SynApps: Children’s ASD Management Through A Mobile Application and An Interactive Biofeedback Exercise

Elizabeth Richardson
ear7370@rit.edu

Follow this and additional works at: http://scholarworks.rit.edu/theses

Recommended Citation
SynApps:
Children’s ASD Management Through A Mobile Application and An Interactive Biofeedback Exercise

By Elizabeth Richardson

A Thesis Submitted in Partial Fulfillment of the requirements for the degree of Master of Fine Arts in Visual Communication Design

Rochester Institute of Technology
College of Imaging Arts and Sciences
School of Design
MFA Visual Communication Design
May 2017
SynApps
Children’s ASD Management Through A Mobile Application and An Interactive Biofeedback Exercise
Submitted by Elizabeth Richardson
Date May 2017

Thesis Committee Approval

Chief Thesis Adviser
Dan DeLuna, Associate Professor
College of Imaging Arts and Sciences, Visual Communication Design

_________________________ _________________________
Signature of Chief Thesis Adviser Date

Associate Thesis Adviser
Chris Jackson, Professor
College of Imaging Arts and Sciences, Visual Communication Design

_________________________ _________________________
Signature of Associate Thesis Adviser Date

Associate Thesis Adviser
Laurence I. Sugarman, Research Professor & Director
Center for Applied Psychophysiology and Self-regulation, College of Health and Sciences

_________________________ _________________________
Signature of Associate Thesis Adviser Date

Administrative Chair, School of Design
Peter Byrne
College of Imaging Arts and Sciences

_________________________ _________________________
Signature of Administrative Chair, School of Design Date

MFA Thesis Candidate
Elizabeth Richardson
Visual Communication Design, College of Imaging Arts and Sciences

_________________________ _________________________
Signature of MFA Thesis Candidate Date
Dedication

This thesis is dedicated to Kathy Richardson, Dennis Richardson, David Richardson, Katie Orem, Evan Orem and Ben Hamlin. For their unending love, encouragement and support.
Acknowledgments

Much gratitude to the following people and organizations for their support and guidance:

Daniel DeLuna
Chris Jackson
Dr. Laurence Sugarman
Rochester Institute of Technology
Table of Contents

1.0 Abstract
2.0 Situation Analysis
3.0 Problem Statement
4.0 Survey of Literature
4.0 Methodology
 4.1 Target Audience
 4.2 User Personas
 4.3 User Needs & Desire
4.0 Goals & Objectives
5.0 Design Ideation
6.0 User Experience Map
7.0 Mobile Application
 7.1 Grid Structure
 7.2 Paper Prototype
 7.2.1 Wireframes
 7.2.2 User Feedback
 7.3 Low Fidelity App Iteration 1
 7.3.1 Wireframes
 7.3.2 User Testing & Feedback
 7.4 Low Fidelity App Iteration 2
 7.4.1 Wireframes
 7.4.2 Prototype
 7.4.3 User Testing & Feedback
7.5 Visual Style
 7.5.1 Color Association
 7.5.2 Color Association Testing
 7.5.3 Visual Style User Testing
 7.5.4 Color Palette
 7.5.5 Product Branding
 7.5.6 Typography
 7.5.7 Iconography & Icon Set
7.6 Final Screen Designs

8.0 Biofeedback Exercise Environment
 8.1 Environment Design & Installation
8.2 Breathing Exercise
 8.2.1 Storyboard
 8.2.2 Animatic
 8.2.3 Final Screen Designs
8.3 Biofeedback Environment User Testing

9.0 Evaluation & Conclusion

10 Use Extensions
11 Bibliography
12 Appendixes
 A.1 Thesis Proposal
Abstract

This thesis explores how to provide better access to alternative treatment options through an immersive biofeedback exercise and mobile application for children with autism spectrum disorders (ASD). This thesis also seeks to connect children with ASD to medical professionals and treatment facilities.

This is done through a motion graphics piece depicting an abdominal breathing exercise and correlating mobile application. Users participate in biofeedback exercises in which their real-time biofeedback is monitored, transmitted to the mobile application, and reflected to the user. The mobile application analyzes and identifies physiological signals and detects what feedback is most useful to help the individual meet goals of increased vagal tones. Increased vagal tones correlates with high frequency heart rate variability. The game promotes self-awareness and self-regulation through abdominal breathing, heart rate variability, and mindfulness.

If done consistently, biofeedback exercises may help re-train the body's response to stressful situations, leading to function and behavioral improvements in everyday life. Additionally, this treatment application aims to be a preventative health option for children with ASD as a means to hopefully diminish the lifetime costs of care.

This topic is important to the field of design and the broader community because it utilizes the power of design, motion, and interactive technology to potentially bring about improvements to the lives of children with ASD. Furthermore, this thesis unifies design with science as a means to bring better health care access and support services to people with ASD.

Keywords
Autism, ASD, Biofeedback, Mobile Application, UX

Situation Analysis

Autism spectrum disorder (ASD) is a term used to define a complicated disorder of brain development. The U.S. Centers for Disease Control and Prevention claims that ASD affects around 1 in 68 American children, or more than 3.5 million Americans. Recently, government ASD statistics show that diagnoses have risen from ten to seventeen percent. People with ASD experience varying degrees of difficulties with both verbal and non-verbal communication, social interaction, language, and repetitive behaviors. As a result, people with ASD may isolate themselves, not react or become seemingly indifferent to social interactions, and have trouble communicating. These symptoms have been posited to be related to impaired autonomic self-regulation.

The cost in the United States for a person with ASD, with an intellectual disability, over a lifespan is $2.4 million on top of the average of $250,000 to raise a child without ASD. Ostrow suggests that most of these costs occur in adulthood due to loss of employment, impaired ability to maintain a job, the need for medication and special education, and in some cases residential care. Ostrow continues by adding that, many adults with ASD cannot monetarily contribute toward the maintenance of their disorder because they either: did not graduate from school and cannot get a job, or cannot maintain a job. Early diagnosis followed by intervention can cut the lifelong costs of ASD by two-thirds. This early intervention can possibly begin with consistent biofeedback treatments.

Research has proven that sensory rooms help children with ASD to calm down when feeling over stimulated. Interactive sensory technology can be found in these rooms including: lights, projections, interactive screens, music, enclosed structures, objects safe to chew on, tactile objects, and comfortable seating.

Additionally, some research supports a positive correlation between biofeedback exercises, enhanced self-awareness and autonomic regulation.¹ Studies cited by Sugarman, Garrison, and Williford suggest that a combination of biofeedback and hypnosis therapy can be therapeutic for people with ASD.⁵ However, there are limitations to current biofeedback therapy. The implementation of biofeedback exercises can be limited to a small monitor with inconsistent visual styles and varying design systems.

Problem Statement

Can an immersive biofeedback exercise and corresponding mobile application be an effective means for people with ASD to receive biofeedback therapy?

This thesis aims to create improved access to experiential treatment possibilities and alternative therapy options for children with ASD. This will be done through a one-minute motion graphics piece depicting a biofeedback exercise in session, and a non-working mobile application. The non-working mobile application connects the user to the biofeedback exercise. The mobile application can be used to save and review users' biofeedback exercise history, progress and medical information. The biofeedback mobile application and exercise will target increased vagal tone and autonomic regulation through synchronizing abdominal breathing with heart rate.

The motion graphics piece will simulate how users interact with the biofeedback exercise system. A feedback loop is created and conditions physiological control in addition to helping users evolve that control. This is a recursive process that aims to condition users.

The biofeedback exercise will be created in a game format, with an integrated reward system as a means to fully engage and intrigue the user. This application enables users to participate in the exercise and receive real-time biofeedback, with the intent to re-train the body's response to stress and anxiety for a person with ASD.

This thesis seeks to provide access to an experiential treatment option with the oversight of a medical professional. This thesis aims to be utilized in a medical or behavioral professional's office. Through this system, children with ASD will access to an immersive therapy option.
Survey of Literature

ASTEP - Asperger Syndrome Training & Employment Partnership
Accessed: October 5, 2016
http://asperger-employment.org

ASTEP promotes the inclusion of people with ASD in employment by educating employers and building relationships between employers and professional support organizations. ASTEP also does this through trainings with Fortune 1000 companies that help employers understand and build support programs for employees with ASD.

Autism Classification System of Functioning: Social Communication (ACSF: SC)
Can Child

CanChild is a research center. CanChild discusses the ways in which they diagnose social skill levels for children with ASD. This is based off of a five-level system. It is used by medical and behavioral professionals as well as teachers and parents to discuss a child’s levels of ability and social skills.

Autism Costs More Than $2 Million Over Patient’s Life
Nicole Ostrow
June 14, 2014
Accessed: October 8, 2016

Ostrow explains research findings that the lifelong cost to care for a person with ASD, with an intellectual disability, can be more than 2 million dollars. This is additional to the 250,000 dollars it costs to raise a child. Special education, lack of employment, and residential care can be leading causes for these costs in adulthood. In the US, more than 3.5 million people have ASD. The US national cost of supporting children with ASD is 61 to 66 billion dollars each year, versus 175 to 196 billion dollars to support adults.
Autism Speaks
https://www.autismspeaks.org/

Autism Speaks is an educational organization that serves to raise awareness about and support for people with ASD. Autism Speaks is also actively supportive in ASD research in creating better solutions for ASD management.

A Portable Sonified Neurofeedback Therapy for Autism Spectrum Disorder Patients-An Initial Evaluation
Adrian Attard Tevisan, Paolo Cavallari, and Frederick Attard
Doi: 10.4172/2329-6895.1000133

This research documents therapy done through a sonified neurofeedback system for children with ASD. The research studied neurofeedback from an EEG brain-to-music system can suppress Delta waves while promoting Beta and Alpha waves. The Brain Music System turned recorded EEG information into signals for users. The study showed that kids with ASD were able to manage symptoms of ASD and even improved in doing so.

Biofeedback as an alternative treatment for Autism Spectrum Disorder with Asian Americans
Sum Yin Ruth Wong
2015
Alliant International University
Accessed November 1, 2016

Wong discusses how the medical field faces obstacles in considering and including cultural factors when developing treatments for people with ASD. Wong suggests that current methods are not as effective for Asian Americans. This includes language differences and stigmas amongst Asian Americans around psychotherapies. Wong explores biofeedback as a treatment possibility since it already has a history of effectively helping treat symptoms of ASD.
Brain-Computer Interface Game Applications for Combined Neurofeedback and Biofeedback Treatment for Children on the Autism Spectrum
Elisabeth V.C. Friedrich, Neil Suttie, Aparajithan Sivanathan, Theodore Lim, Sandy Louchart, and Jaime A. Pineda
July 3, 2014
Frontiers in Neuroengineering
Doi: 10.3389/fneng.2014.00021

This study suggests problems in the mirror neuron system are the cause of ASD. It also suggests that biofeedback is just as important as neurofeedback. The study looks at: how social interactions effect heart rate and how a combined approach of neuro and biofeedback is the most effective method of treating symptoms of ASD. Currently, a combined brain-computer interface that combines neuro and biofeedback does not exist. As a result, the study creates a game that considers neuro and biofeedback in a social format.

Breaking into the Autistic Brain
Parizad Bilimoria
Boston Children’s Hospital
Accessed September 28, 2016

Parizad gives an overview of what ASD is, what happens in the person's brain and the problems that occurs in the absence of MeCP2, how a child with autism has a disconnected development, his research on mice, and the benefits of EEG technology on people with ASD.

Characteristics of Resonance in Heart Rate Variability Stimulated by Biofeedback
Evgeny G. Vaschillo, Bronya Vaschillo, and Paul M. Lehrer
June 2006
Springer Science & Business Media
Accessed: November 5, 2016
Doi: 10.1007/s10484-006-9009-3

The authors of this paper have previously found that heart rate biofeedback helps in treating asthma patients. This study serves as an important research example of how biofeedback, particularly heart rate variability, can help with symptoms of ASD.
Colors of Autism Spectrum Described by Researchers
May 18, 2016
Science Daily
www.sciencedaily.com/releases/2016/05/160518120521.htm

This article discusses the creation of the ACSF:SC system, which can be used to classify and diagnose levels of autism. Levels of social interactions and communication are the backbone of this study. The system can be used by medical and behavioral professionals to diagnose levels of ASD. It focuses on what can the person do versus what they cannot do. This is an important factor when considering how to develop engaging and inclusive systems of technology for children with ASD.

Computer-based interventions to improve social and emotional skills in individuals with autism spectrum disorders: A systematic review
Sathiyaprakash Ramdoss, Wendy Machalicek, Mandy Rispoli, Austin Mulloy, Russell Lang, Mark O’Reilly
April 2012
Developmental Neurorehabilitation
Doi: 10.3109/17518423.2011.651655

The authors discuss how their objective is to review studies using computer-based interventions (CBI) to improve the effects of ASD on people. The authors focused on the improvement of social and emotional skills through the utilization of: visual learning tools, decreasing opportunities for interruptions, and clearly explained instructions. This study found that CBIs are effective, and just as good as face-to-face guidance. CBIs help people with ASD advance in their emotional and social interactions. When considering medical applications, it is important to consider the possibilities and benefits of customization to a user’s specific wants and needs.
Creating Immersive Experiences Through Experiential Branding and Wayfinding
Paul Orban and Tim Smith
November 19, 2014
University Business
Accessed: September 15, 2016
https://www.universitybusiness.com/article/immersive-exp

Orban and Smith review how institutions and higher education require environments that reflect their culture. A brand combined with effective wayfinding can provide an important way for a person to understand their spatial orientation. Orban details the importance of integrating experiential branding and wayfinding.

Deep Brain Neurofeedback
Brain Works
Accessed: October 10, 2016
http://www.brainworksneurotherapy.com/deep-brain-neurofeedback

Brain Works discusses their implementation of neurofeedback on people. They talk about the benefits of neurofeedback for children with ASD as well as people suffering from other cognitive disorders. Their neurofeedback includes QEEG pictures of the brain. Brain Works also utilizes LoRETA imaging, or Low Resolution Electromagnetic Tomography. Through these components combined, Brain Works helps patients train their brain activity to a more efficient state. This is done through 19 sensors and a 3D LoRETA.

Designing Environments for Children with ASD
Maria Luigia Assirelli
GA Architects
www.autism-architects.com

The architects worked with design research centers, schools, teachers, caregivers, and children ages 15-19 with ASD to select preferred colors for children with autism. Research found: low arousal, single shades, and cooler tones of blue and green were selected as being most effective. Patterns should be avoided. A balance between gray and color treatments was successful. These results are important to consider when thinking about visual style and language for a thesis project.
Designing for Interaction Immediacy to Enhance Social Skills of Children with Autism
Monica Tentori, Gillian R. Hayes
September 26, 2010
Association for Computer Machinery
Accessed: September 26, 2016
Doi: 10.3389/fneng.2014.00021

Tentori and Hayes consider the impact social skills and behavioral intervention have on people with ASD. They consider the importance of immediately guiding and directing behavior through positive reinforcement. This is done through research in three public schools. Tentori and Hayes implement interaction immediacy through applications and social interactions.

Designing Interactive Technologies for Supporting Research in Autism Spectrum Disorders
David Feil-Seifer, Matt Black, Maja Mataric, and Shrikanth Narayanan

Researchers found evidence suggesting that people with ASD are more likely to increase social interactions when conversing with a robot versus another person. Furthermore, children with ASD were more likely to initiate social interactions when interacting with a robot. Researchers are currently designing a therapy robot that helps children ASD with social behaviors.

Development of a parent manual on assessment-guided biofeedback for Autism Spectrum Disorders
Mirta Romero Frimtzis
March 29, 2009
Alliant International University
Accessed November 2, 2016

Frimtzis develops a parent manual to raise awareness of biofeedback therapy as a treatment option for children with ASD. Frimtzis discusses how there is not enough educational materials on biofeedback treatment for children with ASD. Frimtzis’ manual on biofeedback was found in user surveys to be helpful,
Educational, and had an overall positive response.

Economic Burden of Childhood Autism Spectrum Disorders
Tara A. Lavelle, Milton C. Weinstein, Joseph P. Newhouse, Kerim Munir, Karen A. Kuhlthau, Lisa A. Prosser
February 10, 2014
American Academy of Pediatrics
Doi: 10.1542/peds.2013-0763

Researchers use data to estimate the annual costs for a child with ASD. Research found that the monetary burden of ASD is huge not only on families but also on our society. This study further supports the need for early intervention and alternative treatment technology for children with ASD.

Evaluating the Effectiveness of Biofeedback in Improving Emotional Regulation for a Student with Autism Spectrum Disorder
Elizabeth Power
October 20, 2015
The Chicago School of Professional Psychology
Accessed: November 1, 2016

Power studies and assess the impact of biofeedback on an eight-year old child with ASD. Power utilizes hear rate variability, in correlation with the child’s overall emotional regulation and found that it helped the child establish a stronger emotional foundation and regulation. Heart rate is an important piece of biofeedback to consider as an area of focus for interactive applications.

Evaluating the Effectiveness of Biofeedback Interactive Technologies for Children with Special Needs
Meryl Alper, Juan Pablo Hourcade, and Shuli Gilutz
June 2012
Association for Computer Machinery
Accessed: September 25, 2016
Doi: 10.1.1.690.2712&rep=rep1&type=pdf

Alper, Hourcade, and Gilutz discuss current design trends toward new and exciting therapeutic technologies for disabled children. Their research highlights under-explored areas in interactive technologies. One of these areas is participatory design as it relates to social interactions among children with ASD. The authors have a featured section devoted to technologies that help
children with ASD manage social behavior and interactions.

Introducing and Illustrating Biofeedback to Young People with Autism Spectrum Disorder
Eric Hunt, Daniel Hicks, Anna E. Hope, Brian L. Garrison, Stephen Jacobs, Laurence I. Sugarman
The Center for Applied Psychophysiology and Self-Regulation at RIT
Accessed: October 26, 2016
http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1035&context=eatc

This diagram represents biofeedback’s background, what DYFUSS is and how it works, and improvements to this system.

Investigating the Autonomic Nervous System Response to Anxiety in Children with Autism Spectrum Disorders
Azadeh Kushki, Ellen Drumm, Michele Pla Mobarak, Nadia Tanel, Annie Dupuis, Tom Chau, and Evdokia Anagnostou
July 12, 2012
Doi:10.1371/journal.pone.0059730

This study explores how and if anxiety causes changes in indicators of ANS and ASD. It also seeks to understand and convey a pattern in these changes. Areas measured included: skin temperature, heart rate, and electrodermal activity. This was done with two groups of children, one group with ASD, and the other with ASD. Both groups were monitored in a baseline and an anxiety condition. Only the ASD group showed abnormally increased heart rate during both conditions. This study suggests that ASD is linked to over-arousal which can result in people with ASD experiencing abnormal levels of anxiety.

Jacob's Ladder Center
http://jacobsladdercenter.com/methodology/references-and-research/

Jacob’s Ladder is a center serving Pre-K through 12th graders with any neurological disorder, learning disability, or genetic disorder. 60% of their students have been diagnosed with Autism. Jacob’s Ladder utilizes neurofeedback as a form of therapy for its patients.
Long-Term Follow-Up of Self-Hypnosis Training for Recurrent Headaches: What the Children Say
Daniel P Kohen
2010
International Journal of Clinical and Experimental Hypnosis
Accessed November 2, 2016

Kohen recounts a survey conducted of 178 children who were referred to hypnosis as a treatment for ongoing headaches. The survey covered current status of headaches including: intensity and frequency, treatment, how hypnosis was used, and reviews of self-hypnosis. Overall, survey responses showed that participants positively responded to hypnosis in treating ongoing headaches years following application of hypnosis. Hypnosis is related to breathing, which is also related to heart rate, and is an important element of biofeedback for people with ASD. Thus, hypnosis should be considered when developing new treatment technologies for children with ASD.

Making Room for Autism in the Workplace
Elizabeth Preston
July 21, 2016
The Atlantic
Accessed: October 5, 2016

Preston discusses a program that helps train young adults with ASD through virtual job interviewers. Participants learn necessary workplace skills, train for industry certifications, and complete internships. Additionally, users can practice interviewing with an avatar. At the workplace people with ASD may experience anxiety and have trouble communicating with coworkers. Preston discusses how many adults with ASD want to work and how recently, companies are responding positively and want to employ people with ASD. Some companies even seek out employees with ASD. For the avatar interviews, a hidden human operator controls the experience. Four sessions with the avatar improved user’s interview scores by 80%. This program is evidence of the effectiveness of robots in helping facilitate and guide social communication and interactions among people with ASD.
MOSOCO: A Mobile Assistive Tool to Support Children with Autism Practicing Social Skills in Real-Life Situations
Lizbeth Escobedo, David H, Nguyen, LouAnne Boyd, Sen H. Hirano, Alejandro Rangel, Daniel Garcia-Rosas, Monica Tentori, and Gillian R. Hayes
May 5, 2012
Association for Computer Machinery
Accessed: September 26, 2016

MOSOCO is an augmented reality mobile application for children with ASD. MOSOCO uses a mobile application to help children with ASD interact with one another and practice healthy social behaviors. MOSOCO helps guide social interactions by detecting people for the user to socialize with. Once a social interaction is initiated, MOSOCO helps guide its users through the conversation with social cues. This is an important study to consider because it combines interactive mobile and AR technology to encourage behavioral changes in children with ASD. MOSOCO does not use biofeedback.

Positive behavioral and electrophysiological changes following neurofeedback training in children with autism
J.A. Pineda, D, Brang, E. Hecht, L. Edwards, S. Carey, M. Bacon, C. Futagaki, D. Suk, J. Tom, C. Birnbaum, A. Rork
November 13, 2007
Research in Autism Spectrum Disorders
http://dx.doi.org/10.1016/j.rasd.2007.12.003

This study tests the idea that neurofeedback training can help brain wave dysfunctions, resulting in improved behaviors in children with ASD. The study found that its participants improved their ATEC scores, and increased their ability to maintain focus. This study suggests that neurofeedback can be an effective treatment possibility for children with ASD.
Postsecondary Education and Employment Among Youth With an Autism Spectrum Disorder
Paul T. Shattuck, Sarah Carter Narendorf, Benjamin Cooper, Paul R. Sterzing, Mary Wagner, and Julie Lounds Taylor
February 16, 2012
American Academy of Pediatrics
Accessed: October 5, 2016
Doi: 10.1542/peds.2011-2864

Norton discusses research finding that young people with ASD are less likely to go to college or get a job in comparison to their peers with other disabilities. Norton goes on to discuss how within the last decade, ASD diagnoses have dramatically increased. Although the rate of ASD diagnoses has increased, little research has been done on how kids with ASD function after high school. Shattuck found that people with ASD who were of a low socio-economic background were at an even greater risk of not furthering their education and/or maintaining a job. Shattuck deduces that the cause of this is attributed to lack of: access of services, social connections, and employment connections for impoverished people with ASD. Shattuck says that special education programs should include a transition plan for post-high school years for those with ASD.

Self-Adjusting Biofeedback with a Dynamic Feedback Signal Set (DyFSS)
Laurence I. Sugarman, Brian L. Garrison, Anna E. Hope1, Stephen Jacobs, Alex J. Glade, Michael R. Wezalis, Kelsey L. Williford
The Center for Applied Psychophysiology and Self-Regulation at RIT,
Accessed October 27, 2016
http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1018&context=eatc

The authors discuss how autonomic dysregulation with anxiety presents challenges for children with ASD and how Peripheral Autonomic Biofeedback Training (PABT) is a promising solution for managing anxiety and ASD symptoms. Sugarman and authors discuss what DyFSS is and how it is a core feature of autonomic regulation training. PABT utilizes: skin conductance level, skin temperature, low frequency heart rate variability, and respiratory rate, feeds back these signals to the user, and the user learns how to change them through directions. The user then learns how to control them and apply these skills to their everyday life.
Social Skill Deficits and Anxiety in High-Functioning Adolescents with Autism Spectrum Disorders
Scott Bellini
Summer 2004
Focus on Autism and Other Developmental Disabilities
Sage Publications, Inc.
Accessed: November 6, 2016

Bellini discusses how an abnormal number of children with ASD experience anxiety levels that are much greater than the average person. This study shows the influence anxiety has on people with ASD and how long-term anxiety management is important in treating the symptoms of ASD.

Specialisterne
October 5, 2016
http://usa.specialisterne.com

Specialisterne is a 501(c)3 organization focused on services and programs for businesses in the community with an interest in gaining people with ASD as employees. Specialisterne educates corporate partners, schools, and government agencies on how to gain and maintain employees with ASD. Specialisterne educates people with ASD on career development and help participants find employment.

Special Haven
October 4, 2016
http://www.specialhaven.org/Home_Page_2_2.html

Special Haven provides multi-sensory environments for children and adults with Special Needs for a local community. Special Haven specializes in multi-sensory rooms and the benefit these rooms provide in removing stresses of the outside world for people with special needs.
Slowing Down Emergency Rooms to Improve Autism Care
Shefali Luthra
May 9, 2016
Kaiser Health News

Luthra discusses how hospitals across the country are implementing separate accommodations for people with autism in their ERs due to an influx of patients with ASD. These rooms have sensorial toys, iPads, and dimmed lights. Luthra discusses special protocols certain hospitals take when interacting with patients who have ASD. These protocols include alerting doctors of the patient’s ASD diagnosis so that they can adjust how they interact with their patients. One in forty-five children were diagnosed with ASD in 2014. This is a dramatic increase when compared to ASD diagnoses in 2000 being 1 in 150. Hospitals are an important community hub to consider as a location to provide educational materials and treatment services to people with ASD.

Symptoms as Solutions: Hypnosis and Biofeedback for Autonomic Regulation in Autism Spectrum Disorders
Laurence I. Sugarman, Brian L. Garrison & Kelsey L. Williford
September 5, 2013
American Journal of Clinical Hypnosis
Accessed: October 0216
Doi: 10.1080/00029157.2013.768197

Tantrums in Children with Disability and Developmental Delays
Child and Youth Services, Disability Services
October 2014
Accessed: October 6, 2016

This child development resource sheet reviews tantrums in children with disabilities and developmental delays. It explains why tantrums occur, when they can occur, how to respond, prevention and early intervention methods.
Rajendran, G, Porayska-Pomsta K, Smith T, Lemon O, Consortium TECHOES
May 9, 2013
ECHOES Publication
The International Meeting for Autism Research
http://echoes2.org/?q=node/2

ECHOES is an interactive and collaborative learning environment tool for children 5-7 years old with ASD. Participants work on social skills by collaborating with virtual characters and objects. Manageable goals are developed and adapted based on the needs of the participant. Customizable features are an important element when working with children with ASD to ensure an interactive game is engaging and inclusive.

The Disconnection
Emily Vossen
TEDx Talks
YouTube

Emily Vossen gives a TED talk about the benefits of neurofeedback training in children with ASD and how people without ASD would also benefit from it. Vossen refers to neurofeedback training as yoga for the brain. She discusses how the brain is a muscle and open to being re-trained. She opened the Henry Vossen Center for children who have cognitive disorders, and implements neurofeedback training at this center. Vossen also discusses the disconnect that occurs between doctors, patients, families, and treatment centers.
The Use of Virtual Reality Hypnosis with Two Cases of Autism Spectrum Disorder: A Feasibility Study
David W. Austin, Jo-Anne M. Abbott, and Colin Carbis
June 2008
John Wiley, Chichester UK
Doi: 10.1002/ch.349
This study considers Virtual Reality (VR) technology as a means to treat symptoms of ASD in children. The study involved two boys ages 14 and 15 with 4 sessions over 2 weeks. The study looked at whether VR would reduce anxiety levels in children with ASD. Results suggested that VR did not have a positive effect in treating symptoms of ASD. However the parents of the participants said that they would utilize this technology if it were an available treatment option for their son. Each set of parents noticed increased levels of focus in their son as a result of VR technology being used as a therapeutic application.

Using Virtual Environments for Teaching Social Understanding to 6 Adolescents with Autistic Spectrum Disorders
Peter Mitchell, Sarah Parsons, and Anne Leonard
August 2006
Journal of Autism and Developmental Disorders
Accessed November 1, 2016
Doi: 10.1007/s10803-006-0189-8
The authors discuss how six teenagers with ASD experience a Virtual Environment (VE) cafe, a video of a real cafe, and a video of buses. Participants chose where they would sit and why they would sit there for each situation. This study showed the potential in using VR technology as a treatment option and social skills tool for young adults with ASD.
Methodology

Design Inquiry
Can a mobile application and an immersive biofeedback exercise be an effective means for people with ASD to receive biofeedback therapy? Can we implement this strategy to sensory rooms by projecting biofeedback information in an exercise format and having users interact with it? Can designers more efficiently and effectively communicate medical jargon in a thoughtful and clear way for families, medical staff, and people with ASD?

Target Audience
This thesis project focuses on people with autism ages six to twenty years old. However, the application is prototyped for a sixteen-year-old child with autism.

This thesis aims to unify medical professionals, people with ASD and treatment facilities. This is done through the mobile application enabling participants to work together in a proactive approach toward health. This thesis serves as a therapeutic and preventative measure for people with autism. This thesis could be utilized in a medical facility. Additionally, this thesis brings to children with autism new forms of access to treatment technologies, which can lead to improvements in communication, behavior, and social interactions.

Design decisions were based on case studies of young adults with autism that experience social and behavioral impairments. Research suggest that young adults with autism benefit from biofeedback training with a medical professional in improving autonomic regulation.
Young adult students with autism aged 12 - 18
- Have personal goals they want to achieve.
- Desires improved social communication.
- Wants biofeedback exercises to be immersive and engaging.

Medical professional who specialize in young adults with autism
- Utilize biofeedback treatments for young adults with autism.
- Carries out biofeedback treatment at medical facility using a computer screen and biofeedback technology.
- Wants a more immersive experience for patients when implementing biofeedback exercises.

Considerations
<table>
<thead>
<tr>
<th>Tech-Savvy</th>
<th>Technologically Challenged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claustrophobia</td>
<td>Agoraphobia</td>
</tr>
<tr>
<td>Aged 6-12</td>
<td>Aged 18+</td>
</tr>
<tr>
<td>Early Adopter</td>
<td>Late Majority</td>
</tr>
<tr>
<td>Verbal</td>
<td>Non Verbal</td>
</tr>
<tr>
<td>Sensitive</td>
<td>Unresponsive</td>
</tr>
</tbody>
</table>
User Personas

KAREN LIN

"I enjoy bringing my children to the museum on Saturdays."

<table>
<thead>
<tr>
<th>Age</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Boston, MA</td>
</tr>
<tr>
<td>Education</td>
<td>High School</td>
</tr>
<tr>
<td>Job</td>
<td>Student</td>
</tr>
<tr>
<td>Family</td>
<td>Mom, 2 Siblings</td>
</tr>
</tbody>
</table>

Karen is a quiet, kind young girl who enjoys listening to music. Karen has Level 1 autism and recently began a biofeedback program with her doctor. Karen's doctors thought biofeedback would help her to better advocate for herself. Karen liked her first couple biofeedback sessions and hopes that it will continue to help her.

Frustrations
- Class presentations
- Answering aloud in class
- Class transitions

Goals
- Independence
- Strong support system
- Make friends

Technology
- IT & Internet
- Software
- Mobile apps
- Social networks

Personality
- Judging
- Perceiving
- Feeling
- Thinking
- Introvert
- Extrovert
- Sensing
- Intuition

Figure 1. Persona 1

JEREMY KELLY

"I enjoy going to bi-monthly biofeedback sessions, they help me relax."

<table>
<thead>
<tr>
<th>Age</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>San Francisco, CA</td>
</tr>
<tr>
<td>Education</td>
<td>High School</td>
</tr>
<tr>
<td>Job</td>
<td>Student</td>
</tr>
<tr>
<td>Family</td>
<td>Mom & Dad</td>
</tr>
</tbody>
</table>

Jeremy enjoys photography and happens to have Level 1 autism. Jeremy has been going to a medical facility bi-monthly for biofeedback sessions. Jeremy and his doctor have seen a lot of improvements in how he initiates conversations and copes with his anxiety. He looks forward to his biofeedback sessions.

Frustrations
- Waiting for the school bus
- Initiating conversations
- Changes in plans

Goals
- Self advocating
- Coping skills
- Take less medication

Technology
- IT & Internet
- Software
- Mobile apps
- Social networks

Personality
- Judging
- Perceiving
- Feeling
- Thinking
- Introvert
- Extrovert
- Sensing
- Intuition

Figure 2. Persona 2
User Personas (continued)

JAMAL DAVIS

“I want a responsive museum-wide system.”

<table>
<thead>
<tr>
<th>Age</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>New York City, NY</td>
</tr>
<tr>
<td>Education</td>
<td>High School</td>
</tr>
<tr>
<td>Job</td>
<td>Student</td>
</tr>
<tr>
<td>Family</td>
<td>Mom, Dad, 1 Sibling</td>
</tr>
</tbody>
</table>

Jamal is a kind, young man who enjoys playing video games. Jamal has Level 1 autism and recently moved to a facility for a few weeks to receive on-site treatment. Jamal’s doctors suggest that he try biofeedback as a long-term solution to help alleviate his stress levels. Jamal has never tried biofeedback before but excited about the idea of it helping.

Figure 3. Persona 3
User Needs & Desires

Young Adult Students with Autism
1. Incentive to participate in biofeedback
2. Excellent application to device integration
3. Comfortable
4. Useful
5. Privacy Controls
6. Sense of self-awareness and goals

Medical Professional who Specializes in Young Adults with Autism
1. Incentive to provide this interactive biofeedback system
2. Ability to control and adjust biofeedback session depending on patient
3. Doctor view versus patient view of mobile application
4. Ability to view biofeedback session data and patient progress
5. Privacy Controls
Goals & Objectives

To create an immersive experiences using user-experience research and interaction design principles that will allow users to practice a biofeedback exercise. Main objectives will include: exploring new innovative uses for current technology as well as the development of a technology system that will allow users to visualize, understand, and perform the biofeedback exercise.

Objectives

1. Clearly communicate process of the biofeedback exercise
2. Provide medical professionals and their patients with a better way to carry out biofeedback exercises
3. Create a sense of ownership and connection between a user and their biofeedback through the exercise and mobile application.
4. Motivate medical professionals and their patients to use the mobile application in conjunction with the biofeedback environment.
Design Ideation

The main goal of this thesis is to integrate design methods with research findings on the benefits of biofeedback trainings for people with ASD. This will be done through game design dynamics in the form of a one-minute motion graphics piece featuring a biofeedback exercise, and a non-working, mobile application. Both of these deliverables will educate and support people with ASD through accessible therapeutic treatments implemented at a medical facility. Additionally, a conical-shaped structure will be built and have the one-minute motion graphics piece, depicting a biofeedback session, projected on to it. Users will be able to walk into this structure and view the motion graphics piece.
SynApps User Experience Map

A user experience map (Figures 4-6) was developed to better understand user scenarios, how the user interacts with the mobile app and biofeedback exercise, problems, and questions.

Guiding Principles
- SynApps is an app designed for people with autism.
- People want consistent access to their treatment plan, including alternative methods in real-time.
- Users want to understand the current status of their development. Their strengths, and areas that can benefit from improvements.
- Users are willing to complete behavioral exercises, they can identify and participate in biofeedback exercises that are clear, engaging, and targeted for their user’s ASD level.
- Users are expecting an experience that encourages and demonstrates development and they will recommend to others.
- Users are willing to share their progress with their doctors, school and keep track of user development.
- People are tired of taking medications and feel frustrated because they do not have, or cannot afford, consistent treatment care or do not see consistent development.

User Journey

Awareness
- Download from App Store
- Speak with Doctor
- Compare Apps
- Download App

Discovery
- Click "Sign In"
- Click "My Account"
- Click "Connect with Synapse"

Login
- Click "Stress & Focus"
- Click "Deep Breathing"

Purchase Wireless Biofeedback with Insurance
- Click "Choose an exercise"
- Click "Participate in real-time biofeedback exercise"
- Click "Send progress to doctors"

Participate in biofeedback exercise
- Choose an exercise
- Participate in real-time biofeedback exercise
- Click "Send progress to doctors"

Review + compare results on progress of biofeedback training
- Decide an area to review
- Decide if you want to review based on progress, exercise, or date

Social progress to primary doctor
- Participate in real-time biofeedback exercise

Figure 4. User Experience Map
SynApps User Experience Close-Up 1 of 2

Guiding Principles
Synapse is an app designed for people with autism. People are tired of taking medications and feel frustrated because they do not have, or cannot afford to have consistent treatment care, or do not see consistent development. People want consistent access to the best treatment care, including alternative methods to medicine. Users want to understand the current status of their development, their strengths, and areas that can benefit from improvement.

User Journey

<table>
<thead>
<tr>
<th>Status</th>
<th>Awareness</th>
<th>Discover</th>
<th>Login</th>
<th>Purchase Wireless Biofeedback with Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allo</td>
<td>Download from App Store</td>
<td>Click “Sign In”</td>
<td>Click “My Account”</td>
<td>Click “Connect with Synapse”</td>
</tr>
<tr>
<td>Doing</td>
<td>Speaking with Doctor</td>
<td>Compare Apps</td>
<td>Download Allo</td>
<td>Purchase Biofeedback through insurance</td>
</tr>
<tr>
<td>Thinking</td>
<td>Is this application trustworthy?</td>
<td>Is it complicated if I want to use it?</td>
<td>Is my private information protected?</td>
<td>I want to get into the app and look at it first.</td>
</tr>
<tr>
<td>Feeling</td>
<td>The logo and description is intriguing and reviews are positive</td>
<td>I should be able to trust this application because my doctor recommended it.</td>
<td>I don’t have to log in, there is a log in as a guest function</td>
<td>The search engine is powerful, I can even search by kinds of biofeedback development</td>
</tr>
</tbody>
</table>

Figure 5. User Experience Map (Close up 1)
SynApps User Experience Close-Up 2 of 2

Users are willing to share their progress with their doctors, to look over and keep track of brain development.

Users are expecting an experience that encourages and demonstrates development and they will recommend to others.

Users are willing to compare behavioral areas they can develop, and participate in biofeedback exercises that are clear, engaging, and targeted for that user’s ASDs level.

People want consistent access to the best treatment care, including alternative methods to medicine.

People are tired of taking medications and feel frustrated because they do not have, or cannot afford to have consistent treatment care, or do not see consistent development.

Users want to understand the current status of their development, their strengths, and areas that can benefit from improvement.

Users are willing to compare behavioral areas they can develop, and participate in biofeedback exercises that are clear, engaging, and targeted for that user’s ASDs level.

Users are expecting an experience that encourages and demonstrates development and they will recommend to others.

Users are willing to share their progress with their doctors, to look over and keep track of brain development.

The app has many comprehensive choices. The app is clear in focusing on 2 areas.

I feel satisfied with the “View my Progress” function, it is so convenient. I feel satisfied and reassured with the “Send progress to doctors” function, so I can update my doctors on my development and they can give me feedback the next time I go in for an appointment.

Figure 6. User Experience Map (Close up 2)
Mobile Application User Flow Chart

A user flow chart (Figures 7-10) was created for the mobile application to outline how the user navigates through the app.

Figure 7. User Flow Chart
Mobile Application User Flow Chart Close-Up 1 of 3

ASDs User Scenario Flow Chart

Figure 8. User Flow Chart (Close Up 1)
Mobile Application User Flow Chart Close-Up 2 of 3

Figure 9. User Flow Chart (Close Up 2)
Mobile Application User Flow Chart Close-Up 3 of 3

Figure 10. User Flow Chart (Close Up 3)
Mobile Application Grid Structure

A 12 column grid (Figure 11) for an iPad was utilized in creating the application’s layout, structure, and visual hierarchy. A 12 column grid was chosen because material design’s responsive UI is based upon a 12 column grid structure. Additionally, the proportions can be broken down into clean and even columns for varying medical information.

Figure 11. Mobile Application Grid Structure
Mobile Application Paper Prototype

Initially, paper prototypes were developed. The iPad paper prototypes (see Figures 12-24) were tested on 3 people. Paper prototypes were tested to collect user feedback on navigation and flow. Feedback was done through observation and a survey. The user feedback informed the creation of the first iteration of wireframes.

Figure 12. Paper Prototype 1
Mobile Application Paper Prototype (Continued)

Figure 13. Paper Prototype 2

Figure 14. Paper Prototype 2
Mobile Application Paper Prototype (Continued)

Figure 15. Paper Prototype 3

Figure 16. Paper Prototype 4
Mobile Application Paper Prototype (Continued)

Figure 17. Paper Prototype 2

Figure 18. Paper Prototype 5
Mobile Application Paper Prototype (Continued)

Figure 19. Paper Prototype 3

Figure 20. Paper Prototype 2
Mobile Application Paper Prototype (Continued)

Figure 21. Paper Prototype 3

Figure 22. Paper Prototype 4
Mobile Application Paper Prototype (Continued)

Figure 23. Paper Prototype 5

Figure 24. Paper Prototype 4
Mobile Application Paper Prototype User Testing

Feedback 1
Paper prototype wireframes were developed (Figures 12-24). User testing was conducted and feedback was received through a combination of various discussions with additional designers and topic professionals.

Initial paper prototypes blocked out main content areas.
- Home
- Biofeedback Exercise
- User Account
- Biofeedback Progress

Feedback & Considerations
- Include health information in user sign up.
- Include quick description about biofeedback exercise.
- User Account should show health information.
- Only put exercise in Biofeedback exercise page, not on home page.
- Easy to navigate through each page.
- Complex information is pretty legible and understood.
Mobile Application Paper Prototype User Testing

Paper prototype user testing (Figure 25) was conducted and feedback was received through a survey with additional designers and topic professionals.

![Bar chart: The layout is effective and easy to navigate.]

![Bar chart: The amount of content is appropriate.]

![Bar chart: Button placement is effective.]

![Bar chart: The bottom toolbar navigation is clear and understandable.]

Figure 25. Paper Prototype 4
Mobile App Lo-Fidelity Wireframes Iteration 1

Initially, paper prototypes were developed. The iPad paper prototypes (see Figures) were tested on 3 people. Paper prototypes were tested to collect user feedback on navigation and flow. Feedback was done through observation and a questionnaire. The user feedback informed the creation of the first iteration of wireframes.

Figure 26. Splashscreen
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 27. Sign In or Sign Up

Figure 28. Sign In Screen 1
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 29. Sign In Screen 1 Feedback

Figure 30. Sign Up Screen 1
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 31. Sign Up Screen 1 Feedback

Figure 32. Sign Up User Profile
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 33. Patient Home Screen
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 34. Patient Account Screen
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 35. Patient Progress Screen
Mobile App Lo-Fidelity Wireframes Iteration 1

![Patient Exercise Screen 1](image1.png)

Figure 36. Patient Exercise Screen 1

![Patient Exercise Screen 2](image2.png)

Figure 37. Patient Exercise Screen 2
Mobile App Lo-Fidelity Wireframes Iteration 1

Figure 38. Patient Exercise Connect to SynApps Environment
Mobile App Lo-Fi Wireframes Iteration 1 User Testing

Feedback 1
Low-fidelity wireframes were developed (Figures 12-24). User testing was conducted and feedback was received through a combination of various discussions with additional designers and topic professionals.

Initial paper and low fidelity wireframes blocking out main content areas.
- Home
- Biofeedback Exercise
- Account
- Progress

Feedback & Considerations

- Maintain consistent grid system.
- Follow horizontal or vertical layout.
- Provide different options for doctor versus patient application view.
- Don’t need a connect to wifi screen, it creates confusion for user. Application will automatically connect and start-up session for user.

- Great idea, I like that the patient has an account.
- Tab navigation system is easy to use and allows oversight of the app.
Mobile App Lo-Fidelity Iteration 1 User Scenario Testing

Testing & Results
Task 1 = Sign up for an account as a patient.
Task 2 = Play a deep breathing exercise.
Task 3 = Review your biofeedback progress in your account.
Task 4 = Edit the disliked in your account.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
<th>Task 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>2</td>
<td>Success</td>
<td>Success</td>
<td>Fail</td>
<td>Success</td>
</tr>
<tr>
<td>3</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>4</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>5</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Fail</td>
</tr>
<tr>
<td>6</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>7</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>8</td>
<td>Success</td>
<td>Fail</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>9</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Fail</td>
</tr>
<tr>
<td>10</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
</tbody>
</table>

Success 100% 90% 90% 80%

Figure 39. User Scenario Wireframe Iteration 1 Usability Testing
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 40. Splashscreen

Figure 41. Sign In or Sign Up
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 42. Sign Up User Purpose

Figure 43. Doctor View: Sign Up User Profile 1
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 44. Doctor View: Sign Up User Profile 1 Feedback

Figure 45. Doctor View: Sign Up User Facility Information
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 46. Doctor View: Sign Up User Facility Information Feedback

Figure 47. Doctor View: Sign In
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 48. Doctor View: Sign In Feedback

Figure 49. Doctor View: Appointments Screen
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 50. Doctor View: Biofeedback Exercise Screen - Adding Patient

Figure 51. Doctor View: Biofeedback Exercise Screen - Stress & Focus
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 52. Doctor View: Biofeedback Exercise Screen - Deep Breathing

Figure 53. Doctor View: Biofeedback Exercise Screen - SynApps Syncing
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 54. Doctor View: Biofeedback Exercise Screen - SynApps Synced

Figure 55. Doctor View: Biofeedback Exercise Screen - Live Biofeedback 1
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 56. Doctor View: Biofeedback Exercise Screen - Live Biofeedback 2

Figure 57. Doctor View: Biofeedback Exercise Screen - Live Biofeedback 3
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 58. Doctor View: Patients Screen - Choose Patient

Figure 59. Doctor View: Patients Screen - Patient Profile
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 60. Doctor View: Patients Screen - Patient Profile, Anxiety Progress
Zoomed View

Figure 61. Patient View: Sign Up User Profile Information Feedback
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 62. Patient View: Sign Up User Profile Information 2

Figure 63. Patient View: Sign Up User Profile Information 2 Feedback
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 64. Patient View: Sign Up User Health Information

Figure 65. Patient View: Sign Up User Health Information Feedback
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 66. Patient View: Sign Up User Likes & Dislikes Input

Figure 67. Patient View: Sign Up User Likes & Dislikes Input Feedback
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 68. Patient View: Sign In

Figure 69. Patient View: Sign In Feedback
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 70. Patient View: Home Screen

Figure 71. Patient View: Biofeedback Exercise Screen - Stress & Focus
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 72. Patient View: Biofeedback Exercise Screen - Deep Breathing

Figure 73. Patient View: Biofeedback Exercise Screen - SynApps Syncing
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 74. Patient View: Biofeedback Exercise Screen - SynApps Synced

Figure 75. Patient View: Biofeedback Exercise Screen - Live Biofeedback
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 76. Patient View: Biofeedback Exercise Screen - Live Biofeedback 2

Figure 77. Patient View: Biofeedback Exercise Screen - Live Biofeedback 3
Mobile App Lo-Fidelity Wireframes Iteration 2

Figure 78. Patient View: Patient Account & Progress
Mobile App Lo-Fidelity Iteration 2 Prototype

User testing was conducted with designers and topic professionals using a prototype of the lo fidelity wireframes in InVision (Figure 79).

The InVision prototype link is located here: https://invis.io/E5BKZ16RB

Figure 79. Mobile App Low Fidelity Iteration 2 Invision Prototype
Testing & Results
Task 1 = In doctor view, add Jamal Davis to a deep breathing biofeedback exercise.
Task 2 = In doctor view, review Jamal Davis’ anxiety levels.
Task 3 = In patient view, review your biofeedback exercise progress.
Task 4 = In patient view, save the progress of a deep breathing biofeedback exercise.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Task 1</th>
<th>Task 2</th>
<th>Task 3</th>
<th>Task 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>2</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Fail</td>
</tr>
<tr>
<td>3</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>4</td>
<td>Success</td>
<td>Fail</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>5</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>6</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Fail</td>
</tr>
<tr>
<td>7</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>8</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>9</td>
<td>Fail</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>10</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
<td>Success</td>
</tr>
<tr>
<td>Success</td>
<td>90%</td>
<td>90%</td>
<td>100%</td>
<td>80%</td>
</tr>
</tbody>
</table>

Figure 80. User Scenario Wireframe Iteration 2 Usability Testing
Mobile App Lo-Fidelity Wireframes Iteration 2
User Testing

Feedback Wireframes Iteration 2
Based on user feedback from wireframes iteration 1, a second iteration of low-fidelity wireframes were developed (Figures 40-77). Based on user feedback from iteration 1, both a doctor and patient view was created for the second iteration. The purpose of this was to highlight the different wants and needs of these users. User feedback on wireframes iteration 2 was received through a combination of various discussions with additional designers and topic professionals.

Second iteration of wireframes blocking out main content areas.

Doctor View
- Doctor Appointments
- Biofeedback Exercise
- Patients

Patient View
- Patient Home
- Biofeedback Exercise
- Patient Account & Progress

Considerations
- Create a simple, 3 column structure to be utilized throughout the app.
- Simplify complex health information.
- Visual and informational heirarchy.
- The ability to track progress, save progress, and see patient’s live biofeedback progress while in “game mode.”
Mobile Application Iteration 2 User Testing 1

The type is legible and effective.
8 responses

The buttons are useful.
8 responses

The app is easy to navigate and content was organized.
8 responses
Color Association User Testing

What emotions do you associate with cool colors? (Blues, purples, greens)
8 responses

- Calm
- Calm
- Calm, happy.
- Soothing, cooling sensations. Serenity, peace of mind.
- Makes me feel really calm and relaxed.
- Calming, relaxing, sleepiness.
- Calming, calmness
- Calm, relaxing.

What emotions do you associate with warm colors? (Reds, oranges, pinks)
8 responses

- Happy.
- Anger, agitation, excitement.
- Anger
- Anxious
- I think of anger and frustration.
- Awake, blinding, anger.
- Anger, violence, etc.
- Danger, warning

Figure 81. Color Association User Testing
Mobile Application Visual Style User Testing

Options for Visual Style

User testing on color associations (Figure 81) informed the final color palette. Varied styles of layout (Figures 82-84), interactions, graphics, type sizes, and levels of hierarchy were explored to gauge user preference through user testing. Users were asked which versions they preferred, helping drive final visual design decisions. User testing found that users preferred visual style 3, a dark blue color palette (Figure 85).

Figure 82. Visual Style 1
Mobile Application Visual Style User Testing

Figure 83. Visual Style 2

Figure 84. Visual Style 3
Mobile Application Visual Style User Testing

<table>
<thead>
<tr>
<th>Visual Style User Testing</th>
<th>Visual Style 1</th>
<th>Visual Style 2</th>
<th>Visual Style 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Which visual style provides a more soothing and calming experience.</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2. Which visual style reminds you of a health application.</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3. Which visual style emphasizes important features on the screen.</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4. Which visual style would most likely encourage you to return to the app?</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

| Other Comments | User 2: There is nice negative space. User 4: The important features pop. User 8: Wish there was more color. | User 4: I don’t like this color palette. User 6: The black is too dark for a health app. User 8: This doesn’t remind me of health at all and is not relaxing because of the black. | User 1: The shades of blue are calming and nice. I would like to see these colors in a health app. User 3: Colors pop in this visual style. User 5: I like the color combinations. |

Figure 85. Visual Style Usability Testing Results
Visual Style

The visual style needed to be minimal in order to clearly convey complex information regarding biofeedback to users. Three areas were of importance:

1. The importance of doctors recognizing users' current level of biofeedback and the ability to review and edit appointments.
2. The ability to quickly understand and see a user's current biofeedback while in a session, in addition to reviewing progress over time.
3. The importance of clearly communicating goals and requirements of the biofeedback exercise while in a session.

Color Palette

The main color palette was chosen based on user testing (Figure 86). User testing showed that users positively responded to cool colors causing the majority of the color palette to be comprised of cool colors with warm accent colors to draw the user's attention to important features and functions. The prominence of cool colors aims to soothe and calm users.

Mobile application and biofeedback exercise color palette

![Color Palette](image)

Figure 86. Color Palette
Branding

Name
Synapse - syn-apse /ˈsi-naps/ noun, The point at which a nervous impulse passes from one neuron to another. (Merriam-Webster Dictionary 2017).

Mission
To offer a tool to help alleviate symptoms of autism. Cultivating a sense of control over mind and body for young adults with autism.

Differentiation
• Provide innovative and engaging ways to interact with biofeedback exercise
• Build a greater understanding of progress through biofeedback exercise
• Offer biofeedback treatment for young adults with autism
• Improve current biofeedback system

Tagline
“Create, Connect, and Control”
Product Name Ideation - Word Bank

<table>
<thead>
<tr>
<th>Achieve</th>
<th>Home</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainwaves</td>
<td>Input</td>
<td>Processing</td>
</tr>
<tr>
<td>Care</td>
<td>Interaction</td>
<td>Social</td>
</tr>
<tr>
<td>Cerebral</td>
<td>Learning</td>
<td>Solution</td>
</tr>
<tr>
<td>Comfort</td>
<td>Life</td>
<td>Special</td>
</tr>
<tr>
<td>Connect</td>
<td>Links</td>
<td>Stimulation</td>
</tr>
<tr>
<td>Development</td>
<td>Malleable</td>
<td>Synapses</td>
</tr>
<tr>
<td>Electric</td>
<td>Mu waves</td>
<td>Therapy</td>
</tr>
<tr>
<td>Exercises</td>
<td>Neuro</td>
<td>Treatment</td>
</tr>
<tr>
<td>Experimental</td>
<td>Neuroplasticity</td>
<td>Unify</td>
</tr>
<tr>
<td>Feedback</td>
<td>Physiological</td>
<td>Yoga</td>
</tr>
<tr>
<td>Goals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Product Name Ideation

Feedback of favorite names

Allo
isotonos
Me2Mu
Synapse
Synergy
Typography

Type choices were made based on the target audience and the importance for legibility. The type choice needed to be attractive to both younger audiences and medical professionals. The goal was to have a human aspect to it with a modern, chic approach. As a result, Gotham Rounded was chosen for this reason in addition to accessibility for digital/screen use on mobile applications.

Gotham Rounded Book
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
1234567890

Gotham Rounded Book Italic
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
1234567890

Gotham Rounded Medium
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
1234567890

Gotham Rounded Medium Italic
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
1234567890

Gotham Rounded Bold
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz
1234567890
Gotham Rounded Bold Italic

AaBbCcDdEeFfGgHhIjJkKlLmMnNoOpPqRsStTuVvWwXxYyZz

1234567890

Final Logotype

The logotype needed to be attractive to both younger audiences and medical professionals. The goal was for the type to be clean and modern, appealing to the digital approach, while having a touch of humanism, to welcome and engage users. Refined explorations (Figure 87) informed the final logotype (Figure 88).

Initial Sketches

Concept directions were explored to express connection, technology, and humanism (Figure 87).
Refined Explorations

Synapse

Figure 87. Color Palette

Final Logotype

SynApps

Figure 88. Color Palette

Application Icon

SynApps
Iconography

Refined Sketches
Icons representing the following actions were explored:
- Home
- Calendar
- Account
- Patients
- Progress
- Biofeedback Exercise
- Settings
Iconography

Final Icon Set

TOP TOOLBAR

SIGN ON/SIGN UP SCREEN

PATIENT USER BOTTOM TOOLBAR

DOCTOR USER BOTTOM TOOLBAR

SECONDARY SUPPORT ICONS
Mobile Application Final Screen Designs

Figure 87. Doctor View: Splashscreen

Figure 88. Doctor View: Sign In or Sign up Screen
Mobile Application Final Screen Designs

Figure 89. Doctor View: Sign Up - User Profile

Figure 90. Doctor View: Sign Up - User Profile Information
Mobile Application Final Screen Designs

Figure 91. Doctor View: Sign Up - User Profile Information

Figure 92. Doctor View: Sign Up - Medical Facility Information
Mobile Application Final Screen Designs

Figure 93. Doctor View: Sign In

Figure 94. Doctor View: Appointments
Mobile Application Final Screen Designs

Figure 95. Doctor View: Biofeedback Exercises - Add Patient

Figure 96. Doctor View: Biofeedback Exercises - Stress & Focus
Mobile Application Final Screen Designs

Figure 97. Doctor View: Biofeedback Exercises - Breathing Exercise

Figure 98. Doctor View: Biofeedback Exercise - User Mood
Mobile Application Final Screen Designs

Figure 99. Doctor View: Biofeedback Exercise Page - SynApps Syncing

Figure 100. Doctor View: Biofeedback Exercise Page - SynApps Synced
Mobile Application Final Screen Designs

Figure 101. Doctor View: Biofeedback Exercise - Game Mode

Figure 102. Doctor View: Biofeedback Exercise - Exercise Completed
Mobile Application Final Screen Designs

Figure 103. Doctor View: Biofeedback Exercise - User Mood

Figure 104. Doctor View: Biofeedback Exercise Page - Progress Saved
Mobile Application Final Screen Designs

Figure 105. Doctor View: Patient Profile

Figure 106. Doctor View: Patient Profile - Anxiety Graph Zoomed
Mobile Application Final Screen Designs

Figure 107. Patient View: Splashscreen

Figure 108. Patient View: Sign In or Sign Up
Mobile Application Final Screen Designs

Figure 109. Patient View: Sign Up - User Profile

Figure 110. Patient View: Sign Up - Personal Information
Mobile Application Final Screen Designs

Figure 111. Patient View: Sign Up - Personal Information Feedback

Figure 112. Patient View: Sign Up - User Profile
Mobile Application Final Screen Designs

Figure 113. Patient View: Sign Up - User Profile Feedback

Figure 114. Patient View: Sign Up - Medical Information
Mobile Application Final Screen Designs

Figure 115. Patient View: Sign Up - Medical Information Feedback

Figure 116. Patient View: Sign Up - Likes & Dislikes
Mobile Application Final Screen Designs

Figure 117. Patient View: Sign Up - Likes & Dislikes Feedback

Figure 118. Patient View: Sign In
Mobile Application Final Screen Designs

Figure 119. Patient View: Sign In Feedback

Figure 120. Patient View: Account
Mobile Application Final Screen Designs

Figure 121. Patient View: Biofeedback Exercises - Stress & Focus

Figure 122. Patient View: Biofeedback Exercises - Breathing Exercise
Mobile Application Final Screen Designs

Figure 123. Patient View: Biofeedback Exercises - Patient Mood 1

Figure 124. Patient View: Biofeedback Exercises - Patient Mood 1 Feedback
Mobile Application Final Screen Designs

Figure 125. Patient View: Biofeedback Exercises Screen - In Game Mode

Figure 126. Patient View: Biofeedback Exercises Screen - Exercise Completed
Mobile Application Final Screen Designs

Figure 127. Patient View: Biofeedback Exercises - Patient Mood 2

Figure 128. Patient View: Biofeedback Exercises - Patient Mood 2 Feedback
Mobile Application Final Screen Designs

Figure 129. Patient View: Biofeedback Exercises Screen - Progress Saved

Figure 130. Patient View: Progress
Mobile Application Final Screen Designs

Figure 131. Patient View: Progress - Likes & Dislikes Edit
Mobile Application Final Screens User Testing 1

The colors are pleasing and calming.

8 responses

The graphics are suitable for the content and have a consistent style.

8 responses

The amount of content was appropriate.

8 responses

Figure 133. Mobile Application Final Screens User Testing 1
Mobile Application Final Screens User Testing 1.2

What do you enjoy about this app?
8 responses

- Everything
- Everything
- Calms me down.
- The ease of navigation and its approachable utility
- The colors and overall style.
- I enjoy the colors and the effects in this app.
- It is relaxing.
- I liked everything.

Would you be likely to use this application in a medical setting?
8 responses

- Yes
- Yes
- Yes
- Yes
- Absolutely! As someone in the medical field, this app shows obvious and profound potential for use in the medical field.
- Of course
- I could probably use this in a medical setting.
- Yes. This was very informative and great design!

Figure 134. Mobile Application Final Screens User Testing 1.2
Biofeedback Exercise Tent Design
Biofeedback Exercise Tent Final Design & Installation
Biofeedback Exercise Tent Final Design & Installation
Biofeedback Breathing Exercise Storyboard 1
Biofeedback Breathing Exercise Storyboard 1.2
Biofeedback Breathing Exercise Animatic

Biofeedback animatics (Figures 135-148) were created to inform the visuals, timing, and motion of the final biofeedback breathing exercise.

Figure 135. Biofeedback Breathing Exercise Animatic 1

Figure 136. Biofeedback Breathing Exercise Animatic 2
Figure 137. Biofeedback Breathing Exercise Animatic 3

Figure 138. Biofeedback Breathing Exercise Animatic 4

Figure 139. Biofeedback Breathing Exercise Animatic 5
Figure 140. Biofeedback Breathing Exercise Animatic 6

Figure 141. Biofeedback Breathing Exercise Animatic 7

Figure 142. Biofeedback Breathing Exercise Animatic 8
Figure 143. Biofeedback Breathing Exercise Animatic 9

Figure 144. Biofeedback Breathing Exercise Animatic 10

Figure 145. Biofeedback Breathing Exercise Animatic 11
Figure 146. Biofeedback Breathing Exercise Animatic 12

Figure 147. Biofeedback Breathing Exercise Animatic 13

Figure 148. Biofeedback Breathing Exercise Animatic 14
Biofeedback Breathing Exercise Final Design

Biofeedback animatics (Figures 149-169) informed the final visuals, timing, and motion of the final biofeedback breathing exercise.

Figure 149. Biofeedback Breathing Exercise Final Screen Design 1

Figure 150. Biofeedback Breathing Exercise Final Screen Design 2
Figure 151. Biofeedback Breathing Exercise Final Screen Design 3

Figure 152. Biofeedback Breathing Exercise Final Screen Design 4

Figure 153. Biofeedback Breathing Exercise Final Screen Design 5
Figure 154. Biofeedback Breathing Exercise Final Screen Design 6

Figure 155. Biofeedback Breathing Exercise Final Screen Design 7

Figure 156. Biofeedback Breathing Exercise Final Screen Design 8
Figure 157. Biofeedback Breathing Exercise Final Screen Design 9

Figure 158. Biofeedback Breathing Exercise Final Screen Design 10

Figure 159. Biofeedback Breathing Exercise Final Screen Design 11
Figure 160. Biofeedback Breathing Exercise Final Screen Design 12

Figure 161. Biofeedback Breathing Exercise Final Screen Design 13

Figure 162. Biofeedback Breathing Exercise Final Screen Design 14
Figure 163. Biofeedback Breathing Exercise Final Screen Design 13

Figure 164. Biofeedback Breathing Exercise Final Screen Design 14

Figure 165. Biofeedback Breathing Exercise Final Screen Design 15
Figure 166. Biofeedback Breathing Exercise Final Screen Design 16

Figure 167. Biofeedback Breathing Exercise Final Screen Design 17

Figure 168. Biofeedback Breathing Exercise Final Screen Design 18
Figure 169. Biofeedback Breathing Exercise Final Screen Design 13
Biofeedback Environment User Testing 1

User testing was done on the biofeedback environment at Imagine RIT. User feedback (Figures 170 -176) found an overwhelming positive response to the SynApps biofeedback environment. Results include testing done with volunteer autistic children and adults.

Figure 170. Biofeedback Environment User Testing 1
Biofeedback Environment User Testing 1.2

The game was easy to follow.
32 responses

The format was easy to learn.
30 responses

Figure 171. Biofeedback Environment User Testing 1.2
Biofeedback Environment User Testing 1.3

I approve of the overall visual style.

32 responses

I understand how to navigate the system.

32 responses

The type was legible.

32 responses

Figure 172. Biofeedback Environment User Testing 1.3
Biofeedback Environment User Testing 1.4

Figure 173. Biofeedback Environment User Testing 1.4
Biofeedback Environment User Testing 1.5

<table>
<thead>
<tr>
<th>What do you enjoy about this experience?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calm, happy</td>
</tr>
<tr>
<td>The idea and ease of use of the application.</td>
</tr>
<tr>
<td>I like how calming, comforting, and safe and peaceful the environment is!</td>
</tr>
<tr>
<td>The isolation chamber and visual experience was wonderfully calming, accomplishing a great deal in a short period of time.</td>
</tr>
<tr>
<td>The overall experience</td>
</tr>
<tr>
<td>Very calming</td>
</tr>
<tr>
<td>It's calming and it has nice music.</td>
</tr>
<tr>
<td>Quiet, focused space.</td>
</tr>
<tr>
<td>The 360 degree submersion was more calming.</td>
</tr>
<tr>
<td>The calming nature</td>
</tr>
<tr>
<td>Re-teaching rather than exercising is cool. Being immersed is great.</td>
</tr>
<tr>
<td>The surrounding environment makes it feel less stressful</td>
</tr>
<tr>
<td>The app is well designed and the environment is really cool.</td>
</tr>
<tr>
<td>Background was very soothing design was sharp and easy to follow.</td>
</tr>
<tr>
<td>I love how immersive and calm it was.</td>
</tr>
<tr>
<td>Potential for relaxation and breathing blue color.</td>
</tr>
<tr>
<td>It seems easy to use and relaxing.</td>
</tr>
<tr>
<td>Calming</td>
</tr>
<tr>
<td>That is is relaxing and calming.</td>
</tr>
<tr>
<td>The color and music calmed me a lot. Very soothing and calming.</td>
</tr>
<tr>
<td>The immersion was nice.</td>
</tr>
<tr>
<td>Calm and relaxing</td>
</tr>
<tr>
<td>Everything</td>
</tr>
<tr>
<td>It is very relaxing</td>
</tr>
<tr>
<td>I feel really relaxed and I feel like I'm about to fall asleep (especially with the blue colors.</td>
</tr>
<tr>
<td>Everything</td>
</tr>
<tr>
<td>It really calming</td>
</tr>
<tr>
<td>The ease of navigation and its approachable experience.</td>
</tr>
<tr>
<td>Calms me down</td>
</tr>
</tbody>
</table>

Figure 174. Biofeedback Environment User Testing 1.3
Biofeedback Environment User Testing 1.6

<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Came-me down.</td>
</tr>
<tr>
<td>It is a brilliant idea with amazing real world applications. It would offer a greater access for those who really need the help of these services. Fantastic job! I know I will hear about this in the future!</td>
</tr>
<tr>
<td>Okay! It's mobile, so it can probably be set up anywhere. It could be used for reducing stress, calming anxiety and I wish I had one at my home.</td>
</tr>
<tr>
<td>The care and attention to detail that was applied to this project was evident. A tremendous idea that can be easily and rapidly implemented with prompt results.</td>
</tr>
<tr>
<td>Good job!</td>
</tr>
<tr>
<td>and "escape" is much more appealing than just a screen.</td>
</tr>
<tr>
<td>10/10!</td>
</tr>
<tr>
<td>Sound was very soothing design was sharp and easy to follow.</td>
</tr>
<tr>
<td>Very cool concept.</td>
</tr>
<tr>
<td>Would be interesting to see more exercises.</td>
</tr>
<tr>
<td>The system was very relaxing.</td>
</tr>
<tr>
<td>Great idea, hope it works! Keep it! This has a lot of potential!</td>
</tr>
<tr>
<td>Ceiling to floor environment is really nice!</td>
</tr>
<tr>
<td>I liked the calming wave.</td>
</tr>
<tr>
<td>This is very informative and great design!</td>
</tr>
<tr>
<td>I enjoy the colors and the effects in this app, it helps calm me down. I would use this.</td>
</tr>
<tr>
<td>Great job! I would definitely use this and I am in the medical field.</td>
</tr>
</tbody>
</table>

Figure 175. Biofeedback Environment User Testing 1.3
Biofeedback Environment User Testing 1.7

<table>
<thead>
<tr>
<th>Question</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Would you be motivated to use this system again for stress & anxiety management?</td>
<td>Yes, absolutely.</td>
</tr>
<tr>
<td>Definitely! It's mobile, so it can probably be set up anywhere. It could be used for reducing stress, calming anxiety and I wish I had one at my home!</td>
<td>Absolutely.</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes!</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes! and "escape" is much more appealing than just a screen.</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Background was very soothing design was sharp and easy to follow.</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes! It would be interesting to see more exercises.</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes! Everyday.</td>
<td>Yes</td>
</tr>
<tr>
<td>I don't have much need for it and it feels like something you would only need to do a few times. Kinda like its training more than inexperience.</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Absolutely!</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 176. Biofeedback Environment User Testing 1.3
Evaluation & Conclusion

SynApps could potentially serve as a system used in a medical professional’s office. Comprehensive research highlights a need for more comprehensive, cohesive, and engaging interactive biofeedback solutions that help alleviate the symptoms of ASD in young adults. While there are current biofeedback games that exist, they are limited to a computer screen, have disjointed visual styles, and lack a holistic approach toward the user’s health.

Designing the visual style was based on research found on visual preferences for people with ASD. Research on how color affects young adults with ASD proved that aesthetics was another important piece to the development and creation of the mobile application and biofeedback exercise. Color and visual style testing (Figures 81 & 85) confirmed research that cooler colors cause a calming response in users. Questions included: what emotions do you associate with cool colors versus warm colors, and which visual style was more appealing and caused a calming reaction for the user. These results informed the creation and development of final visual designs. Additionally, the visual aesthetics of SynApps reinforce the goals and objectives of the mobile application and biofeedback environment; to create a calming experience for users. Additionally, these visual aesthetics help to inform and direct users throughout both interfaces. The interface’s visual feedback helped users to: minimize errors and understand where information was stemming from.

Evaluations done through in-person surveys (Figures 133-134 & 170-176) prove that people are interested in utilizing a biofeedback mobile application and corresponding exercise environment in a medical setting. Responses to SynApps were overwhelmingly positive. Many parents of autistic children asked where they could buy the mobile application. The user testing and feedback prove that SynApps’ mobile application and biofeedback exercise are successful. Usability testing proves that SynApps is successful in these areas: ease of use, legibility,
navigation, visual style, easy to learn, creating a calming experience, stress management.

In conclusion, this thesis has highlighted the importance of user testing and feedback. User testing must be done in an unbiased, thoughtful, and properly recorded manner. Additionally, the analysis of user testing must be done to properly make responsible design choices. In order to create an effective user experience, designers must listen to user wants, needs, expectations, and feedback. SynApps is an important tool for young adults with ASD since there is nothing else like it currently used by medical professionals. Additionally, SynApps improves current health initiatives taken to help alleviate the symptoms of ASD in young adults.

As defined in the next section, this research could further extend to several different user case scenarios. SynApps could be developed into a product that is utilized by people with ASD of all ages in: medical facilities, schools and hospitals. SynApps could also be utilized by medical professionals treating patients with depression and anxiety.
Use Extensions

Additional use target audiences and uses could extend into the following relationships:

Medical Facility/All ages and levels of Autism
A medical facility could use this biofeedback system and application for people with autism of all levels and ages.

School/Students
A school could implement this technology system in a room as a refocusing tool for students who could benefit from it.

Hospital/Patient
Hospitals could implement this system and application in ERs for families who bring their children with autism in to the ER. This system could be utilized to calm and re-focus incoming patients who are experiencing high levels of anxiety and stress.

Medical Professionals/Anxiety & Depression Patients
This biofeedback system and application could be utilized by medical professionals treating a variety of conditions including, but not limited to: anxiety and depression.
Bibliography

Hunt, Eric, Daniel Hicks, Anna E. Hope, Brian L. Garrison, Stephen Jacobs, and Laurence I. Sugarman. Introducing and illustrating biofeedback to young people with autism spectrum disorderRIT Scholar Works

Appendixes

Appendix A Thesis Proposal
Children’s ASDs Management Through An Interactive Mobile Application and Biofeedback Exercise

Elizabeth Richardson
Thesis Proposal Approvals
Rochester Institute of Technology
College of Imaging Arts and Sciences
School of Design
MFA Visual Communication Design

Thesis Committee Approval

Chief Thesis Adviser
Dan DeLuna, Associate Professor
College of Imaging Arts and Sciences, Visual Communication Design

Signature of Chief Thesis Adviser Date

Associate Thesis Adviser
Chris Jackson, Professor
College of Imaging Arts and Sciences, Visual Communication Design

Signature of Associate Thesis Adviser Date

Associate Thesis Adviser
Dr. Laurence Sugarman
Institute of Health Sciences and Technology, The Center for Applied Psychophysiology and Self-Regulation

Signature of Associate Thesis Adviser Date

MFA Thesis Candidate
Elizabeth Richardson
Visual Communication Design, College of Imaging Arts and Sciences

Signature of MFA Thesis Candidate Date
Abstract

The purpose of this thesis is to explore how to provide better access to alternative treatment options in the form of an immersive biofeedback exercise for children with autism spectrum disorders (ASDs) and their families. This proposal also seeks to connect children with ASDs and their families to medical and behavioral professionals, and treatment facilities.

The implementation of this project will be done through motion graphics piece that depicts a wireless mobile application connected to biofeedback sensors worn by users with ASDs. Users participate in a biofeedback exercise presented in a game format, in which their real-time biofeedback is monitored, and then transmitted to the mobile application and processed through visuals back to the user in a closed loop. The mobile application analyzes and identifies biofeedback that is outside the norm through the comparison of existing normative data and then targets those areas through manipulations of the application’s visuals. The game will promote deep and consistent breathing, deep focus, and controlled stress levels.

If done consistently, the biofeedback exercise may help aid children with ASDs in learning how to re-train how their body responds to stressful situations, leading to functional and behavioral improvements in everyday life. Additionally, this treatment application aims to be a preventative health option for children with ASDs as a means to hopefully diminish the lifetime costs that correlate with people with ASDs.

This is done first by analyzing why it is important to do so. Next, a review of the literary research examines the work researchers and predecessors have contributed to the topic of biofeedback treatments as a means to diminish the effects of autism. After that, ideation documentation is done considering possible outcomes that promote people with ASDs to engage with biofeedback exercises as a means of therapy. A methodology is laid out detailing the steps required for this proposal, and to learn more about this design so that it can be successfully recreated. Keeping in mind all of these aspects, a timeline is developed for the design of a motion graphics piece and a non-working mobile application.
This topic is important to the field of design and the broader community because it utilizes the power of design, motion, and interactive technology to potentially bring about improvements to the lives of children with ASDs. In addition, this proposal seeks to resolve a disconnect that currently exists between medical science, medical and behavioral professionals, educators, and children with ASDs and their families. Furthermore, this proposal enhances the field of design through its unification of design with science as a means to bring better health care access and support services for people with ASDs, an area that is under-explored and underdeveloped.

Keywords
Situation Analysis

Autism spectrum disorders (ASDs) is a term used to define complicated disorders around brain development.\(^1\) ASDs is currently incurable and the U.S. Centers for Disease Control and Prevention identifies that ASDs affects around 1 in 68 American children, or more than 3.5 million Americans.\(^1\) Recently, government ASDs statistics show that diagnoses have risen from ten to seventeen percent. People with ASDs experience varying degrees of difficulties with both verbal and non-verbal communication and social interaction, language, and repetitive behaviors.\(^1\) As a result, people with ASDs may isolate themselves, not react or become indifferent to social interactions, and have trouble communicating. These symptoms are a result of a proprioceptive dysfunction, or an inability to receive accurate feedback about the body.

The cost in the United States for a person with ASDs, with an intellectual disability, over a lifespan is $2.4 million on top of the average of $250,000 to raise a child without ASDs.\(^3\) Ostrow suggests that most of these costs occur in adulthood due to loss of employment, inability to maintain a job, the need for medication and special education, and in some cases residential care. Ostrow continues by adding that, many adults with ASDs cannot monetarily contribute toward the maintenance of their disorder because they either: did not graduate from school and cannot get a job, or cannot maintain a job. Early diagnosis followed by intervention can cut the lifelong costs of ASDs by two-thirds.\(^2\) This early intervention can possibly begin with consistent biofeedback treatments.

Research has proven that sensory rooms help children with ASDs to calm down when feeling over stimulated. Interactive sensory technology can be found in these rooms including: lights, projections, interactive screens, music, enclosed structures, objects safe to chew on, tactile objects, and comfortable seating.\(^3\)

Additionally, research has shown a positive correlation between biofeedback

exercises and diminished effects of autism. Studies by Sugarman, Garrison, and Williford suggest that therapy which combines biofeedback with hypnosis is effective in helping people manage the effects of ASDs. However, there are limited biofeedback systems for children with ASDs. Most of these platforms are at a research phase or, involve participants going to medical or behavioral professionals offices, or long-term treatment facilities in order to implement biofeedback exercises. Once at a medical office, participants then participate in exercises on a small monitor with extremely poor and inconsistent visual implementations and design interfaces that are not as engaging and stimulating as they can be. Additionally, by having ASDs therapy systems that are visually inconsistent and not as visually engaging as they could be, creates limitations in the user’s therapy.

Problem Statement

Can immersive biofeedback exercise and corresponding mobile application be an effective means for people with ASDs to receive biofeedback therapy?

This proposal aims to create improved access to experiential treatment possibilities and alternative therapy options for children with ASDs in addition to connecting children with autism spectrum disorders (ASDs) and their families to support systems through education, medical and behavioral professionals, and other organizations. This will be done through a one-minute motion graphics piece depicting a biofeedback exercise in session, and a non-working mobile application. The non-working mobile application is part of the same system that triggers the motion graphics piece, and can be used to save and review users' biofeedback exercise history. The biofeedback mobile application and exercise will target areas that research has shown impact effects of ASDs on children. These areas include: focus, stress, heart rate variability, anxiety, and breathing. Research has shown that biofeedback exercises diminish the effects of ASDs.

The motion graphics piece will simulate how users interact with the user-to-biofeedback-to-interface system. This is a closed circuit system as shown by the user being connected to the system, the system interpreting the user’s biofeedback and sending real-time data through its bluetooth connection to the mobile app, the mobile app interpreting the biofeedback data and presenting it to the user through visual stimuli, and the user then responding to this visual stimuli, and the system then tracking the user’s response and sending new biofeedback data back to the app. This process is repetitive, cyclical as the user participates with the biofeedback exercise.

The biofeedback exercise will be formatted in a game format, with an integrated reward system as a means to fully engage and intrigue the user. This proposed application enables users to participate in the exercise and receive real-time biofeedback, with the intent to re-train the body’s response to stress and anxiety for a person with ASDs.
Although biofeedback is already implemented as a treatment option for ASDs, it is currently limited in its scope. Currently, if a person with ASDs wants biofeedback treatment, they most likely will need to go to a medical professional’s office or treatment facility where they are seated in front of a computer or hand-held monitor. This is a limited treatment option in its inability to completely immerse the user in the therapeutic process. Additionally, those who do not have access to a medical professional practicing biofeedback treatment, or people with atypical schedules who cannot go to a medical professional’s office for treatment, are unable to practice biofeedback as a therapy option. Furthermore, if a child with ASDs needs to go to a treatment facility to receive biofeedback treatment, this may not result in a consistent treatment plan since the child must leave the treatment facility at a certain point. Thus, this diminishes the long-term benefits of biofeedback treatments in possibly diminishing the effects of ASDs.

This proposal seeks to bridge this disconnect by providing access to an experiential treatment option for both facilities and at-home sensory rooms with the oversight of a medical professional. In the case of this proposal utilized in a treatment office, medical or behavioral professional’s could implement this system for appointments. Through this system, children with ASDs will access to an immersive therapy option.
Survey of Literature

ASTEP - Asperger Syndrome Training & Employment Partnership
Accessed: October 5, 2016
http://asperger-employment.org

ASTEP promotes the inclusion of people with ASDs in employment by educating employers and building relationships between employers and professional support organizations. ASTEP also does this through trainings with Fortune 1000 companies that help employers understand and build support programs for employees with ASDs.

Autism Classification System of Functioning: Social Communication (ACSF: SC)
Can Child

CanChild is a research center. CanChild discusses the ways in which they diagnose social skill levels for children with ASDs. This is based off of a five-level system. It is used by medical and behavioral professionals as well as teachers and parents to discuss a child’s levels of ability and social skills.

Autism Costs More Than $2 Million Over Patient’s Life
Nicole Ostrow
June 14, 2014
Accessed: October 8, 2016

Ostrow explains research findings that the lifelong cost to care for a person with ASDs, with an intellectual disability, can be more than 2 million dollars. This is additional to the 250,000 dollars it costs to raise a child. Special education, lack of employment, and residential care can be leading causes for these costs in adulthood. In the US, more than 3.5 million people have ASDs. The US national cost of supporting children with ASDs is 61 to 66 billion dollars each year, versus 175 to 196 billion dollars to support adults.
Autism Speaks
https://www.autismspeaks.org/

Autism Speaks is an educational organization that serves to raise awareness about and support for people with ASDs. Autism Speaks is also actively supportive in ASDs research in creating better solutions for ASDs management.

A Portable Sonified Neurofeedback Therapy for Autism Spectrum Disorder Patients-An Initial Evaluation
Adrian Attard Tevisan, Paolo Cavallari, and Frederick Attard
Doi: 10.4172/2329-6895.1000133

This research documents therapy done through a sonified neurofeedback system for children with ASDs. The research studied neurofeedback from an EEG brain-to-music system can suppress Delta waves while promoting Beta and Alpha waves. The Brain Music System turned recorded EEG information into signals for users. The study showed that kids with ASDs were able to manage symptoms of ASDs and even improved in doing so.

Biofeedback as an alternative treatment for Autism Spectrum Disorder with Asian Americans
Sum Yin Ruth Wong
2015
Alliant International University
Accessed November 1, 2016

Wong discusses how the medical field faces obstacles in considering and including cultural factors when developing treatments for people with ASDs. Wong suggests that current methods are not as effective for Asian Americans. This includes language differences and stigmas amongst Asian Americans around psychotherapies. Wong explores biofeedback as a treatment possibility since it already has a history of effectively helping treat symptoms of ASDs.
Brain-Computer Interface Game Applications for Combined Neurofeedback and Biofeedback Treatment for Children on the Autism Spectrum
Elisabeth V.C. Friedrich, Neil Suttie, Aparajithan Sivanathan, Theodore Lim, Sandy Louchart, and Jaime A. Pineda
July 3, 2014
Frontiers in Neuroengineering
Doi: 10.3389/fneng.2014.00021
This study suggests problems in the mirror neuron system are the cause of ASDs. The study also says that biofeedback is just as important as neurofeedback. The study looks at how social interactions affect heart rate. It goes on to suggest that a combined approach of neuro and biofeedback would be the most effective method of treating symptoms of ASDs. Currently, a combined brain-computer interface that combines neuro and biofeedback does not exist as a treatment option. As a result, the study creates a game that considers neuro and biofeedback in a social interaction format.

Breaking into the Autistic Brain
Parizad Bilimoria
Boston Children’s Hospital
Accessed September 28, 2016
Parizad gives an overview of what ASDs is, what happens in the person’s brain and the problems that occurs in the absence of MeCP2, how a child with autism has a disconnected development, his research on mice, and the benefits of EEG technology on people with ASDs.
Characteristics of Resonance in Heart Rate Variability Stimulated by Biofeedback
Evgeny G. Vaschillo, Bronya Vaschillo, and Paul M. Lehrer
June 2006
Springer Science & Business Media
Accessed: November 5, 2016
Doi: 10.1007/s10484-006-9009-3

The authors of this paper have previously found that heart rate biofeedback helps in treating asthma patients. This study serves as an important research example for this thesis proposal of how biofeedback, particularly heart rate variability, can help with symptoms of ASDs.

Colors of Autism Spectrum Described by Researchers
May 18, 2016
Science Daily
www.sciencedaily.com/releases/2016/05/160518120521.htm

This article discusses the creation of the ACSF:SC system, which can be used to classify and diagnose levels of autism. Levels of social interactions and communication are the backbone of this study. The system can be used by medical and behavioral professionals to diagnose levels of ASDs. It focuses on what can the person do versus what they cannot do. This is an important factor when considering how to develop engaging and inclusive systems of technology for children with ASDs.

Computer-based interventions to improve social and emotional skills in individuals with autism spectrum disorders: A systematic review
Sathiyaprakash Ramdoss, Wendy Machalicek, Mandy Rispoli, Austin Mulloy, Russell Lang, Mark O’Reilly
April 2012
Developmental Neurorehabilitation
Doi: 10.3109/17518423.2011.651655

The authors discuss how their objective is to review studies using computer-based interventions (CBI) to improve the effects of ASDs on people. The authors focused on the improvement of social and emotional skills through the utilization of: visual learning tools, decreasing opportunities for interruptions, and clearly explained instructions. This study found that CBIs are effective, and just as good as face-to-face guidance. CBIs help people with ASDs advance in their emotional
and social interactions. When considering medical applications, it is important to consider the possibilities and benefits of customization to a user’s specific wants and needs.

Creating Immersive Experiences Through Experiential Branding and Wayfinding
Paul Orban and Tim Smith
November 19, 2014
University Business
Accessed: September 15, 2016
https://www.universitybusiness.com/article/immersive-exp

Orban and Smith review how institutions and higher education require environments that reflect their culture. A brand combined with effective wayfinding can provide an important way for a person to understand their spatial orientation. Orban details the importance of integrating experiential branding and wayfinding to engage people as they interact with their environment.

Deep Brain Neurofeedback
Brain Works
Accessed: October 10, 2016
http://www.brainworksneurotherapy.com/deep-brain-neurofeedback

Brain Works discusses their implementation of neurofeedback on people. They talk about the benefits of neurofeedback for children with ASDs as well as people suffering from other cognitive disorders. Their neurofeedback includes QEEG pictures of the brain. Brain Works also utilizes LoRETA imaging, or Low Resolution Electromagnetic Tomography. Through these components combined, Brain Works helps patients train their brain activity to a more efficient state. This is done through 19 sensors and a 3D LoRETA.

Designing Environments for Children with ASDs
Maria Luigia Assirelli
GA Architects
www.autism-architects.com

The architects worked with design research centers, schools, teachers, caregivers, and children ages 15-19 with ASDs to select preferred colors for children with autism. Research found: low arousal, single shades, and cooler tones of blue and green were selected as being most effective. Patterns should be avoided. A balance between gray and color treatments was successful. These
results are important to consider when thinking about visual style and language for a thesis project.

Designing for Interaction Immediacy to Enhance Social Skills of Children with Autism
Monica Tentori, Gillian R. Hayes
September 26, 2010
Association for Computer Machinery
Accessed: September 26, 2016
Doi: 10.3389/fneng.2014.00021

Tentori and Hayes consider the impact social skills and behavioral intervention have on people with ASDs. They consider the importance of immediately guiding and directing behavior through positive reinforcement. This is done through research in three public schools. Tentori and Hayes implement interaction immediacy through applications and social interactions.

Designing Interactive Technologies for Supporting Research in Autism Spectrum Disorders
David Feil-Seifer, Matt Black, Maja Mataric, and Shrikanth Narayanan

Researchers found evidence suggesting that people with ASDs are more likely to increase social interactions when conversing with a robot versus another person. Furthermore, children with ASDs were more likely to initiate social interactions when interacting with a robot. Researchers are currently designing a therapy robot that helps children with ASDs with social behaviors.

Development of a parent manual on assessment-guided biofeedback for Autism Spectrum Disorders
Mirta Romero Frimtzis
March 29, 2009
Alliant International University
Accessed November 2, 2016

Frimtzis develops a parent manual to raise awareness of biofeedback therapy as a treatment option for children with ASDs. Frimtzis discusses while there are many ASDs advocacy groups established, there is not enough educational materials on biofeedback treatment for children with ASDs. Frimtzis’ manual on
biofeedback was found by users to be helpful, educational, and had an overall positive response.

Economic Burden of Childhood Autism Spectrum Disorders
Tara A. Lavelle, Milton C. Weinstein, Joseph P. Newhouse, Kerim Munir, Karen A. Kuhlthau, Lisa A. Prosser
February 10, 2014
American Academy of Pediatrics
Doi: 10.1542/peds.2013-0763

Researchers use data to estimate the annual costs for a child with ASDs. Research found that the monetary burden of ASDs is huge not only on families but also on our society. This study further supports the need for early intertvention and alternative treatment technology for children with ASDs.

Evaluating the Effectiveness of Biofeedback in Improving Emotional Regulation for a Student with Autism Spectrum Disorder
Elizabeth Power
October 20, 2015
The Chicago School of Professional Psychology
Accessed: November 1, 2016

Power studies and assess the impact of biofeedback on an eight-year old child with ASDs. Power utilizes hear rate variability, in correlation with the child's overall emotional regulation and found that it helped the child establish a stronger emotional foundation and regulation. Heart rate is an important piece of biofeedback to consider as an area of focus for interactive applications.

Evaluating the Effectiveness of Biofeedback Interactive Technologies for Children with Special Needs
Meryl Alper, Juan Pablo Hourcade, and Shuli Gilutz
June 2012
Accessed: September 25, 2016
Doi: 10.1.1.690.2712&rep=rep1&type=pdf

Alper, Hourcade, and Gilutz discuss the current design trend to develop new and exciting therapeutic technologies for disabled children. Their research
highlights three under-explored areas in interactive technologies. One of these areas is participatory design, an important area when considering social interactions among children with ASDs. The authors have a featured section in their study devoted to play and technologies that helps children with ASDs manage social behavior and interactions.

Introducing and Illustrating Biofeedback to Young People with Autism Spectrum Disorder
Eric Hunt, Daniel Hicks, Anna E. Hope, Brian L. Garrison, Stephen Jacobs, Laurence I. Sugarman
The Center for Applied Psychophysiology and Self-Regulation at RIT
Accessed: October 26, 2016
http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1035&context=eatc

This diagram represents the background of biofeedback, what it is, what DyFSS is, how it works, and improvements to this system.

Investigating the Autonomic Nervous System Response to Anxiety in Children with Autism Spectrum Disorders
Azadeh Kushki, Ellen Drumm, Michele Pla Mobarak, Nadia Tanel, Annie Dupuis, Tom Chau, and Evdokia Anagnostou
July 12, 2012
Doi:10.1371/journal.pone.0059730

This study explores how and if anxiety causes changes in indicators of ANS and ASDs. It also seeks to understand and convey a pattern in these changes. Areas measured included: skin temperature, heart rate, and electrodermal activity. This was done with two groups of children, one group with ASDs, and the other with ASDs. Both groups were monitored in a baseline and an anxiety condition. Only the ASDs group showed abnormally increased heart rate during both conditions. This study suggests that ASDs is linked to over-arousal which can result in people with ASDs experiencing abnormal levels of anxiety.

Jacob’s Ladder Center
http://jacobsladdercenter.com/methodology/references-and-research/

Jacob’s Ladder is a center serving Pre-K through 12th graders with any neurological disorder, learning disability, or genetic disorder. 60% of their students have been diagnosed with Autism. Jacob’s Ladder utilizes neurofeedback as a form of therapy for its patients.
Long-Term Follow-Up of Self-Hypnosis Training for Recurrent Headaches:
What the Children Say
Daniel P Kohen
2010
International Journal of Clinical and Experimental Hypnosis
Accessed November 2, 2016
Kohen recounts a survey conducted of 178 children who were referred to hypnosis as a treatment for ongoing headaches. The survey covered current status of headaches including: intensity and frequency, treatment, how hypnosis was used, and reviews of self-hypnosis. Overall, survey responses showed that participants positively responded to hypnosis in treating ongoing headaches years following application of hypnosis. Hypnosis is related to breathing, which is also related to heart rate, and is an important element of biofeedback for people with ASDs. Thus, hypnosis should be considered when developing new treatment technologies for children with ASDs.

Making Room for Autism in the Workplace
Elizabeth Preston
July 21, 2016
The Atlantic
Accessed: October 5, 2016

Preston discusses a program that helps train young adults with ASDs through virtual job interviewers. Participants learn necessary workplace skills, train for industry certifications, and complete internships. Additionally, users can practice interviewing with an avatar. At the workplace people with ASDs may experience anxiety and have trouble communicating with coworkers. Preston discusses how many adults with ASDs want to work and how recently, companies are responding positively and want to employ people with ASDs. Some companies even seek out employees with ASDs. For the avatar interviews, a hidden human operator controls the experience. Four sessions with the avatar improved user’s interview scores by 80%. This program is evidence of the effectiveness of robots in helping facilitate and guide social communication and interactions among people with ASDs.
MOSOCO: A Mobile Assistive Tool to Support Children with Autism Practicing Social Skills in Real-Life Situations
Lizbeth Escobedo, David H. Nguyen, LouAnne Boyd, Sen H. Hirano, Alejandro Rangel, Daniel Garcia-Rosas, Monica Tentori, and Gillian R. Hayes
May 5, 2012
Association for Computer Machinery
Accessed: September 26, 2016

MOSOCO is an augmented reality mobile application for children with ASDs. MOSOCO uses a mobile application to help children with ASDs interact with one another and practice healthy social behaviors. MOSOCO helps guide social interactions by detecting people for the user to socialize with. Once a social interaction is initiated, MOSOCO helps guide its users through the conversation with social cues. This is an important study to consider because it combines interactive mobile and AR technology to encourage behavioral changes in children with ASDs. MOSOCO does not use biofeedback.

Positive behavioral and electrophysiological changes following neurofeedback training in children with autism
J.A. Pineda, D, Brang, E. Hecht, L. Edwards, S. Carey, M. Bacon, C. Futagaki, D. Suk, J. Tom, C. Birnbaum, A. Rork
November 13, 2007
Research in Autism Spectrum Disorders
http://dx.doi.org/10.1016/j.rasd.2007.12.003

This study tests the idea that neurofeedback training can help brain wave dysfunctions, resulting in improved behaviors in children with ASDs. The study found that its participants improved their ATEC scores, and increased their ability to maintain focus. This study suggests that neurofeedback can be an effective treatment possibility for children with ASDs.
Postsecondary Education and Employment Among Youth With an Autism Spectrum Disorder
Paul T. Shattuck, Sarah Carter Narendorf, Benjamin Cooper, Paul R. Sterzing, Mary Wagner, and Julie Lounds Taylor
February 16, 2012
American Academy of Pediatrics
Accessed: October 5, 2016
Doi: 10.1542/peds.2011-2864

Norton discusses research finding that young people with ASDs are less likely to go to college or get a job in comparison to their peers with other disabilities. Norton goes on to discuss how within the last decade, ASDs diagnoses have dramatically increased. Although the rate of ASDs diagnoses has increased, little research has been done on how kids with ASDs function after high school. Shattuck found that people with ASDs who were of a low socio-economic background were at an even greater risk of not furthering their education and/or maintaining a job. Shattuck deduces that the cause of this is attributed to lack of: access of services, social connections, and employment connections for impoverished people with ASDs. Shattuck says that special education programs should include a transition plan for post-high school years for those with ASDs.

Self-Adjusting Biofeedback with a Dynamic Feedback Signal Set (DyFSS)
Laurence I. Sugarman, Brian L. Garrison, Anna E. Hope1, Stephen Jacobs, Alex J. Glade, Michael R. Wezalis, Kelsey L. Williford
The Center for Applied Psychophysiology and Self-Regulation at RIT,
Accessed October 27, 2016
http://scholarworks.rit.edu/cgi/viewcontent.cgi?article=1018&context=eatc

The authors discuss how autonomic dysregulation with anxiety presents challenges for children with ASDs and how Peripheral Autonomic Biofeedback Training (PABT) is a promising solution for managing anxiety and ASDs symptoms. Sugarman and authors discuss what DyFSS is and how it is a core feature of autonomic regulation training. PABT utilizes: skin conductance level, skin temperature, low frequency heart rate variability, and respiratory rate, feeds back these signals to the user, and the user learns how to change them through directions. The user then learns how to control them and apply these skills to their everyday life.
Social Skill Deficits and Anxiety in High-Functioning Adolescents with Autism Spectrum Disorders
Scott Bellini
Summer 2004
Focus on Autism and Other Developmental Disabilities
Sage Publications, Inc.
Accessed: November 6, 2016

Bellini discusses how an abnormal number of children with ASDs experience anxiety levels that are much greater than the average person. This study shows the influence anxiety has on people with ASDs and how long-term anxiety management is important in treating the symptoms of ASDs.

Specialisterne
October 5, 2016
http://usa.specialisterne.com

Specialisterne is a 501(c)3 organization focused on services and programs for businesses in the community with an interest in gaining people with ASDs as employees. Specialisterne educates corporate partners, schools, and government agencies on how to gain and maintain employees with ASDs. Specialisterne educates people with ASDs on career development and help participants find employment.

Special Haven
October 4, 2016
http://www.specialhaven.org/Home_Page_2_2.html

Special Haven provides multi-sensory environments for children and adults with Special Needs for a local community. Special Haven specializes in multi-sensory rooms and the benefit these rooms provide in removing stresses of the outside world for people with special needs.
Slowing Down Emergency Rooms to Improve Autism Care
Shefali Luthra
May 9, 2016
Kaiser Health News

Luthra discusses how hospitals across the country are implementing separate accommodations for people with autism in their ERs due to an influx of patients with ASDs. These rooms have sensorial toys, iPads, and dimmed lights. Luthra discusses special protocols certain hospitals take when interacting with patients who have ASDs. These protocols include alerting doctors of the patient’s ASDs diagnosis so that they can adjust how they interact with their patients. One in forty-five children were diagnosed with ASDs in 2014. This is a dramatic increase when compared to ASDs diagnoses in 2000 being 1 in 150. Hospitals are an important community hub to consider as a location to provide educational materials and treatment services to people with ASDs.

Symptoms as Solutions: Hypnosis and Biofeedback for Autonomic Regulation in Autism Spectrum Disorders
Laurence I. Sugarman, Brian L. Garrison & Kelsey L. Williford
September 5, 2013
American Journal of Clinical Hypnosis
Accessed: October 0216
Doi: 10.1080/00029157.2013.768197

Tantrums in Children with Disability and Developmental Delays
Child and Youth Services, Disability Services
October 2014
Accessed: October 6, 2016

This child development resource sheet reviews tantrums in children with disabilities and developmental delays. It explains why tantrums occur, when they can occur, how to respond, prevention and early intervention methods.
Rajendran, G, Porayska-Pomsta K, Smith T, Lemon O, Consortium TECHOES
May 9, 2013
ECHOES Publication
The International Meeting for Autism Research
http://echoes2.org/?q=node/2

ECHOES is an interactive and collaborative learning environment tool for children 5-7 years old with ASDs. Participants work on social skills by collaborating with virtual characters and objects. Manageable goals are developed and adapted based on the needs of the participant. Customizable features are an important element when working with children with ASDs to ensure an interactive game is engaging and inclusive.

The Disconnection
Emily Vossen
TEDx Talks
YouTube

Emily Vossen gives a TED talk about the benefits of neurofeedback training in children with ASDs and how people without ASDs would also benefit from it. Vossen refers to neurofeedback training as yoga for the brain. She discusses how the brain is a muscle and open to being re-trained. She opened the Henry Vossen Center for children who have cognitive disorders, and implements neurofeedback training at this center. Vossen also discusses the disconnect that occurs between doctors, patients, families, and treatment centers.

The Use of Virtual Reality Hypnosis with Two Cases of Autism Spectrum Disorder: A Feasibility Study
David W. Austin, Jo-Anne M. Abbott, and Colin Carbis
June 2008
John Wiley, Chichester UK
Doi: 10.1002/ch.349

This study considers Virtual Reality (VR) technology as a means to treat symptoms of ASDs in children. The study involved two boys ages 14 and 15 with
4 sessions over 2 weeks. The study looked at whether VR would reduce anxiety levels in children with ASDs. Results suggested that VR did not have a positive effect in treating symptoms of ASDs. However the parents of the participants said that they would utilize this technology if it were an available treatment option for their son. Each set of parents noticed increased levels of focus in their son as a result of VR technology being used as a therapeutic application.

Using Virtual Environments for Teaching Social Understanding to 6 Adolescents with Autistic Spectrum Disorders
Peter Mitchell, Sarah Parsons, and Anne Leonard
August 2006
Journal of Autism and Developmental Disorders
Accessed November 1, 2016
Doi: 10.1007/s10803-006-0189-8

The authors discuss how six teenagers with ASDs experience a Virtual Environment (VE) cafe, a video of a real cafe, and a video of buses. Participants chose where they would sit and why they would sit there for each situation. This study showed the potential in using VR technology as a treatment option and social skills tool for young adults with ASDs.
Design Ideation

The main goal of this proposal is to integrate design methods with research findings on the benefits of biofeedback trainings for people with ASDs. This will be done through game design dynamics in the form of a one-minute motion graphics piece featuring a biofeedback exercise, and a non-working, mobile application. Both of these deliverables will educate and support people with ASDs through accessible therapeutic treatments implemented at a medical facility. Additionally, a conical-shaped structure will be built and have the one-minute motion graphics piece, depicting a biofeedback session, projected on to it. Users will be able to walk into this structure and view the motion graphics piece.

The goal of this project is not to provide a single solution for every user. Instead, the motion graphics piece depicting the structure and interactions of the game and app design, and the non-working mobile app will be unique to the person participating in the training sessions.

In addition, since symptoms of ASDs can vary person to person, users will be able to edit preference settings and personalize the app for color preference, sound levels, age level, and level of autism.
Mind Mapping
Color Palette Exploration

ASDs Friendly Color Palette selected by children with ASDs

- #7691C6
- #BDC0E1
- #F5CFC6
- #EA5061
- #E5E5E5

- #7691C6
- #BDC0E1
- #F5CFC6
- #EA5061
- #E5E5E5

- #558695
- #9DBED1
- #CDCDF3
- #F5BEC4
- #FDF3E9

- #74C3C8
- #E1E0F2
- #FABFB9
- #E5E7D1
- #D9E0E8
Product Name Ideation - Word Bank

<table>
<thead>
<tr>
<th>Achieve</th>
<th>Home</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brainwaves</td>
<td>Input</td>
<td>Processing</td>
</tr>
<tr>
<td>Care</td>
<td>Interaction</td>
<td>Social</td>
</tr>
<tr>
<td>Cerebral</td>
<td>Learning</td>
<td>Solution</td>
</tr>
<tr>
<td>Comfort</td>
<td>Life</td>
<td>Special</td>
</tr>
<tr>
<td>Connect</td>
<td>Links</td>
<td>Stimulation</td>
</tr>
<tr>
<td>Development</td>
<td>Malleable</td>
<td>Synapses</td>
</tr>
<tr>
<td>Electric</td>
<td>Mu waves</td>
<td>Therapy</td>
</tr>
<tr>
<td>Exercise</td>
<td>Neuro</td>
<td>Treatment</td>
</tr>
<tr>
<td>Experimental</td>
<td>Neuroplasticity</td>
<td>Unify</td>
</tr>
<tr>
<td>Feedback</td>
<td>Physiological</td>
<td>Yoga</td>
</tr>
<tr>
<td>Goals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Product Name Ideation

Feedback of favorite names

Allo
isotonos
Me2Mu
Synapse
Synergy
Potential Typographic Studies

Avenir Light
Avenir Light Oblique
Avenir Book
Avenir Book Oblique
Avenir Oblique
Avenir Roman
Avenir Medium
Avenir Medium Oblique
Avenir Black
Avenir Black Oblique
Avenir Heavy
Avenir Heavy Oblique

Pier Sans Italic
Pier Sans Regular
Pier Sans Bold
Pier Sans Bold Italic
Potential App Grid Structure

iPad with a 12 Column Grid
User Experience Map

Guiding Principles

Synapse is an app designed for people with autism.

People are tired of taking medications and feel_builder because they do not know if they are effective. They want to have consistent treatment options, or do not see consistent development.

People want consistent access to the latest treatment options, including alternative methods to medication.

Users want to understand the current status of their development, their strengths, and areas that can benefit from improvement.

Users are willing to compare behavioral areas they can develop, and participate in biofeedback exercises that are clear, engaging, and targeted for their user's ASDs level.

Users are expecting an experience that encourages and demonstrates development, and they will recommend it to others.

Users are willing to share their progress with their doctors, as they look over and keep track of their development.

User Journey

Assessment

Discover

Login

Purchase Wireless Biofeedback with Insurance

Participate in biofeedback exercise

Review + compare results on progress of biofeedback training

Send progress to primary doctor

Assessment

Discover

Login

Purchase Wireless Biofeedback with Insurance

Participate in biofeedback exercise

Review + compare results on progress of biofeedback training

Send progress to primary doctor

Download from App Store

Click “Sign In”

Click “biofeedback exercises”

Click “Stress & Focus”

Click “Deep Breathing”

Click “My Account”

Click “Connect with Synapse”

Click “Choose an exercise”

Participate in real-time biofeedback exercise

Decide on area to review

Decide if you want to review based on progress, exercise, or date

Participate in real-time biofeedback exercise

Is this application trustworthy?

Is it complicated if I want to use it?

Is my private information protected?

I want to get into the app and look at it first. Will the EEG be covered by my insurance?

Will the biofeedback exercises target areas?

How will I be coached through the exercises?

The logo and description are intriguing and reviews are positive. I should be able to trust this application because my doctor recommended it.

Don’t have to log in, there is a bug in a giant function the user can trigger. It’s a powerful app even without logins of biofeedback development.

I feel satisfied with the “View my Progress” feature. It is easy to use. I can select an exercise and view the “View progress” feature, and I can update my doctor on my development and they can give me feedback the next time I go in for an appointment.
User Experience Close-Up 1 of 2

Guiding Principles

Synapse is an app designed for people with autism. People are tired of taking medications and feel frustrated because they do not have, or cannot afford to have consistent treatment care, or do not see consistent development. People want consistent access to the best treatment care, including alternative methods to medicine. Users want to understand the current status of their development, their strengths, and areas that can benefit from improvement.

User Journey

<table>
<thead>
<tr>
<th>Status</th>
<th>Awareness</th>
<th>Discover</th>
<th>Login</th>
<th>Purchase Wireless Biofeedback with Insurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allo</td>
<td>Download from App Store</td>
<td>Click “Sign In”</td>
<td>Click “My Account”</td>
<td>Click “Connect with Synapse”</td>
</tr>
<tr>
<td>Doing</td>
<td>Speaking with Doctor</td>
<td>Compare Apps</td>
<td>Download Allo</td>
<td>Choose</td>
</tr>
<tr>
<td>Thinking</td>
<td>Is this application trustworthy?</td>
<td>Is it complicated if I want to use it?</td>
<td>Is my private information protected?</td>
<td>Are the bio Will the bio How will I t</td>
</tr>
<tr>
<td>Feeling</td>
<td>The logo and description is intriguing and reviews are positive</td>
<td>I should be able to trust this application because my doctor recommended it.</td>
<td>I want to get into the app and look at it first. Will the EEG be covered by my insurance? Does the application have features that I want?</td>
<td>The app ha The app is</td>
</tr>
</tbody>
</table>

Click “Sign In”
Click “biofeedback exercises”
Click “Stress & Focus”
Click “Deep Breathing”
Click “My Account”
Click “Purchase Wireless Biofeedback through insurance”
Click “Connect with Synapse”
Click “bic”
Choose
Decide on Doctors to Send progress to
Decide an area to review
Decide if you want to review based on progress, exercise, or date
Participate in real-time neurofeedback exercise
Decide
Send progress to doctors
Click “View My Progress”
Click “Stress & Focus”
Click “Send progress to doctors”
Click “Deep Breathing”
Decide if you want to review based on progress, exercise, or date
Participate in real-time neurofeedback exercise
Decide
Send progress to doctors
Click “View My Progress”
Click “Stress & Focus”
Click “Send progress to doctors”
Click “Deep Breathing”
Decide if you want to review based on progress, exercise, or date
Participate in real-time neurofeedback exercise
Decide
Send progress to doctors
Click “View My Progress”
Click “Stress & Focus”
Click “Send progress to doctors”
Click “Deep Breathing”
Decide if you want to review based on progress, exercise, or date
Participate in real-time neurofeedback exercise
Decide
Send progress to doctors
User Experience Close-Up 2 of 2

Users are willing to compare behavioral areas they can develop, and participate in biofeedback exercises that are clear, engaging, and targeted for that user’s ASDs level.

Users are expecting an experience that encourages and demonstrates development and they will recommend to others.

Users are willing to share their progress with their doctors, to look over and keep track of brain development.

Participate in biofeedback exercise

- Click “biofeedback exercises”
- Click “Stress & Focus”
- Click “Deep Breathing”

- Choose an exercise
- Participate in real-time biofeedback exercise

Review + compare results on progress of biofeedback training

- Click “View My Progress”
- Click “Stress & Focus”
- Click “Deep Breathing”

- Decide an area to review
- Decide if you want to review based on progress, exercise, or date
- Participate in real-time neurofeedback exercise

Send progress to primary doctor

- Decide on Doctors to Send progress to

Are the biofeedback exercises interesting and engaging? Will the biofeedback exercises target areas? How will I be coached through the exercises?

The app has many comprehensive choices. The app is clear in focusing on 2 areas.

Will the biofeedback exercises help the progress of my development? Will I be able to clearly see that the biofeedback exercises are helping me? How can I see improvements in my behavior?

I feel satisfied with the “View my Progress” function, it is so convenient. I feel satisfied and reassured with the “Send progress to doctors” function, so I can update my doctors on my development and they can give me feedback the next time I go in for an appointment.
User Flow Chart Close-Up 1 of 3

ASDs User Scenario
Flow Chart
User Flow Chart Close-Up 2 of 3
User Flow Chart Close-Up 3 of 3
Wireframes
Wireframes
Wireframes
Wireframes

SIGN UP

Which are you?

- CHILD
- MEDICAL PROFESSIONAL
- PARENT
- OTHER

TODAY'S CHALLENGES

Deep Breathing

WELCOME BACK LIZ!

Today's Progress
Wireframes
Wireframes
Wireframes

DEEP BREATHING EXERCISE 1

Time: 5 minutes
Requires: Synapse

Control the water and collect it through breathing!
Practice your deep breathing and learn how to control your heart rate during stressful times.

PLAY

STRESS & FOCUS EXERCISE 2

Time: 5 minutes
Requires: Synapse

Control the coins through focus and by enhancing your stress levels!
Practice remaining focused on a task. Also, learn about controlling your response to stress and try to improve it!

PLAY
Wireframes

TAP ON WIFI SYMBOL TO CONNECT TO APP
Storyboard 1

Title: Biofeedback Exercise-Breathing

Scene 1: How to Play

- **Exercise 1**

 Slowly and deeply inhale using your abdomen, not your chest, like your abdomen is moving to your back.

- **Help the water move forward through deep and controlled breathing.**

- **Deep Breathing**

 Place one hand on your chest and the other on your stomach. (To make sure your chest doesn’t move)

Scene 2: Inhale through your nose

- **1, 2, 3, 4**

Scene 3: Hold your breath for a count of 1, 2, 3

- **Exhale through your mouth**

 1, 2, 3, 4, 5, 6, 7, 8

- **Hold your breath for a count of 1, 2, 3**

Users hear an uplifting sound when done correctly.

Users hear ambient, soothing sounds.

Users hear a soothing lower sound when done correctly.
Storyboard 1
Conical Tent Design

- Projector
- Motion graphics projected
- Loft
- Spandex
- Binding at bottom to hold tent on floor
Methodology

Design Inquiry
Can a mobile application and an immersive biofeedback exercises be an effective means for people with ASDs to receive biofeedback therapy? Can we implement this strategy to sensory rooms by projecting biofeedback information in an exercise format and having users interact with it? Can designers more efficiently and effectively communicate medical jargon in a thoughtful and clear way for families, medical staff, and people with ASDs?

Target Audience
This thesis project will be centered on people with autism ages six to twenty years old. However, the application will be prototyped for a sixteen-year-old child with an autism social communication level of 1 or 2 who is verbal.

The value that this project is that it will unify the disconnect between medical professionals, people with ASDs, families, and treatment facilities, by creating an application where all of these separated groups can work together in a proactive approach toward health. This proposal will be a preventative measure to possibly help with health care and make it less reactive to problems that arise. This proposal could be utilized in sensory rooms at a user’s home, or in a facility. It could also be implemented in hospitals since so many ERs across the nation are receiving incoming patients who have These ERs are having to develop separate areas for their ASDs patients. This proposal could be implemented within a private area of an ER for patients with ASDs. Additionally, this proposal brings to families and children with autism new forms of access to treatment technology that is proven to help children with ASDs with communication, behavior, and social interactions.
Project Deliverables

Concept
This proposal seeks to design and build a ten-foot tent, conical-shaped structure in which a one-minute motion graphics piece will be projected inside of. Users will be able to walk into the conical structure and view a biofeedback exercise in-session. This concept provides new interactive technology for ASDs treatment.

The second part of this proposal seeks to design a hi-fidelity mobile application, non-working prototype, that corresponds with the motion graphics experience. Theoretically, this mobile application will connect to the conical structure, and allow users to save their progress. The mobile application will feature a toolbar that includes access to: a home screen featuring a user’s overview of exercises to complete that day depending on the user’s training program, a biofeedback exercise page where users can build a training program with their doctors, a user’s account page, and a user’s stats page where they can review their progress according to date, game, or progress. Additionally, within these pages, users can view measured growth, receive tips to improve, view a training plan and edit preferences within the plan according to the users likes and dislikes, play biofeedback exercises, understand the science behind the app, and get help about how to use the app.

Software will potentially include:
Adobe Illustrator, Photoshop, After Effects, Biofeedback technology, Processing, Sketch, Garage Band, Resolume Arena 5, Red Giant Trapcode and Cinema 4D. These programs will be used to create: the application’s user interface, the user experience, wireframes, layouts, motion graphics for the exercise, and an interactive hi-fidelity and lo-fidelity non-working application.

Scope of Project
The app serves people ages 6 to 20 years old with ASDs. However, the hi fidelity app and motion graphics piece will function for a child with an ASDs social communication level of 1 or 2, who is also verbal. The biofeedback exercise will be centered on deep breathing.
Motion & Interaction

The motion graphics piece will represent the visuals and interface of the interactive exercise. The biofeedback exercise will be centered on deep breathing. The motion graphics piece will represent how the user interacts with the interface and its use of a positive reward system. The motion graphics piece will show that when users breathe correctly, they receive a reward through auditory and visual feedback.

The breathing exercise will feature a shape similar to a sine wave, the ideal shape of breathing patterns. Users will need to properly get the wave to move forward, similar to that of flowing water, while also maintaining its shape. The user's goal is to move the water forward so that it can be collected. Visual and auditory feedback will be utilized as a positive reinforcement system. As users correctly breathe, the sine wave will move calmly forward and form the shape of a blue-in color, smooth wave.

The biofeedback environment does not require that the user touch or contact the interface. The mobile application works in conjunction with the biofeedback environment. The user initiates the biofeedback exercise through the mobile application.

Details of Project

App and Motion Graphics Dimensions

iPad 2 - 1024 pixels x 768 pixels
Motion graphics - 1920 pixels x 1080 pixels
<table>
<thead>
<tr>
<th>Design</th>
<th>Technology</th>
<th>Subject Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI/UX Design</td>
<td>Resolume, Projector</td>
<td>Interactive Feedback Games, Color Theory</td>
</tr>
<tr>
<td>Interaction Design</td>
<td>Adobe: Illustrator, Photoshop, Sketch, Invision</td>
<td>Interactive Feedback Games, App User Interface</td>
</tr>
<tr>
<td>Motion Graphics</td>
<td>Adobe: Illustrator, Photoshop, Cinema 4D</td>
<td>Interactive Feedback Games</td>
</tr>
</tbody>
</table>
Implementation Strategies

This thesis project will be carried out through thoughtful planning, the investigation of the most effective methods to create a helpful and easy to use app for children with ASDs.

The biofeedback exercise will focus on breathing

RIT Center for Applied Psychophysiological Sciences
I plan to work with CAPS to better understand symptoms of autism and effects it has on children. In the case of problems or questions arising, CAPS will serve as an excellent resource to re-focus the thesis project.

For Research
Research articles, papers, journals, theses, current technology, and websites.
Interview professionals who are experts on ASDs.
Collect information through interviews and surveys.
Analyze past case studies and emerging technologies used with ASDs.
Based on findings identify
- Ways to digitally identify levels of autism
- Ways to engage children with ASDs and motivate to use app
- Means of re-focusing a child with ASDs
- Layout and framework that is stimulating and engaging for ASDs
- Ways of visually representing biofeedback
- Visual representation of biofeedback in game-mode
- Collect real-time usability feedback from students.
- Collect comparative analyses.

For Mobile App Framework
- User Research Process Flowchart
- Information Architecture
- Lo-Fi Wireframes
- Hi-Fi Screens

For Projected Motion Graphics In Conical Tent
Previous knowledge of Resolume Arena 5 and a class in projection mapping will
greatly help the implementation of the projected motion graphics.

- Storyboard
- After Effects motion graphics
- Imported After Effects motion graphic into Resolume Arena 5
- Project motion graphics onto conical tent
Dissemination

The dissemination of this project transcends the thesis timeline since it will occur once the working prototype is completed and tested.

The plan to promote the final outcome will start by presenting the prototype to the Center for Applied Psychophysiological Sciences at Rochester Institute of Technology. I plan to also show my prototype to the Al Sigl Center in Rochester, New York. Both of these organizations could potentially make use of and develop this application.

The next step will include submission to the following design competitions:

- ADDA - Adobe Design Achievement Awards
- IxDA Student Design Challenge
- HOW International Design Awards
- Communication Arts Interactive Design Annual
- Core77 Design Awards
Evaluation Plan

Methods
Peer Reviews
Usability Evaluation
Outcome Evaluation
Impact Evaluation

Focus
Clarity
Impact on existing practices
Ease of use
Overall Experience

Success Criteria
• Easy to incorporate suggestions without changes to existing methodology
• User is able to understand and implement biofeedback exercise with ease
• User is able to easily navigate the app

The evaluation plan will consist of a series of evaluations with feedback done with peers within and outside of the design field. In addition, two rounds of prototype testing will be done for the app portion of this proposal. This testing will focus on usability, communication, and ease of navigation. A series of evaluations and feedback will be done for tent motion graphics.

The first round of app testing will be done with a paper prototype in order to ensure the application is clear and logical through its layout and button placement. Additionally, this round of testing will collect suggestions for improvements on the applications ease of use and communication.
The second round of app testing will be done with high fidelity screens. This will test the effectiveness of the application’s communication for children with autism. This test will also explore the effectiveness of the biofeedback exercise, to user, to game structure as well as aesthetics. This round will be done with a professional in the field of autism. Users will be asked un-biased questions focused on the application’s successes and how it can be improved to better serve children with autism.

Imagine RIT is a creativity and innovation festival that takes place on May 2nd at Rochester Institute of Technology. Imagine RIT will serve as an opportunity to test the app with a diverse audience. Although the event attracts many people, their profile type may not necessarily be favorable toward usability testing because many of them most likely will not have autism. Despite this, Imagine RIT provides an opportunity to test the product’s effectiveness of communication and get feedback on the visual design. The plan consists of setting up the conical structure to the projector and computer to allow visitors to explore the motion graphics experience. Upon completion, visitors will be given an explanation of the application and asked to complete a 5-minute digital survey through Google Forms.
Pragmatic Considerations

I have a timeline carefully planned.

Budget

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tent spandex material</td>
<td>$100</td>
</tr>
<tr>
<td>Plastic molding for tent base</td>
<td>$30</td>
</tr>
<tr>
<td>Used Projector</td>
<td>$30</td>
</tr>
<tr>
<td>RIT Macbook with Resolume</td>
<td>Free - Borrowed</td>
</tr>
</tbody>
</table>

Dissemination

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submissions</td>
<td>$200</td>
</tr>
</tbody>
</table>

Expenses are subject to change and based on an estimation of what I expect to spend throughout my thesis.
Timeline Fall 2016

Thesis Timeline Fall 2016

- Aug 30: Start
- Sep 06: Thesis Proposal Writing
- Sep 13: Research
- Sep 20: Ideation
- Sep 27: Brainstorming
- Oct 04: Committee Chosen
- Oct 11: Dr. Sugerman Interview
- Oct 18: Thesis Proposal Presentation
- Oct 25: Mariana Pinheiro Interview
- Nov 08: Paper Prototype
- Nov 15: Committee Meetings
- Nov 22: Evaluation & Feedback
- Nov 29: Exercise Development
- Dec 06: Lo-Fidelity Wireframes
- Dec 13: Evaluation & Feedback
- Dec 20: No Classes, Thanksgiving Break
- No Classes, Thanksgiving Break
- Start: Aug 30

Elizabeth Richardson
Children's ASDs Management Through An Immersive Biofeedback Exercise & Mobile App
Bibliography

Hunt, Eric, Daniel Hicks, Anna E. Hope, Brian L. Garrison, Stephen Jacobs, and Laurence I. Sugarman. Introducing and illustrating biofeedback to young people with autism spectrum disorderRIT Scholar Works

