
Chapter 5. Approach 25

FIGURE 5.1: A screenshot of CodeCity in action [57].

create a single, unique view that could act as a supplement to an existing refactoring tool, leading

to our final design and implementation.

5.1.2 Final Implemented Design

Technical Decisions

The majority of the technical design decisions were made to either keep with convention or in-

crease ease of development. Java was chosen as the primary development language due to its

purely object-oriented nature and refactoring techniques’ predilections towards object-oriented

Chapter 5. Approach 26

languages. Fernandes et al. found that out of 84 code smell detection tools, Java dominated, both

in terms of languages that the tools analyze as well as languages the tools were developed in [28].

They also found that an equal number of the tools were plug-ins and standalone programs. With

all other things being equal, rather than a standalone application, we decided to build off an ex-

isting tool, eventually deciding on the Eclipse plug-in, JDeodorant. This proved to be an ideal

candidate as there are few completely open-source refactoring tools as popular as JDeodorant.

Additionally, the Eclipse plug-in library is fairly substantial, and would provide an existing base

for development, limiting potential issues related to building a new application from the ground

up.

Visualization of Multiple Refactorings

From the start, we drew inspiration from JDeodorant’s visualization feature, which creates a UML-

styled view of the results of a single refactoring operation, scoped to the relevant classes (in the

case of Extract Class refactoring and Move Method refactoring, this would mean the source and

target classes). After considering its strengths and weaknesses with regards to conveying infor-

mation to the user, we theorized that the entire refactoring operation, rendered in such detail,

could be simplified to a single element in a larger visualization. Utilizing the existing code used

in JDeodorant to generate diagrams, we experimented with different methods of representing this

information, as well as how prominent and detailed each piece of information could be.

Developers rarely apply only a single refactoring operation to large, enterprise-level systems.

Even an experienced user might have difficulty planning such a task. For a developer unfamiliar

with a given program, trying to comprehend what dozens of operations would do to the program

would be a daunting task, and would more than likely prompt them to either spend significant

time analyzing and understanding the system, or blindly trust the assessment of an algorithm.

This new visualization could display all these refactorings at once, simplifying their details into

core concepts such as extraction, relocation, and merging, allowing the user to deep dive into a

certain operation when necessary.

Chapter 5. Approach 27

Importing Refactorings

While examining the visualization library used by JDeodorant, the idea to incorporate the metric

visualization concept from our design’s second iteration into JDeodorant’s package visualization

was introduced. Importing a file containing a program’s metrics would allow the user to display

these metrics in the same manner as JDeodorant, with statistically significant offenders identified

by deeper gradients of red.

Initially we planned to incorporate the open-source Eclipse plug-in project Metrics 3 [58] to

allow the operation to be performed automatically, but this proved unrealistic given the devel-

opment time frame. While this idea was eventually cut due to its lack of relevance to the core

project, the idea of importing information generated by another program led to the idea of im-

porting refactorings generated by other programs and visualizing them using an extension to the

JDeodorant plug-in.

This would also allow us to gather additional information for the second research question.

From an internal standpoint, JDeodorant’s refactorings could be tested for conflicts. However,

with this feature, any other tool capable of exporting its refactoring candidates could be tested.

Additionally, it allows for testing across multiple, separate refactoring tools.

A perhaps overlooked issue with refactoring tools is their inability to be used in conjunction

with one another. By comparing the refactoring candidates generated by multiple tools, identi-

fying the conflicts, and visualizing the combination of the valid refactorings, developers could

utilize multiple tools to aid in their refactoring processes, rather than a single one. This would

allow for more coverage and suggestions, and could potentially increase the user’s confidence in

the candidates if multiple tools’ suggestions were the same.

The refactorings used in the visualization can be selected from those generated by JDeodorant

(restricted to God Class and Feature Envy) so long as the project is compilable. Alternatively,

refactoring operations can be imported via text files. These do not require the project to be loaded

into Eclipse or compilable. The visualization can also display refactorings for multiple projects

Chapter 5. Approach 28

simultaneously.

5.2 Utilization

5.2.1 Code Smell Selection

The extension to the JDeodorant plug-in can be accessed by selecting either the “God Class” or

“Feature Envy” selections from the “Bad Smells” dropdown. After the project selection has been

parsed and code smells have been identified, a new column labeled “Implement?” will be visible

on the far right. Checking one of these boxes will add the selected operation to the visualization,

as seen in Figures 5.2 and 5.3 (close-ups of these can be seen in Figures A.1 and A.2). For God

Classes, selecting a parent row will also select all its children. These operations often include

overlapping elements, so this is most likely useful for scouting potential refactoring combinations.

The selection can be cleared using the “Clear Selected Candidates” button. Note that this is the

only way to remove operations from the visualization; selecting a new project or importing a

file will not reset the selection, as some users may want to visualize refactorings across multiple

projects. It will also only clear God Class refactorings or Feature Envy refactorings, depending on

which view is selected at the time.

5.2.2 Refactoring Visualization

The final design is centered around combining multiple refactorings into a single, presentable

view. To visualize the selected refactorings, click the “Visualize Selected Candidates” button. This

will open the Code Smell Visualization view, as seen in Figure 5.4. The entities in this particular

diagram are classes, with the operations represented as arrows between the classes. The scope of

the diagram is the directly affected classes. The number of entities (methods and fields) modified

is represented on the connecting line, with the number of non-conflicting entities over the total.

If a class has Extract Class refactoring performed on it multiple times, the extracted classes will

be visualized in a single location for simplicity’s sake. The connections will change color based

Chapter 5. Approach 29

FIGURE 5.2: Selecting an Extract Class refactoring to visualize in the extension to
JDeodorant.

on the number of conflicting refactorings. If there are no conflicts, the arrow will be green. Black

indicates some conflicts, while red indicates over 75% of the entities involved in that class’ refac-

torings conflict with other operations. Hovering over either the source class or the connection will

cause a tooltip to appear displaying the details about the entities involved in the operations. It

also displays which types of operations the conflicting entities are a part of. An example of a visu-

alization with conflicts can be seen in Figure 5.5. This information can be copied for later use. The

class diagrams are simple rectangles, and are arranged in two columns to minimize the chance

that connections will overlap with another element of the diagram, though this is far from ideal.

5.2.3 Import Refactorings

Refactoring operations can also be imported by clicking the “Import Refactoring” button found in

the Code Smell Visualization view, returning to either the God Class or Feature Envy view, and

Chapter 5. Approach 30

FIGURE 5.3: Selecting multiple Move Method refactorings to visualize in the exten-
sion to JDeodorant.

clicking the “Visualize Selected Candidates” button again. This will display each refactoring lo-

cated in the file alongside any other selected operations. These can be cleared in the same way as

the other refactorings. This feature currently parses files written in a similar format as JDeodor-

ant’s exported files, in a tab-delimited text file. We generated these from Excel files, as seen in

Figure 5.6. This is also the least-developed feature in the extension to the tool, as at the time of

development we lacked a specific use case for how to utilize this feature. For example, one use

case suggested during development would have allowed the user to input a custom refactoring

operation through a specific user interface. This feature’s ultimate inclusion in the extension was

primarily to receive feedback on whether its inclusion was welcome or not, as well as to perform

internal testing for conflicts between refactorings generated by various tools.

Chapter 5. Approach 31

FIGURE 5.4: Visualization of the refactoring operations selected in Figures 5.2 and
5.3.

5.3 Contributions

As our goal for this work is to aid developers in becoming more familiar with automated and

semi-automated refactoring, our extension will be available online to the public as an open-source

project [59]. This would not have been possible without the original developers of JDeodorant

making their tool open-source as well, and for that we are grateful. In addition to this extension

itself, we present the design process that led to its creation as a contribution. The development

of the extension itself serves as the precursor to the validation, essentially serving as a proof of

concept. Whether or not the tool is successful is, naturally, secondary to expanding the body of

knowledge and progressing the development of refactoring tools.

Chapter 5. Approach 32

FIGURE 5.5: A visualization of conflicting Extract Class refactorings, with a tooltip.

FIGURE 5.6: An Excel file containing refactoring operations to be imported.

33

Chapter 6

Validation

In order to evaluate our extension’s abilities, we conducted a set of experiments based on eight

open-source systems. In the following section, we first present our research questions and then

describe and discuss the obtained results.

6.1 Research Questions

We have defined three research questions that address the applicability, the performance in com-

parison to existing refactoring approaches, and the usefulness of the extension. The three research

questions are as follows:

6.1.1 RQ1: To what extent can our approach help the simultaneous selection and exe-

cution of multiple refactorings to developers?

The specific benefits of refactoring tools are difficult to quantify due to the unique nature with

which developers refactor and utilize refactoring tools. While these can be inferred and elicited

through surveys and human studies, it is inherently impossible to completely understand the

inner workings of every developer, divided into groups by age, experience, and personal prefer-

ences. Therefore, if causation is out of reach, one can at the very least identify correlations. Our

goal is not to prove that this approach has a statistically proven benefit for developers. Rather, we

Chapter 6. Validation 34

intend to discover through concentrated evaluations and individual, written responses if there is

a correlation between the use of this type of visualization and noticeable benefits to refactoring,

including both time spent refactoring and the developer’s willingness to use the given refactoring

procedure. This serves as the first step in showing that this avenue of research may yet bear fruit.

6.1.2 RQ2: Can the use of this extension make the suggested refactorings more trust-

worthy in the eyes of the developer?

As the ultimate goal is to increase the level of trust between the developer and the tool, we asked

a select number of developers what their impressions of the extension and its visualization were,

and whether or not it helped them to better understand the refactorings proposed by JDeodorant.

This particular wording was chosen due to “trustworthiness” being a difficult concept to quan-

tify. Additionally, this provides the user with the option to directly compare two states (with and

without the extension).

6.1.3 RQ3: To what extent can our approach efficiently detect conflicting refactorings

provided by multiple refactoring approaches?

A reasonable cause for concern among developers is the simultaneous use of multiple refactoring

tools on a single project. Despite tools being shown to have high levels of agreement in certain

instances [28], this does little to mitigate the fact that a single contradiction could spell disaster for

the program, limiting the refactorings’ effectiveness and generating a suboptimal design at best,

and introducing new bugs and defects at worst. This is an inherent issue among tools that rely

on different code smell detection and/or candidate suggestion algorithms. However, one of the

goals for the visualization is to convey to the developer quickly, easily, and simply any immediate

conflicts that will arise from the implementing the planned suite of refactorings. Using the ability

to import refactorings, we examined multiple refactoring tools’ suggestions to see if there were

Chapter 6. Validation 35

Project Release # of Classes KLOC
of Code Smells

(identified by inFusion)
Xerces-J v2.7.0 991 240 91

JHotDraw v6.1 585 21 25
JFreeChart v1.0.9 521 170 72

GanttProject v1.10.2 245 41 49
Apache Ant v1.8.2 1191 255 112

Rhino v1.7R1 305 42 69
Log4J v1.2.1 189 31 64
Nutch v1.1 207 39 72

TABLE 6.1: Selected Projects

conflicts between refactorings both within the same tool and between separate tools, and if it

might be possible in either case to create a safe refactoring suite.

6.2 Projects Under Study

To evaluate the extension, we used a set of well-known, open-source Java projects. We applied

the extension to eight of these projects: Xerces-J, JHotDraw, JFreeChart, GanttProject, Apache

Ant, Rhino, Log4J, and Nutch. Xerces-J is a family of software packages for parsing XML [60].

JFreeChart is a free tool for generating charts [61]. Apache Ant is a build tool and library specifi-

cally conceived for Java applications [62]. Rhino is a JavaScript interpreter and compiler written

in Java and developed for the Mozilla/Firefox browser [63]. GanttProject is a cross-platform tool

for project scheduling [64]. Log4J is a popular logging package for Java [65]. Nutch is an Apache

project for web crawling [66]. JHotDraw is a GUI framework for drawing editors [67].

We selected these eight systems for the evaluation because they range from medium to large

in size, they are open-source, they have been actively developed over the past ten years, and their

development has not experienced slowdown due to their design. We used multiple projects rather

than a single one to mitigate the issue of a project being easier or harder to refactor than others.

Table 6.1 provides some descriptive statistics about these eight programs.

Chapter 6. Validation 36

6.3 Manual Evaluation

6.3.1 Refactoring by Developers

For the eight Java projects chosen, a combined total of ten classes with potential code smells were

manually identified in each project. The code smells were restricted to God Class and Feature

Envy, as these were the only code smells supported by the extension at the time of writing. These

projects were then grouped into pairs.

Eight developers experienced with refactoring operations participated in this evaluation. These

developers remained anonymous to this author, as they were colleagues selected by Dr. Mkaouer,

and all communication with them was done through him. These were all developers with expe-

rience using refactoring tools, as we desired the input of those familiar with this domain rather

than those with no experience, as the extension had not been developed with that use case as

its primary goal. All that was made known to this author was the number of participants, so a

folder was constructed for each participant, containing a set of written instructions, a video tu-

torial demonstrating the extension’s use, and the following requisite files. Each developer was

provided with a copy of JDeodorant with the extension and two pairs of projects (four of the eight

projects in total). They were each given a list of the classes containing the code smells, and asked

to refactor the projects. The developers were instructed to refactor one pair of projects using the

tool and visualization (extension), while the other pair were to be refactored without the aid of

the visualization (see Table 6.2). The developers were asked to record how long it took to refactor

each pair of projects. There were no requirements given on which projects to refactor first.

Additionally, each developer was provided with a short questionnaire. This asked for the

developers to rate the features of the extension, provide feedback on its features and potential

improvements and additions, and to describe how this particular extension affected both their

refactoring process and opinion of/trust in the refactoring tool.

Chapter 6. Validation 37

Developer Programs Refactoring Tool

Developer 1
JFreeChart, JHotDraw JDeodorant

Apache Ant, GanttProject JDeodorant + Extension

Developer 2
Apache Ant, GanttProject JDeodorant

JFreeChart, JHotDraw JDeodorant + Extension

Developer 3
Xerces-J, Rhino JDeodorant
Log4J, Nutch JDeodorant + Extension

Developer 4
Log4J, Nutch JDeodorant

Xerces-J, Rhino JDeodorant + Extension

Developer 5
JFreeChart, JHotDraw JDeodorant

Apache Ant, GanttProject JDeodorant + Extension

Developer 6
Apache Ant, GanttProject JDeodorant

JFreeChart, JHotDraw JDeodorant + Extension

Developer 7
Xerces-J, Rhino JDeodorant
Log4J, Nutch JDeodorant + Extension

Developer 8
Log4J, Nutch JDeodorant

Xerces-J, Rhino JDeodorant + Extension

TABLE 6.2: Distribution of Programs Among Developers

Chapter 6. Validation 38

Refactoring Experiment and Questionnaire Results

Refactoring Times The refactoring experiment showed little correlation in refactoring times

between developers asked to refactor the same projects with the same tools. Differences between

refactoring times tended to vary between ten and 15 minutes, with extremes as low as five and as

high as 29.

FIGURE 6.1: Refactoring Times per Developer

As shown in Figure 6.1, the total time to refactor the projects decreased when using the visu-

alization in all but one instance. Feedback from the developers indicated universal appreciation

for the visualization. Responses indicated that it helped principally with planning which refac-

torings to implement, as well as understanding what the changes to the system design would be.

The ability to plan multiple refactorings at once, or “batch fix,” seemed to help significantly with

refactoring times, even when the developers needed to perform additional refactoring afterwards.

One developer noted that being able to select multiple candidates alone was a benefit. While some

Chapter 6. Validation 39

claimed that using the tool was easier than their static analysis methods, others acknowledged its

benefits while still retaining their preference for manual refactoring, at least so far as defining

refactoring operations.

Questionnaire Results To answer our first two research questions, we analyzed the re-

sponses from the participating developers. The developers noted that the visualization was able

to identify and prevent several conflicts. However, on at least two occasions an operation caused

the code to break, forcing the developer to refactor that portion manually. Expanding the func-

tionality of the conflict detection with additional checks may help to prevent these issues.

A number of developers commented on the lack of information displayed by the visualiza-

tion. In some cases the defects were not adequately described. This makes sense, as the extension

only visualizes the solutions to be implemented, not the inherent problems with the classes. This

made experimenting with the selected visualizations to find the right batch somewhat more time

consuming and difficult than was necessary. One developer noted that this might also be miti-

gated prior to visualization if the extension was able to easily convey the details of the suggested

refactoring candidates. This is possible at the moment with the “visualize code smell” feature (lo-

cated by right-clicking on a refactoring candidate), but this process is also slow and cumbersome

when dealing with dozens of potential refactorings for a single class. All in all, additional tooltip

information would help increase the visualization’s viability for helping developers choose from

multiple refactoring candidates by adding them to the visualization first and deselecting them

later.

The developers also had positive responses to the core features of the base JDeodorant tool,

most notably its ability to implement the refactoring operations automatically. Comments regard-

ing the user interface varied more widely. Some responded that they found the interface easy to

use and understand, while others found it unintuitive, especially the button icons. The ability

to sort the refactorings was suggested, so the user interface could be improved by implement-

ing more features to make it easier for developers to quickly identify which refactorings they’re

Chapter 6. Validation 40

Feature
Developer

1
Developer

2
Developer

3
Developer

4
Developer

5
Developer

6
Developer

7
Developer

8
Average

Score
Selection

of multiple
refactorings

3 5 3 5 3 5 5 4 4.125

Visualization
of multiple
refactorings

5 5 3 5 5 4 4 5 4.5

Visualization
of conflicting
refactorings

5 4 4 4 4 5 4 4 4.25

Import of
custom

refactorings
3 4 2 5 5 3 4 3 3.625

TABLE 6.3: Developer Ratings of Features (1:Bad, 5:Good)

looking for (such as a search feature).

Feature Ratings The features the subjects were asked to rate on a scale of one to five, with

five being the best, were the selection of multiple refactorings, the visualization of multiple refac-

torings, the visualization of conflicting refactorings, and the import of custom refactorings. These

results can be seen in Table 6.3. The first three all scored average ratings from between 4.125 and

4.5, while the import of custom refactorings scored significantly lower with a 3.625. This could

be due to the feature not being yet fully realized, or the fact that the developers did not need to

utilize this feature in their experiment, but it does indicate that this feature is not as desireable

as the refactoring visualization (and its related features). This is supported by the fact that all

the subjects mentioned the visualization’s benefits, while none even commented on the import

feature.

One of the most requested features was the ability to implement (and by extension, preview)

all the selected refactoring operations at once. The developers acknowledged that visualizing

their selected refactorings enabled them to refactor each one sequentially with confidence without

having to run the identification feature after every application. This feature was introduced in

the design phase of the extension’s development, but was determined to be out of scope when

we discovered there was no easy way to combine the operations into a single operation, rather

Chapter 6. Validation 41

than executing them automatically in sequence, which was deemed not significant enough of an

improvement to warrant the necessary development time.

6.3.2 Conflict Analysis

To answer our third research question, we needed to test the potential conflicts between tools’

suggested refactoring candidates. We used five different approaches to identify conflicting Extract

Class and Move Method refactoring operations in our eight selected projects. The five approaches

are labeled as "Mkaouer" [68], "Ouni" [69], "Kessentini" [70], "O’Keeffe" [71], and "Harman" [72].

First, we identified all the refactoring operations using each approach for each project, and

saved each into a CSV file, with a total of 40 files in all. After parsing the files into tab-delimited

text files, we passed them into our extension, which allowed us to identify conflicting operations,

even between different files, so long as the project they were refactoring was the same. Naturally,

the only refactoring methods that were accepted by the extension were Extract Class and Move

Method.

Table 6.4 shows how the data was recorded. Each table represents a different project, and each

axis represents one of the two approaches being compared. The results in the diagonal cells (top-

left to bottom-right) have the same approach name, and therefore refer to the conflicts within the

approach’s own operations only. Our final results are based on the percentage of conflicting refac-

torings, found by dividing the number of conflicting operations by the total number identified.

These can be found in Appendix A.

Naturally, approaches had the lowest percentage of conflicts within their own results. The

pair of approaches that produced the highest percentage of conflicts were "Mkaouer" and "Ouni."

This is unsurprising, as the two had the highest internal conflict percentages. These results can be

seen in Table A.9 and Figures 6.2, A.3, and A.4. Surprisingly, the two approaches that produced

the highest number of operations, "O’Keeffe" and "Harman," both produced the lowest internal

conflict percentages. Their conflict percentage as a pair was, comparatively, pretty low as well.

Chapter 6. Validation 42

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 11
Ouni 38 5
Kessentini 33 28 5
O’Keeffe 33 22 16 2
Harman 19 12 10 10 0

TABLE 6.4: Conflicting Operations Identified Between Two Approaches for Apache
Ant

Finally, we tried comparing all five approaches at once (see Table A.11). "JFreeChart" had

the lowest conflict percentage while "Nutch" had the highest, with all the projects averaging out

with a 28.2% conflict percentage. We were unable to find a correlation between a project’s conflict

percentage and any other statistic available, including the percentage of refactoring operations

that were Extract Class or Move Method.

6.4 Discussion of Results

6.4.1 Number of Code Smells

While our ideal for the visualization is to be able to represent as many different types of refactor-

ing methods as possible, in this version it currently only supports two: Extract Class refactoring

and Move Method refactoring. This limits the validation that can be done with the extension, as

the developer is restricted in which refactoring techniques they are allowed to use. This issue

is slightly mitigated by the fact that these are two of the more versatile and popular refactoring

methods, but nonetheless it remains an issue.

Chapter 6. Validation 43

FIGURE 6.2: Bar Graph of Conflicting/Total Operations Identified Between Two Ap-
proaches for All Projects

6.4.2 Human-Computer Interaction

Additionally, the extension’s design lacks input from a designer with experience in human-computer

interaction, which could negatively impact its usability [73]. The primary intent behind the devel-

opment of the extension was to see if the base functionality could be achieved and what results

it elicited in users. The extension could undoubtedly be improved not only with expanded func-

tionality, but with a stronger emphasis on making the extension easy to understand and use, and

the visualizations clear and pleasing to the viewer. One improvement could be arranging the

diagrams using a visually-appealing graphing algorithm, such as Delaunay triangulation [74],

instead of a two-column grid.

Chapter 6. Validation 44

6.4.3 Conflicts

While the extension can identify conflicting refactorings, this is limited to entities from a single

class (methods and fields) being relocated to multiple locations. It does not identify any other

defects that may be introduced to the system as a result of the refactorings, nor does it identify any

new code smells that would be introduced after the refactoring operations have been performed.

As a result, this feature is used as an example and test of base functionality rather than fully-

fledged conflict identification.

6.4.4 Language & Tool

Naturally there are many languages aside from Java and its object-oriented cousins that utilize

refactoring, and there are a multitude of development environments used for Java alone. While

many aspects of the extension can be adapted for use in various environments with various lan-

guages, the technical aspects of the extension must remain limited to this specific language and

environment. For example, many elements of the visualizations were immutable, such as the

tooltips, and the code smell views lacked native support for checkboxes. Finding ways around

these issues was not impossible, but restricted ideal and expedient development at times.

6.5 Threats to Validity

Any project built on existing work must acknowledge the source of its base of knowledge. As our

extension is built upon the JDeodorant plug-in, any flaws present in that tool must also exist in

our extension. This extends beyond aspects of JDeodorant limiting development of the extension’s

features; bugs and other defects are also a possibility. As this thesis deals with the issue of levels of

trust, aspects of JDeodorant that affect this level should be taken into account when evaluating the

extension’s effect on trust. Without these aspects adequately defined and quantified, this remains

an undefined, potential threat to validity.

Chapter 6. Validation 45

As previously mentioned, there are limitations to our evaluation. Despite having eight sepa-

rate developers evaluate the tool, each developer has their own preferences and experiences that

affect their ability to effectively utilize certain refactoring tools. These skills can affect their ability

to use the tool and its effects, which is why we assigned each developer programs to refactor with

and without the extension. This should help mitigate the learning curve and fatigue threat inher-

ent to using the extension. Additionally, each developer was provided with two different projects

to mitigate the impact of a developer being particularly familiar or unfamiliar with refactoring

one of the projects. Furthermore, we instituted no time limit on the refactoring or questionnaire,

and provided an instructional video walking the developer through using the tool and extension

to refactor a sample project.

As the crux of this thesis deals with non-quantifiable concepts, accurately interpreting human

responses is a vital aspect of results analysis. Participants often have wildly varying and heteroge-

neous opinions. One of the ways we mitigated this threat to validity is by quantifying our results

with a rating system. By having participants rate issues before responding to them, we can put

together a rough indication of the developers’ responses at a glance. However, this approach does

not allow for concrete statistical conclusions, as developers all interpret these ratings in their own

way, with no universal reference. Additionally, this still limits the number of participants we can

evaluate effectively, because of the necessity of manually analyzing and interpreting each partic-

ipant’s responses. Ultimately, we chose the participant and project sample sizes that we did to

receive clear feedback on the extension’s function and impact, rather than to definitively prove its

statistical effectiveness for a given demographic.

The number of participants and projects also creates a threat to validity. Because of this limit,

we cannot assert that our results can be generalized and remain applicable to other projects and

developers, which threatens our external validity. Accomplishing this would require future repli-

cations of this study with a larger sample size of programs and participants. Even still, trying to

claim that a large enough sample size would indicate the opinions of most developers is some-

what ludicrous. Additionally, our study was limited by the extension to the use of two specific

Chapter 6. Validation 46

refactoring types. While these were selected specifically to produce useful results, the quantifiable

limit of two code smells could potentially hide unforeseen issues when certain combinations of

refactorings are introduced.

47

Chapter 7

Conclusion

In this thesis, we explored the domain of code smell detection and correction. We identified the

pros and cons of refactoring tools, and acknowledged a problem with modern tools: their lack of

general use. We identified a potential cause of this issue to be addressed: a lack of trust between

the developer and the tool, caused by limited transparency of the tool’s inner workings in ex-

change for efficiency and simplicity. After several iterations, we proposed an approach to mitigate

this issue, as well as creating an open-source implementation as an extension to an existing tool.

The extension enables simultaneous visualization of multiple user-selected refactoring operations

and their conflicts with one another, allowing users to better understand the impact of their appli-

cation. The extension encourages continued development not only in its open-source nature, but

also in its ability to utilize multiple refactoring tools through importing external files.

Analysis of the extension was handled via manual evaluation. We applied a quantitative eval-

uation of the extension using eight open-source systems, and a qualitative evaluation using eight

developers. The feedback received shows promising results with respect to productivity and us-

ability. Ultimately, this thesis proposes a novel approach to aid software developers in better

understanding how to semi-automatically refactor their systems.

Chapter 7. Conclusion 48

7.1 Future Work

We would be ecstatic to see work continue in this vein of increasing trust between developer and

tool, even if it is not related to our visualization. New types of visualizations, or new approaches

altogether, will help to increase this topic’s body of knowledge and eventually lead to at least one

feasible solution. While our design went through several iterations, it does not mean that aspects

deemed out of our scope could not be expanded upon in future projects and shown to be viable

approaches for increasing a tool’s level of trust.

If development does continue on our specific visualization, we’d prioritize work on adding

support for additional refactoring methods. This would help demonstrate the modularity of the

system, as well as whether or not many different refactoring types over a large system can be

conveyed easily. Increasing the support for different refactoring tools is also a priority. Developing

either proprietary or customized ways to easily import and/or incorporate external refactoring

tools would go a long way towards increasing the options available to developers with regards to

choosing refactoring tools. Eventually this would ideally allow for development teams to utilize

multiple refactoring tools simultaneously with little issue, increasing the list of identified code

smells and refactoring candidates, as well as confidence in repeatedly suggested ones. Allowing

the developer to easily self-define their own refactorings would be a significant improvement as

well. Lastly, the extension’s current conflict analysis only extends to fields and methods being

moved and/or extracted by separate refactorings more than one time. We would like to see the

extension identify deeper issues, such as defects that would or might be introduced from applying

certain refactorings. These need not be fully-fledged defects, but introductions of new code smells,

such as the introduction of too many small classes and an increase in efference.

Ideally, development would continue in the form of different visualization techniques, and

experiments into which combinations of visualizations and other features help increase the devel-

oper’s level of trust in the tool, without sacrificing the efficiency it provides.

Chapter 7. Conclusion 49

In the end, any work that leads towards increasing the general practice and use of refactoring

tools will be the ultimate success.

50

Appendix A

Appendix

FIGURE A.1: Close-up of Figure 5.2.

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.268293

Ouni 0.493506 0.138889
Kessentini 0.445946 0.405797 0.151515
O’Keeffe 0.375 0.26506 0.2 0.042553
Harman 0.223529 0.15 0.12987 0.10989 0

TABLE A.1: Conflicting/Total Operations Identified Between Two Approaches for
Apache Ant

Appendix A. Appendix 51

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.115385

Ouni 0.333333 0.136364
Kessentini 0.316327 0.3 0.086957
O’Keeffe 0.239583 0.215909 0.2 0.045455
Harman 0.193878 0.211111 0.173913 0.066667 0.043478

TABLE A.2: Conflicting/Total Operations Identified Between Two Approaches for
Xerces-J

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.086957

Ouni 0.261905 0
Kessentini 0.064516 0.023529 0
O’Keeffe 0.178947 0.022989 0 0
Harman 0.234043 0.116279 0 0.123711 0

TABLE A.3: Conflicting/Total Operations Identified Between Two Approaches for
GanttProject

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0

Ouni 0.116505 0
Kessentini 0 0.021505 0
O’Keeffe 0.033058 0.057692 0 0
Harman 0.119658 0.06 0.018692 0 0

TABLE A.4: Conflicting/Total Operations Identified Between Two Approaches for
JFreeChart

Appendix A. Appendix 52

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0

Ouni 0.378788 0.294118
Kessentini 0.264706 0.271429 0
O’Keeffe 0.09375 0.227273 0.058824 0
Harman 0 0.138889 0 0.085714 0

TABLE A.5: Conflicting/Total Operations Identified Between Two Approaches for
Rhino

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.142857

Ouni 0.482759 0
Kessentini 0.515152 0.441176 0.526316
O’Keeffe 0.666667 0.428571 0.53125 0.307692
Harman 0.451613 0.375 0.527778 0.466667 0.352941

TABLE A.6: Conflicting/Total Operations Identified Between Two Approaches for
Nutch

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.105263

Ouni 0.285714 0.086957
Kessentini 0.292683 0.311111 0.090909
O’Keeffe 0.15 0.136364 0.139535 0
Harman 0.2 0.181818 0.186047 0.190476 0.095238

TABLE A.7: Conflicting/Total Operations Identified Between Two Approaches for
Log4J

Appendix A. Appendix 53

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.074074

Ouni 0.178571 0
Kessentini 0.175439 0.101695 0
O’Keeffe 0.096774 0 0 0
Harman 0.066667 0 0 0 0

TABLE A.8: Conflicting/Total Operations Identified Between Two Approaches for
JHotDraw

Mkaouer Ouni Kessentini O’Keeffe Harman
Mkaouer 0.099104

Ouni 0.316385 0.082041
Kessentini 0.259346 0.23453 0.106962
O’Keeffe 0.229222 0.169232 0.141201 0.049463
Harman 0.186173 0.154137 0.129537 0.130391 0.061457

TABLE A.9: Conflicting/Total Operations Identified Between Two Approaches for
All Projects

Mkaouer Ouni Kessentini O’Keeffe Harman
Total Conflicting
Operations Identified
in All Projects

27 23 21 8 10

Total Operations
Identified in
All Projects

291 262 283 302 304

Conflicting/Total
Operations Identified
in All Projects

0.093 0.088 0.074 0.026 0.033

TABLE A.10: Statistics for All Projects per Approach

Appendix A. Appendix 54

FIGURE A.2: Close-up of Figure 5.3.

Ant Xerces Gantt JFreeChart Rhino Nutch Log4J JHotDraw
Conflicting Operations

Identified by
All Approaches

73 71 49 31 45 44 32 21

Total Operations
Identified by

All Approaches
201 232 228 271 172 78 106 154

Conflicting/Total
Operations Identified

by All Approaches
0.363 0.306 0.215 0.114 0.262 0.564 0.302 0.136

Extract Class/
Total Operations

0.348 0.336 0.355 0.303 0.337 0.308 0.321 0.409

Move Method/
Total Operations

0.652 0.664 0.645 0.697 0.663 0.692 0.679 0.591

TABLE A.11: Statistics for All Approaches per Project

Appendix A. Appendix 55

FIGURE A.3: Contour Graph of Conflicting/Total Operations Identified Between
Two Approaches for All Projects

Appendix A. Appendix 56

FIGURE A.4: Surface Graph of Conflicting/Total Operations Identified Between Two
Approaches for All Projects

57

References

[1] A. Hamid, M. Ilyas, M. Hummayun, and A. Nawaz, “A comparative study on code smell

detection tools”, International Journal of Advanced Science and Technology, vol. 60, pp. 25–32,

2013.

[2] M. Fowler and K. Beck, Refactoring: Improving the design of existing code. Addison-Wesley

Professional, 1999.

[3] E. Van Emden and L. Moonen, “Java quality assurance by detecting code smells”, in Reverse

Engineering, 2002. Proceedings. Ninth Working Conference on, IEEE, 2002, pp. 97–106.

[4] M. Lanza and R. Marinescu, Object-oriented metrics in practice: Using software metrics to char-

acterize, evaluate, and improve the design of object-oriented systems. Springer Science & Business

Media, 2007.

[5] K. Nongpong, “Feature envy factor: A metric for automatic feature envy detection”, in

Knowledge and Smart Technology (KST), 2015 7th International Conference on, IEEE, 2015, pp. 7–

12.

[6] T. Mens and T. Tourwé, “A survey of software refactoring”, IEEE Transactions on software

engineering, vol. 30, no. 2, pp. 126–139, 2004.

[7] H. Li, C. Reinke, and S. Thompson, “Tool support for refactoring functional programs”, in

Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, ACM, 2003, pp. 27–38.

[8] S. Thompson, “Refactoring functional programs”, in International School on Advanced Func-

tional Programming, Springer, 2004, pp. 331–357.

REFERENCES 58

[9] W. F. Opdyke, “Refactoring object-oriented frameworks”, PhD thesis, University of Illinois

at Urbana-Champaign, 1992.

[10] R. E. Johnson and B. Foote, “Designing reusable classes”, Journal of object-oriented program-

ming, vol. 1, no. 2, pp. 22–35, 1988.

[11] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus, “Does code decay? assessing

the evidence from change management data”, IEEE Transactions on Software Engineering, vol.

27, no. 1, pp. 1–12, 2001.

[12] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Automating extract class refactoring: An

improved method and its evaluation”, Empirical Software Engineering, vol. 19, no. 6, pp. 1617–

1664, 2014.

[13] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, “Methodbook: Rec-

ommending move method refactorings via relational topic models”, IEEE Transactions on

Software Engineering, vol. 40, no. 7, pp. 671–694, 2014.

[14] D. Silva, R. Terra, and M. T. Valente, “Recommending automated extract method refactor-

ings”, in Proceedings of the 22nd International Conference on Program Comprehension, ACM,

2014, pp. 146–156.

[15] E. Murphy-Hill and A. P. Black, “Refactoring tools: Fitness for purpose”, IEEE software, vol.

25, no. 5, 2008.

[16] J. Benn, C. Constantinides, H. K. Padda, K. H. Pedersen, F. Rioux, and X. Ye, “Reasoning

on software quality improvement with aspect-oriented refactoring: A case study”, in Pro-

ceedings of the IASTED International Conference on Software Engineering and Applications, 2005,

pp. 309–315.

[17] B. Geppert and F Rossler, “Effects of refactoring legacy protocol implementations: A case

study”, in Software Metrics, 2004. Proceedings. 10th International Symposium on, IEEE, 2004,

pp. 14–25.

REFERENCES 59

[18] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “A case study in refactoring a legacy com-

ponent for reuse in a product line”, in Software Maintenance, 2005. ICSM’05. Proceedings of the

21st IEEE International Conference on, IEEE, 2005, pp. 369–378.

[19] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does refactoring improve reusability?”,

in International Conference on Software Reuse, Springer, 2006, pp. 287–297.

[20] J. Ratzinger, M. Fischer, and H. Gall, Improving evolvability through refactoring, 4. ACM, 2005,

vol. 30.

[21] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring challenges and

benefits”, in Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations

of Software Engineering, ACM, 2012, p. 50.

[22] L. Tokuda and D. Batory, “Evolving object-oriented designs with refactorings”, in Automated

Software Engineering, 1999. 14th IEEE International Conference on., IEEE, 1999, pp. 174–181.

[23] S. Hayashi, M. Saeki, and M. Kurihara, “Supporting refactoring activities using histories of

program modification”, IEICE transactions on information and systems, vol. 89, no. 4, pp. 1403–

1412, 2006.

[24] C. Parnin and C. Görg, “Lightweight visualizations for inspecting code smells”, in Proceed-

ings of the 2006 ACM symposium on Software visualization, ACM, 2006, pp. 171–172.

[25] M. Pizka et al., “Straightening spaghetti-code with refactoring?”, in Software Engineering Re-

search and Practice, 2004, pp. 846–852.

[26] F. Bourquin and R. K. Keller, “High-impact refactoring based on architecture violations”, in

Software Maintenance and Reengineering, 2007. CSMR’07. 11th European Conference on, IEEE,

2007, pp. 149–158.

[27] E. Murphy-Hill and A. P. Black, “Breaking the barriers to successful refactoring: Observa-

tions and tools for extract method”, in Proceedings of the 30th international conference on Soft-

ware engineering, ACM, 2008, pp. 421–430.

REFERENCES 60

[28] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A review-based compara-

tive study of bad smell detection tools”, in Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering, ACM, 2016, p. 18.

[29] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design flaws”, in Soft-

ware Maintenance, 2004. Proceedings. 20th IEEE International Conference on, IEEE, 2004, pp. 350–

359.

[30] Y. Kataoka, D. Notkin, M. D. Ernst, and W. G. Griswold, “Automated support for program

refactoring using invariants”, in Proceedings of the IEEE International Conference on Software

Maintenance (ICSM’01), IEEE Computer Society, 2001, p. 736.

[31] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring suggestions based on historical

volatility”, in Software Maintenance and Reengineering (CSMR), 2011 15th European Conference

on, IEEE, 2011, pp. 25–34.

[32] S. A. Vidal, C. Marcos, and J. A. Díaz-Pace, “An approach to prioritize code smells for refac-

toring”, Automated Software Engineering, vol. 23, no. 3, pp. 501–532, 2016.

[33] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method refactoring opportu-

nities for the decomposition of methods”, Journal of Systems and Software, vol. 84, no. 10,

pp. 1757–1782, 2011.

[34] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection of bad smells in code: An

experimental assessment.”, Journal of Object Technology, vol. 11, no. 2, pp. 5–1, 2012.

[35] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodorant: Identification and

application of extract class refactorings”, in Proceedings of the 33rd International Conference on

Software Engineering, ACM, 2011, pp. 1037–1039.

[36] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander, “Decomposing object-oriented

class modules using an agglomerative clustering technique”, in Software Maintenance, 2009.

ICSM 2009. IEEE International Conference on, IEEE, 2009, pp. 93–101.

REFERENCES 61

[37] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou, “Jdeodorant: Identification and removal

of feature envy bad smells”, in Software Maintenance, 2007. ICSM 2007. IEEE International

Conference on, IEEE, 2007, pp. 519–520.

[38] J. A. M. Santos and M. G. Mendonça, “Identifying strategies on god class detection in two

controlled experiments.”, in SEKE, 2014, pp. 244–249.

[39] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino, “Comparing and experimenting

machine learning techniques for code smell detection”, Empirical Software Engineering, vol.

21, no. 3, pp. 1143–1191, 2016.

[40] J. A. M. Santos, M. G. de Mendonça, C. P. Dos Santos, and R. L. Novais, “The problem

of conceptualization in god class detection: Agreement, strategies and decision drivers”,

Journal of Software Engineering Research and Development, vol. 2, no. 1, p. 11, 2014.

[41] A.-R. Han, D.-H. Bae, and S. Cha, “An efficient approach to identify multiple and inde-

pendent move method refactoring candidates”, Information and Software Technology, vol. 59,

pp. 53–66, 2015.

[42] D Rapu, S. Ducasse, T. Gîrba, and R. Marinescu, “Using history information to improve

design flaws detection”, in Software Maintenance and Reengineering, 2004. CSMR 2004. Pro-

ceedings. Eighth European Conference on, IEEE, 2004, pp. 223–232.

[43] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and A. De Lucia, “Mining

version histories for detecting code smells”, IEEE Transactions on Software Engineering, vol.

41, no. 5, pp. 462–489, 2015.

[44] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Recommending refactoring operations

in large software systems”, in Recommendation Systems in Software Engineering, Springer,

2014, pp. 387–419.

REFERENCES 62

[45] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, “A comparative study of man-

ual and automated refactorings”, in European Conference on Object-Oriented Programming,

Springer, 2013, pp. 552–576.

[46] E. Murphy-Hill, “Programmer friendly refactoring tools”, 2009.

[47] M. V. Mäntylä and C. Lassenius, “Drivers for software refactoring decisions”, in Proceedings

of the 2006 ACM/IEEE international symposium on Empirical software engineering, ACM, 2006,

pp. 297–306.

[48] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and R. E. Johnson, “Use, disuse,

and misuse of automated refactorings”, in Proceedings of the 34th International Conference on

Software Engineering, IEEE Press, 2012, pp. 233–243.

[49] D. Campbell and M. Miller, “Designing refactoring tools for developers”, in Proceedings of

the 2nd Workshop on Refactoring Tools, ACM, 2008, p. 9.

[50] G. H. Pinto and F. Kamei, “What programmers say about refactoring tools?: An empirical

investigation of stack overflow”, in Proceedings of the 2013 ACM workshop on Workshop on

refactoring tools, ACM, 2013, pp. 33–36.

[51] M. Verbaere, R. Ettinger, and O. De Moor, “Jungl: A scripting language for refactoring”, in

Proceedings of the 28th international conference on Software engineering, ACM, 2006, pp. 172–181.

[52] X-develop. [Online]. Available: http://freecode.com/projects/xdevelop.

[53] D. E. Inc., Coderush. [Online]. Available: https://www.devexpress.com/products/

coderush/refactor_pro.xml.

[54] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality assess-

ment”, IEEE Transactions on software engineering, vol. 28, no. 1, pp. 4–17, 2002.

[55] P. Caserta and O. Zendra, “Visualization of the static aspects of software: A survey”, IEEE

transactions on visualization and computer graphics, vol. 17, no. 7, pp. 913–933, 2011.

http://freecode.com/projects/xdevelop
https://www.devexpress.com/products/coderush/refactor_pro.xml
https://www.devexpress.com/products/coderush/refactor_pro.xml

REFERENCES 63

[56] R. Wettel and M. Lanza, “Visualizing software systems as cities”, in Visualizing Software for

Understanding and Analysis, 2007. VISSOFT 2007. 4th IEEE International Workshop on, IEEE,

2007, pp. 92–99.

[57] Codecity. [Online]. Available: https://marketplace.eclipse.org/content/codecity.

[58] Leonardobsjr, Leonardobsjr/metrics3, 2015. [Online]. Available: https://github.com/

leonardobsjr/metrics3.

[59] Hakimakitak, Hakimakitak/jdeodorantrefactoringviews, 2017. [Online]. Available: https://

github.com/Hakimakitak/JDeodorantRefactoringViews.

[60] Xerces java parser readme. [Online]. Available: http://xml.apache.org/xerces-j/

index.html.

[61] Jfreechart. [Online]. Available: http://www.jfree.org/jfreechart/.

[62] C. MacNeill and S. Bodewig, Welcome. [Online]. Available: http://ant.apache.org/.

[63] Rhino. [Online]. Available: https://developer.mozilla.org/en-US/docs/Mozilla/

Projects/Rhino.

[64] .

[65] Apache log4j 2. [Online]. Available: https://logging.apache.org/log4j/2.x/.

[66] dev@Nutch.apache.org, Highly extensible, highly scalable web crawler. [Online]. Available: http:

//nutch.apache.org/.

[67] Jhotdraw as open-source project. [Online]. Available: http://www.jhotdraw.org/.

[68] M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. Ó Cinnéide, “Recommendation

system for software refactoring using innovization and interactive dynamic optimization”,

in Proceedings of the 29th ACM/IEEE international conference on Automated software engineering,

ACM, 2014, pp. 331–336.

https://marketplace.eclipse.org/content/codecity
https://github.com/leonardobsjr/metrics3
https://github.com/leonardobsjr/metrics3
https://github.com/Hakimakitak/JDeodorantRefactoringViews
https://github.com/Hakimakitak/JDeodorantRefactoringViews
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces-j/index.html
http://www.jfree.org/jfreechart/
http://ant.apache.org/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://logging.apache.org/log4j/2.x/
http://nutch.apache.org/
http://nutch.apache.org/
http://www.jhotdraw.org/

REFERENCES 64

[69] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, “Multi-criteria code refactoring

using search-based software engineering: An industrial case study”, ACM Transactions on

Software Engineering and Methodology (TOSEM), vol. 25, no. 3, p. 23, 2016.

[70] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A. Ouni, “Design defects

detection and correction by example”, in Program Comprehension (ICPC), 2011 IEEE 19th In-

ternational Conference on, IEEE, 2011, pp. 81–90.

[71] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring for software maintenance”, Jour-

nal of Systems and Software, vol. 81, no. 4, pp. 502–516, 2008.

[72] M. Harman and L. Tratt, “Pareto optimal search based refactoring at the design level”, in

Proceedings of the 9th annual conference on Genetic and evolutionary computation, ACM, 2007,

pp. 1106–1113.

[73] A. Dix, Human-computer interaction. Springer, 2009.

[74] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a delaunay triangulation”,

International Journal of Computer & Information Sciences, vol. 9, no. 3, pp. 219–242, 1980.

