. Motion is computed as $\mathbf{M}(t)$ (see key frame selection 4.3.4), then given:

$$M(t), \ B = 1/ M(t)$$

5.2.1.2 Attention Score

Each of these superframe regions are evaluated for aesthetic and interesting properties. Similar to [16, 15], an Attention score, based on temporal saliency is first used. The Attention score, A is a combination of the super-frame motion, m and variance, v, where m and v correspond to the mean and variance of all non-boundary frames motion in a superframe cut. The final Attention score:

$$A = \alpha \ast m + (1 - \alpha) \ast v, \text{ with } \alpha = 0.7$$
5.2.1.3 Contrast Score

The measures of Contrast, Sharpness, Saturation, and Facial impact are computed for all frames in each super-frame cut and then averaged to report four values for each superframe cut. Similar to Ke et al. [65], a Contrast score is computed. To calculate the Contrast score, C, each frame in a superframe cut is converted to luminance, low pass filtered, and resampled to $64 \times \text{width}$, where 64 is the new height and width is selected to preserve the aspect ratio of the frame. The Contrast score, C, is the standard deviation of luminance pixels.

5.2.1.4 Sharpness Score

Similar to Ke et al. [65], a Sharpness score is computed. To calculate a Sharpness score, E, the frames are converted to luminance, then divided up into 10×10 equally spaced regions. Using the center 7×7 regions, the standard deviation of luminance pixels is calculated three times centered on each region, where each of the three times a random shift is added, and the median of the three standard deviation values is reported for each of the 49 regions. The Sharpness score, E is the maximum of the 49 standard deviation values.

5.2.1.5 Colorfulness Score

Similar to Datta et al. [66], a Colorfulness score, S is computed. The frames are converted to HSV space, low pass filtered, resampled to $64 \times \text{width}$, where 64 is the new height and width is selected to preserve the aspect ratio of the frame, then the mean saturation value from the frame is reported.
5.2.1.6 Facial Impact Score

Ptucha et al. [68] reported on the importance of facial content in imagery, and described a method for generating aesthetically pleasing crops of images containing facial information. Similar to Gygli et al. [46], but following the rules from [68], we compute a Face impact score, F which favors larger and more centrally located faces. Each face is assigned an impact score and the sum of all face scores is reported as a Face impact score, F. To convert from pixels to a universal unit of measure, the size of a face, FS is normalized to the size of the image using:

$$FS = \frac{\text{faceWidth}^2}{(\text{imageWidth} \times \text{imageHeight})}$$ \quad (5.3)

where faceWidth is the width of the face bounding box in pixels, or $2 \times$ intraocular distance if bounding boxes are not square. Finally, following [68], the face size attribute, FSA is normalized to 0:1, centered on 0.5 for a typical face:

$$FSA = -72.4 \times FS^3 + 27.2 \times FS^2 - 0.26 \times FS + 0.5$$ \quad (5.4)

5.2.1.7 Fusing Scores

Empirical testing has shown that Attention (A), Contrast (C), and Sharpness (E) are essential elements to the usefulness and fidelity of a superframe region. After normalization, the product of these three scores is used to form a
baseline score for each superframe region. Boundary motion (B), Saturation
(S), and Face impact (F) increase this baseline score by \(\eta(B + F) + \gamma(S) \), where
\(\eta = 0.35 \) and \(\gamma = 0.2 \). The final measure of superframe cut interestingness score
is computed as:

\[
I_{score} = A.C.E + \eta(B + E) + \gamma(S) \tag{5.5}
\]

Figure 23 (bot) shows the corresponding superframe segments from Figure 23
(top) but with the individualized fitness scores and the overall \(I_{score} \) in solid
black. After \(I_{score} \) is calculated for an entire video, the top superframe cuts
(red pentagrams in Figure 23 (bot)) are selected by only using superframe cuts
which comprise \(\omega \% \) of the total energy. These selected superframe cuts define
the region in the original video which are used for visual and annotation
summaries. Video summary duration can be altered by changing \(\omega \).

5.3. Video Clip Captioning

![Figure 24: Super Frame Segmentation [11].](image)
Video clip captioning is achieved by sequence to sequence modeling where the input is a sequence of video frames and the output is sequence of words. These words eventually form a sensible sentence. The overall goal of a video captioning model is to estimate the conditional probability of a word sequence \((w_1, w_2, \ldots, w_{n_1})\) given a video frame sequence \((f_1, f_2, \ldots, f_n)\). This work incorporates sequence to sequence learning by modifying S2VT [11] with new frame features and the introduction of key frame selection. S2VT is based on the Encoder-Decoder neural architecture introduced by Cho et al. [97].

![Encoder-Decoder Set Up](image)

Figure 25: Encoder-Decoder Set Up [97].

Such an encoder-decoder set up is a generic method to learn a conditional distribution over a variable-length sequence. Encode is a RNN which receives each sample from an input sequence and changes the hidden state according to (5.6). After receiving the end of sequence symbol, the hidden state of the RNN can be considered as the summary vector \(S_v\) of entire input sequence.

\[
h(t) = f(h_{t-1}, x_t) \quad (5.6)
\]

The decoder is also another RNN. The decoder is trained to generate a next word by giving a current word and a hidden state. The decoder starts with the
summary hidden state from the encoder and a start token. Unlike the encoder, the hidden state of the decoder depends not only on the input and hidden state, but also the summary vector S_v as depicted in (5.7):

$$h(t) = f(h_{t-1}, y_{t-1}, S_v), \quad (5.7)$$

Further, the conditional distribution of next sample in sequence can be expressed as:

$$P(y_t|y_{t-1}, y_{t-2}, y_{t-3}, \ldots, y_1, c) = g(h_t, y_{t-1}, c) \quad (5.8)$$

Where g is the activation function.

S2VT is shown in Figure 24. Each key frame is passed through the 152-layer ResNet CNN model [82] pre-trained on ImageNet data, where the $[1 \times 2048]$ vector from the last pooling layer is used as a frame feature. These key frame feature vectors are passed sequentially into a LSTM network [83].

The S2VT framework first encodes (similar to encode-decoder) f frames, one frame at a time to the first layer of a two-layer LSTM, where f is of variable length. This latent representation is then decoded into a natural language sentence one word at a time, feeding the output of one time step into the second layer of the LSTM in the subsequent time step as shown in Figure 24.

During training, a video sequence and corresponding text annotation pair are input to the network. During testing, f key frames around a superframe video segment are encoded into the trained neural network. Once all frames are
processed, a *begin of sentence* keyword is fed into the network, triggering word generation until and *end of sentence* keyword is produced. The two layer LSTM is fixed to 80 time steps, which includes both the input frames for each clip as well as its associated caption.

Our code base is available on RIT gitlab server with the use of following link:
git@kgcoe-git.rit.edu:sk1846/video_captioning.git. It includes Torch7 based Lua scripts to extract CNN ResNet/GoogLeNet features. It also comprises summary evaluation scripts.

5.4. Text Summarization

After passing the extracted video clips through a video captioning model, a list of sentences is returned which describes the information flow in the original video. These sentences still show some redundant information, creating the need for an abstractive/narrative summary which can convey the overview of video information in a condensed form. This work explores various methods to perform this summarization task. Text summarization can be categorized into two types, extractive summarization and abstractive summarization. Extractive summarization strictly generates summary based on the input text given. It can be thought as giving importance to some parts of text based on natural language features and stitching them together to form a summary. Whereas, abstractive summarization is a transformation process; input text is transformed into summary through data driven statistical models.

5.4.1 Extractive Summarization

The *sumy 0.4.1* python framework along with NLTK libraries were used to evaluate Luhn’s algorithm, Edmundson’s heuristic method, Latent Semantic Analysis (LSA), LexRank, TextRank, SumBasic and KL-Sum text summa-
rization techniques. Before passing video clip captions into the text summarizers, duplicate captions were filtered out. The temporal order of each caption was preserved, and the summary length was fixed to 24 sentences for this paper, but can be changed to any length greater than the number of input captions.

5.4.2 Abstractive Summarization

This work improves video to text summarization by using abstractive summarization techniques through a contextual attention encoder with neural network language model. Attention based summarization is the core concept of this approach. It incorporates little to no information about language templates and other linguistic rules. It is completely data driven. Although it requires a huge amount of document-summary data to learn, the results generated by attention based summarization techniques often outperform extractive summarization methods.

This approach, inspired by Rush et al. [89], involves joint learning of a language model and a contextual input encoder. The contextual encoder is the extension of Bahdanau et al. [90]. Such an encoder arrangement can learn a latent soft alignment between input text and generated summary. The goal of a document summarization method is: given an input text x, which is a sequence of M words, generate a condensed summary y which contains N words. In this problem, N is significantly smaller than M, which drives the condensed summarization. Both input and output sequences share a common vocabulary V of size V. Abstractive summarization methods use a scoring function (5.9) to form an optimal sequence of N words.
\[
\text{arg max } s(x, y), \quad (5.9)
\]
\[
s(x, y) \approx \sum_{i=0}^{N-1} g(y_{i+1}, x, y_c), \quad (5.10)
\]
\[
y_c = y_{[i-c+1, \ldots, i]} \quad (5.11)
\]
\[
s(x, y) \approx \sum_{i=0}^{N-1} g(y_{i+1}, x, y_c), \quad (5.12)
\]

A neural language model is a parameterized approach to estimate the conditional probability of a next word in the sentence given some context. This idea of language modeling was first introduced by [90]. Figure 26 describes the network diagram of a language model.

This language model accepts two separate inputs: input document/sentences \((x)\) and context information \((y_c)\). The model contains one embedding layer \(E\) followed by an activation \(U\) and hidden layer \(h\). On the other side, the encoder block “enc” accepts input document \(x\) and context \((y_c)\) and returns a vector with the same dimension as the output of the hidden layer \(h\). Later, a softmax layer concatenates both inputs as described in (5.13) to estimate the probability of the next word.
The language model learns parameters such as E, U, V, W. The “enc” box is described in the next section.

E = Embedding word matrix of size $D \times V_c$; D is word embedding size.

V = Matrix of size $V \times H$; V is vocabulary size

$$p(y_{i+1} | y_c, x; \theta) \propto \exp (Vh + W\text{enq}(x, y_c))$$ \hspace{1cm} (5.13)

$$y_c = [Ey_{i-c+1}, \ldots \ldots Ey_i]$$ \hspace{1cm} (5.14)

$$h = \tanh (Uy_c)$$ \hspace{1cm} (5.15)

5.4.2.1 Attention Based Contextual Encoder

The encoder box represented in the Figure 25 fuses the contextual information to support the language model. This helps better estimate the contextual probability about the next word. The network diagram of encoder model is
shown in the Figure 27, where \mathbf{F} is input side embedding matrix of size $(D \times V)$ \mathbf{G} is context side embedding matrix with similar size, \mathbf{P} is a weight matrix which maps parameters between the context embedding and input embedding, and \mathbf{Q} is the smoothing window on the input sequences.

$$enc(x, y_c) = P'x$$ \hspace{1cm} (5.16)

$$P \propto \exp (x^- P y'_c)$$ \hspace{1cm} (5.17)

$$x^- = [Fx_1, Fx_2, \ldots, Fx_M]$$ \hspace{1cm} (5.18)

$$y'_c = [Gy_{l-c+1}, \ldots, Gy_l]$$ \hspace{1cm} (5.19)

$$x^-_i = \sum_{q=i-Q}^{i+Q} x^-_i / Q$$ \hspace{1cm} (5.20)
One way to think about the encoder model as a normal averager is if \(Y_c \) is not present in (5.17). The inclusion of \(Y_c \) works as soft alignment between the input sequence and the generated sequence. During the learning process, such alignment tries to align context words with the input sequence. Working software can be accessed through RIT gitlab server with the following link https://kgcoe-git.rit.edu/sk1846/sentence_modeling. It includes the following scripts:

1. Construct_data.sh : Neural attention model accepts text into a certain format, this script converts a text document into a sequence of numbers where each number correspond to vocabulary index.

2. Train_model.sh : This calls train.lua script with the given flags. Short description of each flag is present in the train.lua script.

5.4.3 Summarization Metric: Rouge-2

In order to evaluate the summaries produced in this way, we turned to ROUGE [84], a set of objective metrics of summarization quality that can be calculated automatically, making them ideal for development and comparison of summaries generated by multiple summarization models. These metrics rely on methods of measuring word overlap between the output of a summarization system and one or more human generated reference summaries. Although simple, the ROUGE metrics correlate very highly with human evaluations. Here we use ROUGE-2, which measures the number of bigrams (i.e., two-word sequences) appearing in the summarization output that also appear in the reference summaries. ROUGE-2 is one of the more commonly used variation of the ROUGE metric in the text summarization research community and is the variant of ROUGE-N with the highest correlation with human evaluation. Using Lin’s notation, ROUGE-2 is formulated as follows: where
Refs is the set of reference summaries, \(Count(bigram) \) is the count of a bigram, and \(Count_{match}(bigram) \) is the number of matching bigrams in the summarization output:

\[
ROUGE2 = \frac{\sum_{S \in \text{Refs}} \sum_{bigram \in S} Count_{match}(bigram)}{\sum_{S \in \text{Refs}} \sum_{bigram \in S} Count(bigram)}
\]

(5.21)

Our purpose is to quantify abstractive summarization. ROUGE-2 is the best acceptable metric but it captures only bi-gram overlaps between model output summary and the gold summary. Abstractive summarization often rephrases the sentence or uses different sets of words, which provides understandable summary. ROUGE-2 often underrates the summary because it doesn’t find exact word pairs. In the linguistic community, there is strong need to have an adequate metric to measure abstractive summarization quality.

BLEU and METEOR scores are familiar techniques for machine translation quality measurement. BLEU scores scale between 0 to 1- a score near 1 is considered highly correlated with human translation. BLEU evaluates a generated summary based on the similarity of n-grams with a reference summary. METEOR evaluates machine translation by aligning output summary words with reference summary words, where alignment is based on exact match, synonym, or paraphrase.

In the case of abstractive summarization, the model paraphrases multiple sentences into few sentences which involves words elimination, change in sentence structure, synonym addition and other possible language changes. It is common understanding that none of the scoring methods (ROUGE-2, BLEU, METEOR) are alone capable to sense all kinds of natural language issues in the process of abstractive summarization.
5.5. **Datasets**

We demonstrated summarization on the VideoSet [85] dataset. This dataset is comprised of eleven long (45 minutes to over 5 hours) videos in three categories: Disney, ego-centric, and TV episodes. Eight videos are used for training and three (DY01, GR03, TV04) for testing. The captioning model was pre-trained on the training split of the MSVD dataset [86] as the training data form VideoSet is not deemed sufficient.

Later, a comparative analysis between extractive summarization and abstractive summarization is performed with visual the storytelling [91] dataset. This will show that abstractive summarization techniques are well suited for end to end video summarization tasks. The original dataset contains sequences of images with associated descriptions. These descriptions are totally unrelated to each other. Further, it also contains visual descriptions in the form of a story. Abstractive summarization methods accept unrelated descriptions (documents) as training input and story sequences (summary) as ground truths. A joint language and contextual encoder model was trained on 130k training samples and 37k samples for validation. One pair of document-summary from the storytelling dataset is shown below:
Dataset sample: Sequences of five images shown above, a training sample generated from these images is as follows:

Input text (document): A black Frisbee is sitting on top of a roof. A man playing soccer outside of a white house with a red door. The boy is throwing a soccer ball by the red door. A soccer ball is over a roof by a frisbee in a rain gutter. Two balls and a frisbee are on top of a roof.

Output summary: A discuss got stuck up on the roof, why not try getting it down with a soccer ball? Up the soccer ball goes. It didn’t work so we tried a volley ball. Now the discuss, soccer ball and volley ball all are stuck on the roof.

The video data contains a story type structure. Such a dataset which can transform a story plot to a shorter version of the story fits perfect for the video summarization used in this research. To work also utilizes the open imdb movie\(^\text{16}\) dataset to evaluate different summarization methods. This dataset contains \(~1.5\) million full plot-short plot pairs of various movies and TV series.

\(^{16}\)\url{http://www.omdbapi.com/}
shows. A sample example is given below:

Movie: A Beautiful Mind

Full plot: From the heights of notoriety to the depths of depravity, John Forbes Nash, Jr. experienced it all. A mathematical genius, he made an astonishing discovery early in his career and stood on the brink of international acclaim. But the handsome and arrogant Nash soon found himself on a painful and harrowing journey of self-discovery. After many years of struggle, he eventually triumphed over his tragedy, and finally - late in life - received the Nobel Prize.

Short plot: After John Nash, a brilliant but asocial mathematician, accepts secret work in cryptography, his life takes a turn for the nightmarish.

A limited number of document-summary pairs have affected our model performance. As typical with most machine learning problems: larger datasets often lead to better and more robust performance. We trained abstractive summarization neural network with the New York Times Annotated Corpus\(^\text{17}\). New York Times Annotated (NYT) corpus contains 1.3 million news articles written from January 1987 to January 2007. Each article is equipped with supporting metadata such as date, length of article, author name, summary, etc. The dataset contains 650,000 article-summary pairs. Summaries are written by library scientists. After data cleaning and removing HTML tags, 433,958 samples were used for training, 99,999 samples for validation and 99,999 samples were held back for the final testing phase. Below is a listing of a sample news article and its associated summary.

News Article: Members of the family portrayed in the best-selling Augusten Burroughs memoir "Running With Scissors" have filed a lawsuit in a Massachusetts state court accusing the author of defamation, invasion of privacy, infliction of emotional distress and fraud, and asking the court to prevent further publication of the book as a work of

\(^{17}\) https://catalog.ldc.upenn.edu/ldc2008t19
nonfiction. Also named in the lawsuit, first reported in The Boston Globe, are St. Martin’s Press, which published the book in July 2002; the book’s editor; and Mr. Burroughs’s literary agent. The lawsuit contends that portions of the book concerning the Turcotte family, whose name in the book is changed to Finch, are fictional and were written to sensationalize it and improve its marketability. The lawsuit contends that Mr. Burroughs, above, has publicly identified the Finch family as the Turcottes. A spokesman for St. Martin’s said that the company could not comment on a matter in litigation. Mr. Burroughs said in an e-mail message that he could not comment either.

Article Summary:

Arts, Briefly column; members of Turcotte family file suit accusing Augusten Burroughs, author of memoir Running With Scissors, as well as St Martin’s Press and Burroughs’ literary agent, of defamation, invasion of privacy, infliction of emotional distress and fraud.

5.6. Results

Table 4 compares ROUGE 2 scores from the ground truth captions and summaries provided with the VideoSet dataset using several text summarization methods. The ground truth annotations for each five/five/ten second segments for the egocentric/Disney/TV videos, respectively, were compared to a single ground truth summary for each video. These results can be considered as the upper bound of the summarization methods, which suggest that the LexRank, LSA, and SumBasic methods are generally performing best.
Table 4: ROUGE Scores.

<table>
<thead>
<tr>
<th>Video</th>
<th>lu</th>
<th>ed</th>
<th>Lsa</th>
<th>Tr</th>
<th>lr</th>
<th>sb</th>
<th>kl</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY01</td>
<td>0.32</td>
<td>0.26</td>
<td>0.42</td>
<td>0.20</td>
<td>0.29</td>
<td>0.36</td>
<td>0.18</td>
</tr>
<tr>
<td>GR03</td>
<td>0.21</td>
<td>0.20</td>
<td>0.22</td>
<td>0.15</td>
<td>0.16</td>
<td>0.23</td>
<td>0.16</td>
</tr>
<tr>
<td>TV04</td>
<td>0.35</td>
<td>0.14</td>
<td>0.38</td>
<td>0.22</td>
<td>0.18</td>
<td>0.16</td>
<td>0.11</td>
</tr>
</tbody>
</table>

ROUGE 2 scores (higher is better) for VideoSet dataset. (lu = Luhn, ed = Edmundson, lsa = LSA, tr = text-rank, lr = LexRank, sb = SumBasic)

After training, text summarization was applied to the three VideoSet test videos: DY01 a 5.5 hour video recorded by a Walt Disney World tourist; GR03 a 3 hour video depicting everyday activities; and TV04 a 45 minute episode of the TV show *Numb3rs*. Table 9 indicates strong benefits to using our key superframe segments. The TV04 was the shortest video and the summary contained numerous unique reference to names which cannot be learned from the training set. The summary of this video had numerous character and character usage errors, most likely due to the lack of training data to learn faces and appearances.

5.6.1 Human Evaluation

We created a task in which ten human judges rated our machine generated text summaries for overall summary semantics, sentence syntax, and sentence semantics on a 1 (very poor) - 5 (very good) Likert-type scale. The questions asked to the human judges were:

- After reading the summary, would you be able to describe the video to another person.

- Rate the quality of the syntax/grammar of the summary sentences (missing
words, word order, incorrect words, unknown words, punctuation, upper/lower case, duplicate words/sentences).

- Rate the quality of the semantics/clarity/understanding of the summary sentences.

Table 5 ROUGE Scores.

<table>
<thead>
<tr>
<th>Test Video</th>
<th>All Clips</th>
<th>Key Clips</th>
</tr>
</thead>
<tbody>
<tr>
<td>DY01</td>
<td>025/0.17/0.21</td>
<td>0.31/0.30/0.31</td>
</tr>
<tr>
<td>GR03</td>
<td>0.15/0.07/0.14</td>
<td>0.15/0.11/0.15</td>
</tr>
<tr>
<td>TV04</td>
<td>0.02/0.02/0.02</td>
<td>0.01/0.01/0.01</td>
</tr>
</tbody>
</table>

ROUGE 2 scores for machine generated vs. ground truth on VideoSet test videos. (LSA/LexRank/SumBasic methods)

For overall summary and sentence syntax, the LSA and LexRank methods were preferred. For sentence semantics, all methods performed comparably. Judges rated the TV04 summaries much lower than DY01 and GR03.

Sample Output:

I used my phone while waiting for the tram to depart. I looked through the attendant and i rode the tram. My friends and i waited for the tram to depart. My friends and i stood around the tour guide. My friends and i posed for a group picture. My friends and i talked about our day while walking around the park. My friends and i waited in the <en unk> <en unk> talking to the the- ater. My friends and i listened to the tour guide. I talked on my phone while walking around the park. My friends and i talked while moving along the line. I stood with a group of my friends talking. My friends and i walked through a dark room. My friends and i talked about our food while walking around the park. My friend and i talked about the camera while walking around the park. My friends and i talked about our camera while waiting around the park. My friends and i walked with our group leader through the park while talking. I stood in a dark place and talked to my friends. I walked through a dark room talking with my friends. I watched a mascot
enter-tain i waiting. I grabbed some food while moving along the line. My friends and i sat at the table and had dinner. My friends and i waited at the table and had dinner. I watched a mascot entertain another group. My friends and i sat at the table and talked.

Table 6: Human Evaluation.

<table>
<thead>
<tr>
<th></th>
<th>DY01</th>
<th>GR03</th>
<th>TV04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary Semantics</td>
<td>3.65</td>
<td>2.35</td>
<td>1.40</td>
</tr>
<tr>
<td>Sentence Syntax</td>
<td>3.55</td>
<td>2.40</td>
<td>1.65</td>
</tr>
<tr>
<td>Sentence Semantics</td>
<td>3.80</td>
<td>2.35</td>
<td>1.45</td>
</tr>
<tr>
<td>Average</td>
<td>3.67</td>
<td>2.37</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Human evaluation scores on machine generated video summaries using LSA

5.6.2 Extractive vs. Abstractive Summarization

Table 7: Summarization Types Evaluations.

<table>
<thead>
<tr>
<th>Types of Summarization</th>
<th>Methods/Models</th>
<th>Rouge-2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractive Summarization</td>
<td>LSA</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>LexRank</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>SumBasic</td>
<td>0.026</td>
</tr>
<tr>
<td>Abstractive Summarization</td>
<td>ABS (Baseline)</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>ABS (with word embedding)</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>ABS (with increased encoder size)</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>ABS (with increased contextual window)</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>ABS (with more hidden layers)</td>
<td>0.014</td>
</tr>
<tr>
<td>Summarization Method</td>
<td>ROUGE-2 Score</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>ABS (with simple model and small embedded dimension)</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>ABS (Small model longer training)</td>
<td>0.035</td>
<td></td>
</tr>
</tbody>
</table>

Evaluate different summarization methods on VIST dataset.

Table 7 compares various summarization methods using the VIST storytelling dataset. This dataset is comparatively smaller and contains some broken sentences. Nevertheless, abstractive summarization methods outperformed previous non-deep learning methods on this text summarization task. Similarly, we also evaluated these methods on the Open IMDB dataset as shown in Table 8.

Table 8: Summarization Types Evaluation on Open IMDB dataset.

<table>
<thead>
<tr>
<th>Types of Summarization</th>
<th>Methods/Models</th>
<th>ROUGE-2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractive Summarization</td>
<td>LSA</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>LexRank</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>SumBasic</td>
<td>0.19</td>
</tr>
<tr>
<td>Abstractive Summarization</td>
<td>ABS (with more hidden layers)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Evaluate different summarization methods on Open IMDB dataset.
Table 9: Summarization Type Evaluation on New York Times Corpus Dataset.

<table>
<thead>
<tr>
<th>Types of Summarization</th>
<th>Methods/Models</th>
<th>Rouge-2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractive Summarization</td>
<td>LSA</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>LexRank</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>SumBasic</td>
<td>0.08</td>
</tr>
<tr>
<td>Abstractive Summarization</td>
<td>ABS*</td>
<td>0.21</td>
</tr>
</tbody>
</table>

*Model with parameters: Neural language model embedding = 64, Article embedding = 200, Learning rate = 0.05, Hidden size = 64

Table 9 compares summarization methods on the New York Times Annotated dataset. It shows that the neural network abstractive language model outperformed extractive summarization methods. Although a Rouge-2 score of 0.21 shows that the model doesn’t produce completely understandable summaries, it is capable of picking key words and underlining the article flow. Another reason for low scores is variability of document length. Our model learns to predict 30 word length summaries but NYT dataset summary lengths vary from 10 to 100 words. News articles often contain a significant number of proper nouns such as person name, place name, scientific words, etc. Our dictionary is built with the consideration that the word will be part of the dictionary if it has occurred more than five times in the entire dataset. Therefore most of these proper nouns are not part of dictionary which leads them to not be part of generated summary. Consequently, Rouge-2 scores, which utilize bi-gram matching will have low summaries scores.

5.6.3 Evaluating Super frame cut selection

We use the SumMe (Park) dataset [61] to evaluate the effectiveness of our
features in superframe cut selection. The SumMe Dataset consists of 25 videos, ranging from one to seven minutes (950 to 9721 frames). An ablation analysis across the six features of Boundary, Attention, Contrast, Sharpness, Saturation, and Face impact was performed across all 25 videos. A five frame averaging filter was used, and then every 10th frame was extracted and resampled so frame width=480 pixels. The mean value for each feature in each superframe cut along with the mean ground truth relevance score was passed into the ablation analysis. A mean squared error from a linear regression model was used as a fitness criterion.

Table 10: Feature evaluation on SumMe dataset.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Mean rank</th>
<th>Top-1</th>
<th>Top-2</th>
<th>Top-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast</td>
<td>2.72 +/- 2.19</td>
<td>7</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Saturation</td>
<td>2.80 +/- 2.16</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Boundary</td>
<td>2.92 +/- 1.75</td>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Face impact</td>
<td>2.92 +/- 1.89</td>
<td>1</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Sharpness</td>
<td>3.12 +/- 2.01</td>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Attention</td>
<td>3.24 +/- 2.01</td>
<td>3</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

Mean rank position (lower is better); number of times feature was selected 1st; 1st or 2nd; and 1st, 2nd, or 3rd.

Both the mean rank and top-k ranked columns of Table 10 show all features have significant usefulness in superframe cut selection. Although the Contrast and Saturation features have the lowest rank, the top-3 column shows the balanced nature of all the features. While the Boundary feature was an average
performer, the human annotators rated each frame independently, not taking into account cinematographic rules. While the Face impact was found to be one of the most important factors in [30], only 12 out of 25 videos contained faces in this dataset. The low performance of Attention is surprising, and follow-on research finds the frame averaging is critical towards achieving high importance of the Attention score. For the SumMe dataset, the six features had an overall RMSE of 0.0271 as compared to the ground truth, showing this suite of features are excellent indicators of frame relevance.

5.6.4 Evaluating Key Frame Selection

We use the Keyframe-Sydney (KFSYD) Dataset [87] to evaluate the motion magnitude based key frame election. This dataset consists of ten videos, each with three independent sets of ground truth frame summaries. Table 11 reports the ratio of selected key frames that match with ground truth. A frame is considered a match if it is within n-neighborhood of a ground truth frame. top-k refers to matching k-highest probability frames with ground truth. Results reported in the table are averaged over all videos and all ground truth summaries.

Table 11: Evaluation scores for key frame selection. High ratio is better.

<table>
<thead>
<tr>
<th>Top-k</th>
<th>15-neighbor</th>
<th>25-neighbor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-8</td>
<td>0.50</td>
<td>.66</td>
</tr>
<tr>
<td>Top-16</td>
<td>0.54</td>
<td>0.69</td>
</tr>
<tr>
<td>Top-24</td>
<td>0.60</td>
<td>0.72</td>
</tr>
<tr>
<td>Top-32</td>
<td>.60</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Chapter 6 Conclusion

6.1. Key Frame Extraction and Multi-Stream CNNs

We propose a novel approach to fuse color spaces and optical flow information in a single convolutional neural network architecture for state-of-the-art activity recognition. This study shows that color and motion cues are necessary and their combination is preferred for accurate action detection. We studied the performance of key frames over sequentially selected video clips for large scale human activity classification. We experimentally support that smartly selected key frames add valuable data to CNNs and hence perform better than conventional sequential or randomly selected clips. Using key frames not only provides better results but can significantly reduce the amount of data being processed. To further reduce computational resources, multi-stream experiments advocate that lowering down the resolution of chrominance data stream does not harm performance significantly. Our results indicate that passing optical flow and YCbCr data into our multi-stream architecture at key frame locations of videos offer comprehensive feature learning, which may lead to better understanding of human activity. Such research can be helpful for video compression, efficient action detection, key-event detection, motion analysis, etc. with a wide variety of video data.

6.2. Video Summarization

This work introduces a novel method for both video summarization and annotation. Frame to frame motion, frame image quality, as well cinematographic and consumer preference are uniquely fused together to determine interesting segments from long videos. Key frames from the most
impactful segments are converted to textual annotations using an encoder-decoder recurrent neural network. Textual annotations are summarized using extractive methods where LSA, LexRank and SumBasic approaches performed best. Human evaluations of video summaries indicate promising results. Independent experiments validate both superframe cuts as well as key frame selection. A key limitation is passing of incorrect superframe or key frame information to the captioning framework. A potential solution would be availability of datasets with ground truth on both key segments and associated captions/summaries. We expect this research to be helpful for visually challenged people; an efficient video to text system can act as an instant narrator for them.

6.3. Abstractive Summarization
This work explores different types of summarization techniques suitable for video summarization. Findings suggest that neural network language models with contextual encoders perform well and generate condensed and sensible summaries. Neural network based methods give better results on a variety of datasets and different domains of text sources. One downside is that such methods require huge amounts of document-summary pairs to train the network. Longer text will increase context, enabling longer word dependencies.

Further work in this direction would be to investigate larger datasets, include word embeddings, and use LSTMs with attention for longer word dependencies.
Bibliography

70. X. Chen and C. L. Zitnick. Learning a recurrent visual representation for image caption generation. 2015.

