How Mixed Reality Will Impact Product Design

Wyatt Coe
Rochester Institute of Technology, wcc9486@rit.edu

Follow this and additional works at: https://scholarworks.rit.edu/frameless

Part of the Environmental Design Commons, Industrial and Product Design Commons, Interactive Arts Commons, Interdisciplinary Arts and Media Commons, and the Science and Technology Studies Commons

Recommended Citation

This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Frameless by an authorized editor of RIT Scholar Works. For more information, please contact ritscholarworks@rit.edu.
How Mixed Reality Will Impact Product Design

Cover Page Footnote
Research for this project was completed with the help of RIT Magic Center director David Long, Building and Operations Manager Brenda Schlageter, and associate faculty member Mark Reisch. The project employed mixed reality hardware from HTC and Microsoft as well as VR creation software Gravity Sketch.

This article is available in Frameless: https://scholarworks.rit.edu/frameless/vol3/iss1/4
Abstract: Mixed reality technology promises to merge our digital and physical worlds, unlocking new realms of experience and design. Designers must consider how this will impact future products and experiences now, to identify the most desirable solutions and applications of this technology. The capability of software to simulate reality could fundamentally shift the way we produce and experience physical and digital products, allowing for simplified physical products that support digital experiences.

Keywords: industrial design, design, product design, augmented reality, mixed reality, virtual reality, futurism, concept
Until recently, mixed reality has primarily been used for entertainment. But it has tremendous potential as a design tool and as the next paradigm of consumer-product interaction. Mixed reality 3D creation software allows for rapid 3D design at true scale, which is impossible to achieve with conventional 2D CAD programs. This can allow an industrial designer to test and prototype physical products faster.

I first read about mixed reality being used by automotive teams at Ford and Audi. Designers can save time by testing quick digital models at scale, instead of laboring over full-size clay sculptures.

Naturally, I wanted to test this new tech for myself, but I also had a realization. If everyone could see this digital car design, does the physical one need to change? Better yet, could I drastically simplify the physical design of the vehicle and allow software to handle the rest? This eventuality fascinated me far more than the initial goal. Augmented reality headsets may be clunky now, but so were car phones. It’s my job to think ahead.

II. DESIGNING FOR MIXED REALITY

Mixed reality can digitally replace/simulate any 3-dimensional form or shape in real-time. This means we can separate the appearance of a physical product from its function, drastically simplifying it to make it more functional and cheaper to produce. The physical product can be designed to support a mixed reality experience which is superimposed.

In a mixed reality context, the purpose of a physical product is to provide a substrate for the digital layer that is cast over it.

A. Multifunctional Hardware – Layered Digital Interactions

If you sit in most cars right now, each function requires a physical control and feedback mechanism, be this the HVAC or headlights. While convenient, this demands a huge amount of design, manufacturing, and
How Mixed Reality Will Impact Product Design

materials so that your favorite radio channel
can have its own button... And people only
ever want more features, which results in
increasingly complex products. This is the
classical industrial design model.

Tesla catapulted car interiors into the mobile
age by redistributing all functions into soft-
ware on a tablet. This is an efficient but inade-
quate replacement for the physical controls
we’re used to, especially while driving.

With mixed reality, you get the best of both
worlds. For example, you could design a
physical interior with minimal inputs, say
two buttons and a dial. A software inter-
face between your mixed reality system and
the vehicle determines the function of these
inputs. Swiping a hand over the console
changes modes and with it the response to
physical input. Feedback and visual changes
in overlaid UI graphics communicate the
change in function. This solution has all the
efficiencies of customizable software while
remaining tangible!

B. Customizable Visual Product
Experience

The appearance of a product is no longer
determined by its physical shape and mate-
rials, but by a software layer. The exterior of
a car can look however you want, it doesn’t
have to obey the laws of physics and look
good, it can just look good. And the cost of
creating this masterpiece is merely the time
and effort of producing this digital asset.
You don’t have to produce an actual Bugatti,
you just need the skin of a Bugatti to wrap
around your current vehicle or a blank slate.
Suddenly a Bugatti is much more attainable.
The physical vehicle can communicate with
mixed reality hardware to convincingly align
with a digital avatar.

There is clearly a downside to not owning or
driving an actual Bugatti, but the ownership
pool for such a vehicle is so small and the
resources it consumes so large that it’s worth
asking do we really need them? Is the idea
of one, the semblance of one enough? Is this
too great a sacrifice for our future? We could
make some impossibly cool virtual Bugattis
to replace them...

C. The Evolution of Wearables -
Making the Virtual Tangible

How will we interact with the 3D digital
world? Ideally, it should mimic the way we
interact with our physical one. There are two
present solutions.

The first is a physical controller, which pro-
vides satisfying tactile feedback and can use
sensors to track inputs more closely. The
downside is the user is forced to hold this
controller, which means our hands are full.
For everyday life, we need our hands free.

The second solution is gesture input – using
cameras to track the motion of our hands
and interpret an input. This is a much more
natural way to interact but loses the haptic
feedback to our inputs.

An ideal solution would be a wearable con-
troller that doesn’t impede regular hand use
but provides a response when interacting
with mixed reality interfaces/objects.

III. POTENTIAL IMPACT

A. Increased Personalization

The physical product industry works tire-
lessly to create choice and stylistically
appealing products at the expense of tremen-
dous resources, to create artificial demand.
This is excessive and profligate. Where
personalization does make sense is in software. Software is easily altered, which is why so many modern products rely on it for personalization. Smartphones are a prime example, with relatively little hardware flexibility and infinite software customization.

Mixed reality applies this flexibility to our 3D world. We can personalize our physical products with software, changing their appearance or function via a connected app and firmware.

From a consumer perspective, this is tremendously appealing; adding new value to basic products, even ones you already own. Mixed reality could help break the needless cycle of physical consumerism without sacrificing the joy of having something new.

An additional benefit is a capacity for users to bring their personalized experiences with them. If the personalized layout of your vehicle interior is digital, your MR system can apply that same digital layout to a completely different vehicle, so long as it’s compatible.

B. SUSTAINABILITY AND THE END OF PLANNED OBSOLESCENCE

Simpler physical products are less expensive, last longer, and consume fewer resources. At a time when human consumption threatens the stability of our world, we must seek alternative methods of satisfying our needs. Planned obsolescence is the practice of designing and manufacturing products to last a limited amount of time, thus encouraging consumers to repeatedly purchase new products. Because mixed reality can superficially alter a product’s appearance and function, there is no need to build things that break or superficially redesign a product to encourage more sales.

C. Better Design

Mixed reality’s ability to simulate reality can be used by designers to validate their ideas in a reliable and efficient manner. An architect can determine very quickly if a floor plan will fit a property if they can physically see where it will sit in real life. Better visualization equals better realization.

D. No More Screens

Mixed reality renders 2D screen-based interfaces obsolete. Think of the number of digital screens being produced and used that will suddenly be archaic. The quantity of resources that could be saved without every device requiring a physical display is colossal!

Mixed reality will finally allow us to stand up and operate in real space, no longer tethered to a rectangular portal. Apple has said time and again that technology is best when it is invisible. Mixed reality is omnipresent, there when it’s needed, invisible when it’s not.

E. Better Use of Physical Products and Spaces

Because of MR’s capability to alter our perception, it could be used to convert the functionality of objects and spaces for different users. A room’s use is determined by the people and things within it; being able to instantly transform a space for a different group necessitates fewer rooms. The same or greater productivity can be achieved with less proprietary equipment.

CONCLUSION

We humans can produce almost anything we can think of, but our incessant cycle of consumerism doesn’t include or respect the impact it has on our environment. Recycling and
sustainable production practices do help, but as digital capabilities increase, it’s worth considering how we can leverage them to ease our need for physical goods. Mixed reality offers us a chance to redistribute the way we produce and consume while improving our quality of life. We must think about this now before the technology is ready so we can develop it towards the future we need.