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Abstract

Elliptic curve cryptography (ECC) is an ideal choice for low-resource applications because
it provides the same level of security with smaller key sizes than other existing public key
encryption schemes. For low-resource applications, designing efficient functional units for
elliptic curve computations over binary fields results in an effective platform for an embed-
ded co-processor. This thesis investigates co-processor designs for area-constrained devices.
Particularly, we discuss an implementation utilizing state of the art binary Edwards curve
equations over mixed point addition and doubling. The binary Edwards curve offers the secu-
rity advantage that it is complete and is, therefore, immune to the exceptional points attack.
In conjunction with Montgomery ladder, such a curve is naturally immune to most types of
simple power and timing attacks. The recently presented formulas for mixed point addition in
K. Kim, C. Lee, and C. Negre [14] were found to be invalid, but were corrected such that the
speed and register usage were maintained. We utilize corrected mixed point addition and dou-
bling formulas to achieve a secure, but still fast implementation of a point multiplication on
binary Edwards curves. Our synthesis results over NIST recommended fields for ECC indicate
that the proposed co-processor requires about 50% fewer clock cycles for point multiplication
and occupies a similar silicon area when compared to the most recent in literature.



Contents

Contents i

List of Figures iii

List of Tables v

Nomenclature v

1 Introduction 7

2 Elliptic Curve Cryptography 11
2.1 Elliptic Curve Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Binary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Polynomial Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Gaussian Normal Basis . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Binary Field Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Finite-Field Addition . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Finite-Field Multiplication . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Finite-Field Squaring . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Finite-Field Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 Finite-Field Half-Trace . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Elliptic Curve Diffie-Hellman . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Elliptic Curve Digital Signature Algorithm . . . . . . . . . . . . . . 22

3 Edwards Curve 23
3.1 Binary Edwards Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Edwards Addition Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



ii Contents

3.2.1 Montgomery Ladder . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Affine Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Projective Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Differential Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.4.1 Retrieving x and y from w-Coordinates . . . . . . . . . . . 31
3.2.5 Mixed Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.5.1 Mixed w-Coordinate Differential Addition and Doubling with
the Co-Z Trick . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Resistance Against Side-Channel Attacks . . . . . . . . . . . . . . . . . . . 33

4 Lightweight Implementation of ECC 37
4.1 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Motivation: Embedded Crypto Coprocessor . . . . . . . . . . . . . . 37
4.1.2 NIST Binary Field Standards . . . . . . . . . . . . . . . . . . . . . . 38
4.1.3 GNB or Polynomial Basis . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4 Curve Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Field Arithmetic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Comparison and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Conclusion 55

References 57

A Implementation Code Listing 63
A.1 Sage Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



List of Figures

2.1 Point addition and doubling geometric example. . . . . . . . . . . . . . . . . 13
2.2 Elliptic curve cryptography computational pyramid. . . . . . . . . . . . . . . 15

3.1 Edwards curve geometric representation. . . . . . . . . . . . . . . . . . . . . 24

4.1 Security coprocessor design. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Polynomial basis bit-serial multiplier [1]. . . . . . . . . . . . . . . . . . . . 40
4.3 Gaussian normal basis bit-serial PIPO multiplier [27] . . . . . . . . . . . . . 42
4.4 Proposed field arithmetic unit. . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Proposed register file for GNB. . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 GNB top-level control unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.7 Main program listing for point multiplication using binary Edwards curves. . 49
4.8 Itoh-Tsujii [13] inversion (F2283) and half-trace subroutines. . . . . . . . . . . 50





List of Tables

2.1 Itoh-Tsujii inversion for GF(2283) . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Cost of point operations on binary generic curves (BGCs) [17], binary Ed-
wards curves (BECs) [4], binary Edwards curves revisited [14], and general-
ized Hessian curves (GHC) [9] over GF(2m). . . . . . . . . . . . . . . . . . 24

3.2 Comparison of differential point addition schemes for BEC with d1 = d2. . . 34

4.1 NIST recommended curves and security [34]. . . . . . . . . . . . . . . . . . 39
4.2 NIST recommended curve binary field parameters [34]. . . . . . . . . . . . . 39
4.3 Comparison among bit-level multipliers for type T GNB over GF(2m) with

2m−1≤CN ≤ T m−T +1. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4 Point addition and doubling register usage. . . . . . . . . . . . . . . . . . . . 48
4.5 Necessary subroutines for point multiplication. . . . . . . . . . . . . . . . . 50
4.6 Comparison of different point bit-level multiplications targeted for ASIC. . . 52





Chapter 1

Introduction

An extremely small security coprocessor is necessary for applications such as the Internet of
Things or smart cards to ensure that only valid users have access to the device. Today’s com-
puter market is dominated by embedded devices. These embedded devices are branching out
and linking with other electronics wirelessly. Since the functionality and connectivity of these
embedded system’s consume most of the system’s area and power, the security coprocessor
must be tiny, fast, and power-efficient, but still provide the security required for the device.

Public key encryption uses a public and a private key to encrypt information. The public
key is known to the general public, while the private key is stored securely. Two popular
public key encryption schemes are Elliptic Curve Cryptography (ECC) and Rivest, Shamir,
Adleman (RSA) encryption. ECC relies on point multiplications on an elliptic curve and
RSA encryption relies on modular exponentiation of extremely large numbers. The National
Institute of Standards and Technology (NIST) has recommended key sizes for ECC and RSA
based on the equivalent security in private encryption schemes.

Private key encryption schemes, such Advanced Encryption Standard or Data Encryption
Standard, are not a suitable solution to this problem because the key is stored on the device and
the security implementation requires much more hardware per bit than public key encryption
schemes.

From NIST’s recommendation for key sizes, ECC uses a fraction of the amount of bits
that RSA uses. One reason for this is that excellent factoring algorithms, such as the Index
Calculus method exist for efficiently factoring extremely large primes to break RSA. There
are more computations for point arithmetic on an elliptic curve, but the significantly fewer bits
required for ECC makes it a prime choice for extremely constrained devices. ECC provides
key exchange ECDH, authentication ECDSA, and encryption ECIES protocols.

An elliptic curve is composed of all points that satisfy an elliptic curve equation as well
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as a point at infinity. This forms an Abelian group, E, over addition, where the point at infin-
ity represents the zero element or identity of the group. The most basic operations over this
Abelian group are point addition and point doubling. Using a double-and-add method, a point
multiplication, Q = kP, where k ∈ Z and Q,P ∈ E, can be computed quickly and efficiently.
Protocols implemented over ECC rely on the difficulty to solve the elliptic curve discrete log-
arithm problem (ECDLP), that given Q and P in Q = kP, it is infeasible to solve for k [11]. For
the computations of ECC, several parameters should be considered including representation
of field elements and underlying curve, choosing point addition and doubling method, select-
ing coordinate systems such as affine, projective, Jacobian, and mixed, and finally arithmetic
(addition, inversion, multiplication, squaring) on finite field. Field multiplication determines
the efficiency of point multiplication on elliptic curves as its computation is complex and point
multiplication requires many field multiplications. IEEE and NIST recommended the usage
of both binary and prime fields for the computation of ECC [12, 34]. However, in hardware
implementations and more specifically for area-constrained applications, binary fields outper-
form prime fields, as shown in [7]. Therefore, a lot of research in the literature has been
focused on investigating the efficiency of computing point multiplication on elliptic curves
over binary fields. For instance, one can refer to [28], [32], [38] and [15] to name a few,
covering a wide variety of cases including different curve forms, e.g., generic and Edwards,
and different coordinate systems, e.g., affine, projective, and mixed. The formulas for point
addition and point doubling can be determined by using geometric properties. In [4], binary
Edwards curves are presented for the first time for ECC and their low-resource implementa-
tions appeared in [15]. It has been shown that a binary Edwards curves (BEC) is isomorphic
to a general elliptic curve if the singularities are resolved [4]. Based on the implementations
provided in [15], it has been observed that their implementations are not as efficient as other
standardized curves. Recently, in [14], the authors revisited the original equations for point
addition and doubling and provided competitive formulas. We observed that the revisited
formulas for mixed point addition in [14] are invalid. After modifying their formulas, we em-
ployed them for the computation of point multiplication using a mixed coordinate system and
proposed an efficient crypto-processor for low-resource devices. The main contributions of
this thesis can be summarized as follows:

• We propose an efficient hardware architecture for point multiplication on binary Ed-
wards curves. We employed Gaussian normal basis (GNB) for representing field ele-
ments and curves as the computation of squaring, inversion, and trace function can be
done very efficiently over GNB in hardware.
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• We modified and corrected the w-coordinates differential point addition formulas pre-
sented in [14]. We provide explicit formulas over binary Edwards curves that maintain
the speed and register usage provided in [14] and employed the formulas in steps on
the Montgomery Ladder [22]. This is the first time this double-and-add algorithm has
appeared in literature. This implementation was competitive with many of the area-
efficient elliptic curve crypto-processors found in literature, but adds the additional se-
curity benefit of completeness.

• We implemented and synthesized our proposed algorithms and architectures for the
computation of point multiplication on binary Edwards curves and compared our re-
sults to the leading ones available in the literature.

This thesis is organized as follows. In Chapter 2, preliminaries necessary for elliptic curve
cryptography are reviewed. In Chapter 3, the binary Edwards curve is introduced and proper
mixed coordinate addition formulas are presented. Chapter 4 details the area-efficient architec-
ture used for this ECC co-processor and compares this work to other ECC crypto-processors
in terms of area, latency, computation time, and innate security. Chapter 5 concludes the thesis
with takeaways and the future of area efficient implementations of point multiplication.





Chapter 2

Elliptic Curve Cryptography

In this chapter, we review elliptic curve cryptography principles. Cryptography is about trans-
mitting messages between parties, in the threat of malicious third-parties. Public-key cryp-
tography relies on the scenario where two parties relay information over an insecure public
channel. There are public keys that are shared with the world and private keys that are known
only to the party. Typically complex mathematical problems are used as a basis for public-key
cryptography. ECC is one such problem based on the elliptic curve discrete log problem.

2.1 Elliptic Curve Theory

The most basic elliptic curves follow the formula in Equation 2.1. This is form is called
the short Weierstrass form of elliptic curves. The curve is defined as the set of points, (x,y),
that satisfy Equation 2.1 along with a special point O called the point at infinity. Elliptic
curve cryptosystems follow a point addition operation that forms the set of all points into
an abelian group over addition. The addition changes depending on the operands for four
different addition cases.

y2 = x3 +ax+b (2.1)

The first case deals with two points P(x1, y1) and Q(x2, y2) that have different x values.
In this case, point addition is defined as the line that goes through P and Q. Since the curve
has degree 3, the line will intersect the curve at a third point, -R (x3, −y3). The solution is R,
which flips the coordinate of the intersection of P and Q across the x-axis. The point addition
is finished by inverting the y coordinate. Using the slope between the two points and the
original equation for the elliptic curve,
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λ =
y2− y1

x2− x1

x3 = λ
2− x1− x2

y3 = λ (x1− x3)− y1

The second case deals with two points that have the same x coordinate, but opposite y

coordinates, so P(x,y) and -P(x,−y). The line through these two points is a vertical line that
does not intersect at a third point, so the addition of these two points results in the point at
infinity, O.

The third case deals with the addition between the same point on a curve, P(x1, y1). The
line in this case is the tangent to at the x coordinate. This will intersect at only one other point
since the degree is 3. Similar to the first case, the point where this tangent line intersects is
-2P(x2, −y2), so the sum of the double point is 2P(x2, y2). As The same formula to find the
points can be used after finding the slope. Using the derivative to find the slope,

λ =
3x2

1 +a
2y1

x2 = λ
2− x1− x2

y2 = λ (x1− x3)− y1

The final case deals with any addition with the point at infinity. The point at infinity is the
identity for point addition, so anything added to the point at infinity is itself.

The two major point additions are point addition and point doubling. Fig. 2.1 demonstrates
point addition and doubling.

These operations are used to perform point doubling and point addition for point multipli-
cation. Multiplication uses a double-and-add formula to efficiently reach very high multiples
of a point.

kP = P+P+ ...+P

2.2 Binary Fields

These geometric examples work nicely since there are an infinite amount of points on the
curve. However, cryptographic systems operate in binary Galois fields, GF(2m), or large prime
Galois Fields, GF(p). These fields have a finite number of elements, which is friendlier for
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Figure 2.1: Point addition and doubling geometric example.

cryptographic applications. The equations used above can be applied to elliptic curves defined
over Galois fields, even though the representation changes. The following equations show the
new formulas for lambda. It is exactly the same, but the addition, multiplication, and inversion
for the Galois field representation changes.

x3 = λ
2− x1− x2

y3 = λ (x1− x3)− y1

λ =

{
(y2− y1)(x2− x1)

−1 if P ̸= Q

(3x2
1 +a)(2y1)

−1 if P = Q

Formally, a Galois field is defined as a field with a finite set of field elements that operate
under the the two operations of addition and multiplication. Addition and multiplication be-
tween any two field elements produce an element in the field. We define a set G and a binary
operation • to form a group (G,•) if they satisfy the following properties:

1. The operation • is closed (i.e., a•b ∈ G for all a,b ∈ G).

2. The operation • is associative (i.e., a• (b• c) = (a•b)• c for all a,b,c ∈ G).

3. The operation • is commutative (i.e., a•b = b•a for all a,b ∈G). In this case set (G,•)
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called Abelian.

4. There exists an identity element i ∈ G such that i•a = a• i = a for all a ∈ G.

5. For every a ∈ G, there exists an inverse element b ∈ G such that a•b = i.

We define the group (G,•) with the group operation as multiplication× to be the multiplicative
group. It is easy to see that the identity element of the multiplicative group is 1 an inverse
element is denoted as a−1 ∈ G. Similarly, the group with the group operation as addition +

is the additive group. The identity element of the additive group is 0 and an inverse element
is denoted as −a ∈ G. The order of a group is the total number of all elements in the group.
For groups of a finite size, the order of an element is the smallest positive integer, n, for which
an = i. We define a group to be cyclic if all members of the group can be generated by applying
group operations repeatedly to an element a. For this group, a is a generator of the group since
all elements can be generated from a as a starting element.

A field F is a set of elements that operate under the operators addition and multiplication.
A field demonstrates the following properties:

1. F is an abelian group with respect to addition.

2. F∗, the field without the zero element, is an abelian group with respect to multiplication.

3. The multiplication operation is distributive (i.e., a× (b+ c) = (a× b) + (a× c) and
(b+ c)×a = (b×a)+(c×a) for all a,b,c ∈ F. ).

We denote a Galois field, or finite field, with q elements as Fq or GF(q). If q is prime or q is a
power of a prime, then the order of the group is the total number of elements in Fq. Let q = pm

for m ≥ 1. A finite field is called a prime field if m = 1. A finite field is called an extension
field if m > 1.

Fig. 2.2 represents the pyramid from which the ECC protocols are built. The Galois field
operations are at the foundation.

Area-efficient ECC implementations require a highly efficient Galois field functional unit.
Binary fields, GF(2m), are efficient primarily because addition is a simple XOR between bits
of the two inputs and there is less logical expressions for operations. The main operations
necessary for ECC in binary fields are addition, multiplication, squaring, and inversion.

The useful property from converting to Galois fields is that it creates a cyclic abelian group
over addition. For an elliptic curve defined over GF(2m), for instance, there are approximately
2m points on the curve based on the Hasse bounds. A generator of the group cycles through all
2m points when continuously adding itself to the point at infinity. The cycle is also seemingly
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Figure 2.2: Elliptic curve cryptography computational pyramid.

random, which introduces the idea that for a generator point P and random integer k, and Q =

kP = P+P+ · · ·+P, it is infeasible to determine k without testing all possible combinations
of k. For an extremely large underlying Galois field, it is infeasible to determine k. This is
called the elliptic curve discrete log problem. The security of elliptic curve protocols are based
on this property.

2.2.1 Polynomial Basis

One possible basis for binary fields is the polynomial basis. Consider an element x to be
a root of the primitive polynomial of degree m. We define the polynomial basis as the set{

1,x,x2, · · · ,xm−1}. An element A is defined as the linear combination of the elements in the
polynomial basis, A = ∑

m−1
i=0 aixi , where ai ∈ {0,1}. Thus, each part of the linear combination

is defined over GF(2). Using bits as digits in today’s language of computers, we require a
single bit for each ai. A vector of m bits represents an entire element in GF(2m). The identity
element of addition is 0 and the identity element of multiplication is 0.

2.2.2 Gaussian Normal Basis

Another possible basis for binary fields is the normal basis, for which Gaussian Normal Basis
(GNB) is a special form. Similar to polynomial basis, there is a normal basis for all binary
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fields. The normal basis is defined over a normal element β ∈GF(2m), where β is a root of an
irreducible polynomial of degree m. The set N = {β ,β 2, · · · ,β 2m−1} is a basis for GF(2m) and
each of its elements are linearly independent. Similar to polynomial basis, we represent the
basis with linearly independent elements in GF(2m). Thus, an element A is defined in normal
basis as A = ∑

m−1
i=0 aiβ

2i
, where ai ∈ GF(2). The identity element of the normal basis is again

0, but the identity element of multiplication is 1 = β +β 2 +β 22
+ · · ·+β 2m−1

.

Definition 1. [2, 20] Let m and T be positive integers such that p = mT + 1 be a prime
number and gcd

(mT
k , m

)
= 1, where k is the multiplication order of 2 modulo p. Let α be

a primitive mT + 1-th root of unity in F2T m . Then, for any primitive T -th root of unity τ in
Zp, β = ∑

T−1
i=0 ατ i

generates a normal basis of F2m over F2 given by N = {β ,β 2, · · · ,β 2m−1},
which is called a Gaussian normal basis of type T .

GNB is a special case of a normal basis. Specifically, GNB exists whenever m is not
divisible by 8. This is the case for the NIST standardized binary fields [34], which is explained
in Section 4.1.2. Moreover, all standardized binary fields are odd, so that ensures that the GNB
type is even. Notably, if the binary field is GNB type 1 or 2, then it is considered an optimal
normal basis [23]. Generally, smaller type GNB’s have simpler multiplication complexity,
which will be mentioned in Section 2.3.2.

2.3 Binary Field Arithmetic

Here, this thesis reviews the basic field operations in a binary field. Specifically, the opera-
tions of addition, multiplication, squaring, inversion, and the half-trace are reviewed with their
implementation in polynomial basis or GNB.

2.3.1 Finite-Field Addition

Finite-field addition performs A+B =C, where A,B,C ∈ F2m . Thus, this is a simple addition
of each linearly independent digit. Each digit is represented as a single bit and there are no
carries. Therefore, addition can be represented as a bit-wise XOR, as illustrated by Eq. 2.2.
In both polynomial basis and GNB, addition is identical.

C = A+B

C =
m−1

∑
i=0

(ai +bi)xi ci ∈ 0,1
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ci = ai⊕bi (2.2)

2.3.2 Finite-Field Multiplication

Finite-field multiplication performs A×B =C, where A,B,C ∈ Fp. This equates to a regular
multiplication of A and B to produce a third element C. However, if elements A and B are both
m-bits, then the result, C, is 2m-bits. A reduction must be made so that the result is still within
the field.

For polynomial basis, multiplication is the sum of bit by bit multiplications, similar to a
Schoolbook form of multiplication. Since some multiplication terms go beyond the max digit
in the polynomial basis, the product is brought back down by computing the modulus, F(x).
This modulus is a is irreducible in GF(2m). The smaller multiplications can be done in a bit-
serial (d = 1) fashion and a digit-serial (d > 1) fashion. The bit-serial form is shown in Eq.
2.3. Bit-serial multipliers require many fewer gates to represent than digit-serial multipliers,
but at the cost of many more iterations for a single multiplication.

C = A×B mod F(x)

C = A× (
m−1

∑
i=0

bixi) mod F(x)

C = a0× (
m−1

∑
i=0

bixi)+a1× x× (
m−1

∑
i=0

bixi)+ ...+am−1× xm−1× (
m−1

∑
i=0

bixi)) mod F(x) (2.3)

Multiplication in Gaussian normal basis is much more complex. Consider

A = (a0,a1, · · · ,am−1) =
m−1

∑
i=0

aiβ
2i

B = (b0,b1, · · · ,bm−1) =
m−1

∑
j=0

b jβ
2 j

C = AB =
m−1

∑
i=0

m−1

∑
j=0

aib jβ
2i+2 j

Each product of elements in GNB produce a term β 2i+2 j
= ∑

m−1
l=0 ul

i, jβ
2l
, where i is the term in

the first operand and j is the term in the second operand. The l-th digit of C can be recovered
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by utilizing the relationship cl = aM(l)btr, where M is a multiplication matrix and tr is the
transpose operation. The first row of the multiplication table always has a single ’1’ on the
second column of the first row. After that, each following row will have as many ’1’s as
the type of the basis. Generally, resolving the products with the multiplication table involves
cyclic left shifts of inputs A and B. The explicit formulas given in [12, 29] are shown in Eq.
2.4 and Eq. 2.5.

C = (A⊙ (B≪ 1))⊕
m−1

∑
i=1

(A≪ m− i)⊙S(i,B), (2.4)

S(i,B) = ((B≪ R(i,1))⊕ (B≪ R(i,2))⊕·· ·⊕ (B≪ R(i,T ))) ,1≤ i≤ m−1. (2.5)

In these equations, (X ≪ i) is the i-fold left cyclic shift of X ∈ GF(2m). ⊙ and ⊕ denote
bit-wise AND and XOR operations between coordinates of X and Y , respectively.

2.3.3 Finite-Field Squaring

Finite-field squaring performs A ·A =C, where A,C ∈ Fp. This is a simpler example of multi-
plication. Since the input operands are the same, the arithmetic can be optimized further over
the multiplication case.

For a binary field defined over polynomial basis, the product of an element squared is
the same as the original element, with ’0’s inserted between each element. For instance,
1011×1011 = 1000101. Thus, efficient squaring can be broken down into expansion and re-
duce stages. The expansion stage involves inserting the ’0’ between each bit and the reduction
involves using the irreducible modulus to keep the result in the basis. Otherwise, bit-parallel
squaring units can be implemented efficiently based on the irreducible modulus.

For GNB, squaring an element involves a right cyclic shift, as shown in Eq. 2.6. In
hardware, squaring an element comes only at the cost of rewiring.

A2 = (
m−1

∑
i=0

aiβ
2i
)2 = A≫ 1 (2.6)
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2.3.4 Finite-Field Inversion

Finite-field inversion finds some A−1 such that A ·A−1 = 1, where A,A−1 ∈ Fq. There are
many schemes to perform this efficiently. Fermat’s little theorem exponentiates A−1 = Aq−2.
This requires many multiplications and squarings, but is a constant set of operations. The Ex-
tended Euclidean Algorithm (EEA) has a significantly lower time complexity of O(log2n)

compared to O(log3n) for Fermat’s little theorem. EEA uses a greatest common divisor
algorithm to compute the modular inverse of elements a and b with respect to each other,
ax+ by = gcd(a,b). Unfortunately, EEA utilizes a non-constant set of operations that risks
leaking important information related to timing and power. Such information can be used by
an outside third party to discover bits of the key and break the cryptosystem. Further, the use
of multiple addition and subtraction units in EEA require more hardware.

Inversion over binary fields utilize the exponentiation A2m−2. Addition chains are a method
to efficiently exponentiate these large values as a base. Using multiplications and squar-
ings, the large exponential can be broken into a chain of operations with log2(m) complexity.
The most basic exponentiation is the binary method, which executes a square-and-multiply
method. For an m-bit element in F2m , there are approximately m− 1 squarings and m− 2
multiplications.

The complexity of the exponentiation can be further reduced by using the Itoh-Tsujii
method [13]. This method exponentiates along 2k−1 chains, where k is an integer, to 2m−1−1,
and then a final squaring to 2m−2− 2. An example of the Itoh-Tsujii method for 2283− 2 is
shown in Table 2.1 (adapted from [31]). Itoh-Tsujii reduces the complexity of the exponen-
tiation to m− 1 squarings and H(m− 1) multiplications, , where H represents the Hamming
weight. H(m− 1) is much smaller than m− 2 because there are log2m− 1 bits in the repre-
sentation for m− 1. Even if all bits are set in m− 1, there are still significantly fewer mul-
tiplications. The only caveat to using the Itoh-Tsujii method is that it requires an additional
temporary value to perform the exponentiation.

2.3.5 Finite-Field Half-Trace

Finite-field half-trace solves the quadratic equation X2 +X = A, for X = (x0,x1, · · · ,xm−1) ∈
GF(2m). This only has a solution if the trace function, Tr(A) = 0. Further, if a solution
exists, then both X and X + 1 are solutions. For normal basis, when m is odd, the trace of
element A can be computed as Tr(A) = ∑

m−1
i=0 ai, which is bit-wise XOR operation of all bits of

vector A. The solution X can be found from the bit-wise XOR algorithm shown in Algorithm
2.1. However, in polynomial basis, m− 1 squarings and (m− 1)/2 additions are required.
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Table 2.1: Itoh-Tsujii inversion for GF(2283)
i ui Binary Rule Multiplication Current

0 1 1 A A21−1

1 2 10 2u0 (A21−1)21
A21−1 A22−1

2 4 100 2u1 (A22−1)22
A22−1 A24−1

3 8 1000 2u2 (A24−1)24
A24−1 A28−1

4 16 1000 2u3 (A28−1)28
A28−1 A216−1

5 17 10001 u4 +u0 (A216−1)21
A216−1 A217−1

6 34 100010 2u5 (A217−1)217
A217−1 A234−1

7 35 100011 u6 +u0 (A234−1)21
A234−1 A235−1

8 70 1000110 2u7 (A235−1)235
A235−1 A270−1

9 140 10001100 2u8 (A270−1)270
A270−1 A2140−1

10 141 10001101 u9 +u0 (A2140−1)21
A2140−1 A2141−1

11 282 100011010 2u10 (A2141−1)2141
A2141−1 A2282−1

Algorithm 2.1 Solving a quadratic equation X2 +X = A using GNB [11].
Input: A = X2 +X , where A,X2 +X ∈ GF(2m).
Output: X ∈ GF(2m), iff Tr(A) = 0.
1. x0← a0.
2. For i from 1 to m−2 do
3. xi← ai⊕ xi−1.

4. end for
5. xm−1← 0.
6. Return X .

Algorithm 2.2 demonstrates how the half-trace can be computed in polynomial basis, which
also works in GNB.

2.4 Applications

Two major cryptographic protocols that are based on point multiplication in ECC are the
elliptic curve Diffie-Hellman key-exchange and the elliptic curve digital signature algorithm.
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Algorithm 2.2 Solving a quadratic equation X2 +X = A using polynomial basis [15].
Input: A = X2 +X , where A,X2 +X ∈ GF(2m).
Output: X ∈ GF(2m), iff Tr(A) = 0.
1. X = 0
2. For i from 1 to ⌊m

2 ⌋−1 do
3. X = X +A22i+1

.
4. end for
5. Return X .

Algorithm 2.3 Elliptic curve Diffie-Hellman key exchange
Input: Prime p,
Elliptic curve E : y2 ≡ x3 +ax+b mod p
Primitive point on E, P = (xp,yp)
Alice’s private key k1
Bob’s private key k2
Output: Shared secret point Q = k1k2P
1. Alice performs the point multiplication R = k1P
2. Bob performs the point multiplication S = k2P
3. Alice and Bob exchange their point multiplication results R and S over a public channel
4. Alice performs Q = k1S = k1k2P
5. Bob performs Q = k2R = k1k2P
6. Alice and Bob acquire the secret shared point Q

2.4.1 Elliptic Curve Diffie-Hellman

Elliptic Curve Diffie-Hellman (ECDH) uses two different multiplications to give two parties
the same unique key. Let Alice and Bob be the two parties. Each have their own special keys,
k1 and k2, respectively. They exchange knowledge of an elliptic curve system over a public
channel and decide on a point P. Alice performs Q = k1P and Bob performs R = k2P. Alice
sends her point Q over the public channel and Bob sends his pointR over the public channel.
Alice performsK = k1R and Bob performs K = k2Q. Both determine the same point on the
elliptic curve which is k1k2P. Because of the ECDLP, it is infeasible for an outside party to
determine Alice or Bob’s private key given point P, Q, and R. The x-coordinate of the resulting
point is typically used as the shared key between Alice and Bob. Algorithm 2.3 illustrates the
key exchange [24].



22 Elliptic Curve Cryptography

Algorithm 2.4 Elliptic curve digital signature algorithm
Input: Prime q,
Elliptic curve E : y2 ≡ x3 +ax+b mod q
Primitive point on E, A = (xA,y)
Output: If the signature is verified.
Key Generation.
1. Choose a random integer d with 0 < d < q
2. Compute B = dA
ECDSA Signature Generation.
3. Choose a random ephemeral key k with 0 < k < q
4. Compute R = kA = (u,v)
5. Let r = u mod q
6. Compute s = k−1(SHA−1(x)+mr) mod q
ECDSA Signature Verification.
7. Compute w = s−1 mod q
8. Compute i = wSHA−1(x) mod q
9. Compute j = wr mod q
10. Compute (u,v) = iA+ jB
11. Verify verK(x,(r,s)) = true iff u mod q≡ r

2.4.2 Elliptic Curve Digital Signature Algorithm

The second protocol is Elliptic Curve digital signature algorithm (ECDSA) . This algorithm
verifies that a message is valid. This uses an elliptic curve system over a Galois Field, p, and
public point, A. There is also a private key, m, and secret random number, k. The algorithm
verifies using a variety of computations, as shown in Algorithm 2.4. The protocol can be
broken down into key generation, signature generation, and signature verification [24]. SHA−
1 is a hashing algorithm that can be changed out for any other hasing algorihtm, such as
SHA−3.



Chapter 3

Edwards Curve

In this Chapter, we review the Edwards curve. ECC cryptosystems can be implemented over a
variety of curves. Some curves have more inherent properties than others. Table 3.1 contains
a comparison of point addition and doubling formulas presented in literature. In comparing
different coordinate schemes over this addition law, we utilize the following notation for the
complexity. I refers to finite-field inversions. M refers to finite-field multiplications. D refers
to a multiplication by a constant, i.e. curve parameter. S refers to finite-field squarings. A

refers to finite-field additions, but are primarily excluded since the complexity of other finite-
field arithmetic is much greater. Primarily, reducing the total number of multiplications and
multiplications by a constant will have the greatest impact on complexity of a point multipli-
cation. Completeness means that there are no exceptional cases to addition or doubling (e.g.,
adding the neutral point). From this table, the choice was to apply the new mixed coordinate
addition and doubling formulas over new binary Edwards curves presented in [14].

The Edwards curve was originally proposed by Harold M. Edwards in [8] in 2007. Ge-
ometrically, the curve appears as a circle that caves in or outward, as shown in Figure 3.1.
In this figure, the standard Edwards curve is defined in Eq. 3.1. We alter the value of d to
produce several different curves, as shown in Figure 3.1.

x2 + y2 = 1+dx2y2 (3.1)

3.1 Binary Edwards Curve

The binary Edwards curve is an Edwards curve defined over a binary field. The original Ed-
wards form is not elliptic over binary fields. Consider a finite field of characteristic two, K. Let
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Table 3.1: Cost of point operations on binary generic curves (BGCs) [17], binary Edwards
curves (BECs) [4], binary Edwards curves revisited [14], and generalized Hessian curves
(GHC) [9] over GF(2m).

Curve
Coordinate Differential

Completeness
System PA and PD

BGC
Projective 6M+1D+5S ×

Mixed 5M+1D+4S ×

BEC (d1 = d2)
Projective 7M+2D+4S X

Mixed 5M+2D+4S X

BEC-R (d1 = d2)
Projective 7M+2D+4S X

Mixed 5M+1D+4S X

GHC
Projective 7M+2D+4S X

Mixed 5M+2D+4S X

Figure 3.1: Edwards curve geometric representation.
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d1,d2 ∈ K such that d1 ̸=0 and d2 ̸= d2
1 + d1.Then the binary Edwards curve with coefficients

d1and d2 is the affine curve [4]:

EF2m ,d1,d2 : d1(x+ y)+d2(x2 + y2) = xy+ xy(x+ y)+ x2y2 (3.2)

It can be shown that the above form of the curve is birationally equivalent to the standard
Weierstrass form, e.g. v2 + uv = u3 + a2u2 + a6. We utilize the map (x,y) −→ (u,v) defined
as [5]

u = d1(d2
1 +d1 +d2)(x+ y)/(xy+d1(x+ y)),

v = d1(d2
1 +d1 +d2)(x/(xy+d1(x+ y))+d1 +1)

Thus, the short Weierstrass curve is equivalent to the Edwards curve with the following
relation:

v2 +uv = u3 +(d2
1 +d2)u2 +d4

1(d
4
1 +d2

1 +d2
2)

The above equivalence works for all but the point at infinity. Thus, we define the point
(0,0) on the binary Edwards curve to be isomorphic to the point at infinity in a binary generic
curve. This point represents the neutral point in the binary Edwards curve. This curve is
symmetric in that if (x,y) is on the curve, then (y,x) is also on the curve. In fact, these points
are additive inverses over the Edwards addition law. The point (1,1) is also on every binary
Edwards curve, and has order 2. The curve is complete if there is no element t ∈K that satisfies
the relation t2 + t +d2 = 0 [4]. Alternatively, this means that if Tr(d2) = 1, then the curve is
complete [26].

3.2 Edwards Addition Law

Here, we review the Edwards addition law, which defines the point arithmetic for Edwards
curves.

Point addition and point doubling do not have the same representation or equations as
standard generic curves. The Edwards addition law, derived in [4], is presented below in Eq.
3.3. The sum of any two points (x1,y1),(x2,y2) on the curve defined by EF2m ,d1,d2 to (x3,y3) is
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defined as

x3 =
d1(x1 + x2)+d2(x1 + y1)(x2 + y2)+(x1 + x2

1)(x2(y1 + y2 +1)+ y1y2)

d1 +(x1 + x2
1)(x2 + y2)

(3.3)

y3 =
d1(y1 + y2)+d2(x1 + y1)(x2 + y2)+(y1 + y2

1)(y2(x1 + x2 +1)+ x1x2)

d1 +(y1 + y2
1)(x2 + y2)

Since we have already shown that the binary Edwards curve is birationally equivalent to
a short Weierstrass curve, we can utilize points on a binary Edwards curve instead of a short
Weierstrass curve and, thus, gain benefits of speed and security by using the arithmetic over
binary Edwards curves.

As we explore the arithmetic in other coordinate systems on the binary Edwards curve, we
will make the assumption that d1 = d2. This assumption does not change the security in using
points on the curve, but makes the arithmetic require less overall operations.

3.2.1 Montgomery Ladder

The Montgomery powering ladder [22] is an alternative to a standard binary approach that uses
a double-and-add method. Instead of requiring an add only if the bit of scalar multiple is ’1’,
there is a double-and-add at each step. Although this requires more time to compute a scalar
point multiplication, the fact that it uses a constant set of point doubling and point additions
means that it is resistant to timing and simple power analysis attacks that try to retrieve bits of
the secret key k.

The Montgomery ladder ensures that the difference between two points on the ladder is
always P, the starting point. To do this, the first step is to calculate 2P. From there, each step
of the ladder contains registers holding the values for mP and mP+1. The algorithm for the
Montgomery powering ladder [22] is shown in Algorithm 3.1. The final result is mP after the
last step.

For the rest of this thesis, the Montgomery ladder will be used as it provides essential
timing and simple power analysis defense. All interactions with the secret key must be done
in such a way that the key is not exposed.



3.2 Edwards Addition Law 27

Algorithm 3.1 Montgomery powering ladder for scalar point multiplication [22].
Inputs: A point P = (x0,y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · ,k1,k0)2.
Output: Q = kP ∈ E(F2m).
1: set: A = P, B = 2P and initialize
2: for i from i−1 downto 0 do

3: if ki = 0 then
4: A = 2A, B = A+B

5: else
6: A = A+B, B = 2B

7: end if
8: end for
9: return Q = A

3.2.2 Affine Coordinates

The formula for affine point addition is presented in Eq. 3.3. Actually, the assumption d1 = d2

does not speed up point addition. Although the denominators are different in the formula,
a simultaneous inversion trick can be used to perform both at the same time. Consider D1

and D2 to be denominators 1 and 2, respectively. Also consider I1 and I2 to be the inverse
of denominators 1 and 2, respectively. Then these inversions can be generated with a single
inversion and 3 extra multiplications as shown:

A =
1

D1D2

I1 = AD2

I2 = AD1

Avoiding a single inversion is necessary for efficient implementations of ECC, since it
could cost as many as m− 1 squarings and H(m− 2) multiplications. Careful planning and
reuse of values for the rest of the formula can implement affine addition in I+10M+1D+4S,
as shown in [14].
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3.2.3 Projective Coordinates

Along the same lines of minimizing the number of inversions in a point multiplication, pro-
jective coordinates are a way to only require a single inversion over the course of a scalar
point multiplication. Instead of using the standard coordinate system P = (x,y), we represent
coordinates as P = (X : Y : Z), where x = X/Z, and y = Y/Z. Thus, instead of performing
the division at the end of the affine coordinate formula, we adjust the Z-coordinate so that
the division at the end of the Montgomery ladder is all that is needed to recover x and y. In
projective coordinates, the formula for point addition, (X3,Y3,Z3) = (X1,Y1,Z1)+(X2,Y2,Z2)

requires 14M+2D+S if d1 = d2, as shown in [14]. There are many terms for X3,Y3, and Z3,
so the formula will not be reiterated here.

3.2.4 Differential Coordinates

Differential coordinates reduce the number of registers that need to be stored to hold a point
from 2 to 1 over standard affine coordinates. Notably, a point is represented as w = x+ y.
Thus, only a single coordinate (x,y)−→ (w) is needed between point additions and doublings.
These differential coordinates also simplify some of the logic for point addition and doubling
formulas, since the value wi = xi+yi is reused heavily in the affine equation for point addition.
It should also be noted that the point doubling and point addition formulas are different for
this case as well. For computing a point multiplication, let P be a point on a binary Edwards
curve EF2m ,d1,d2 and let us assume w(nP) and w((n+ 1)P), 0 < n < k are known. Therefore,
one can use the w-coordinate differential addition and doubling formulas to compute their sum
as w((2n+1)P) and double of w(nP) as w(2nP)[4].

In [14], the authors present faster equations for w-coordinates and mixed coordinates
addition than those presented in [4]. This equation makes the assumption that d1 = d2 as
well as that curve parameters. An analysis of the formula, however, shows that they do
not properly produce the correct w-coordinates. The authors correctly identify the relation,

w3w0
d1(w2

1+w2
2)
= w3+w0+1

d1
, but incorrectly solve for w3. We observe that the final equation for dif-

ferential point addition that is presented in subsection (3.19) of [14] is faulty. Therefore, we
wrote a sage script to verify this claim, which is listed in the Appendix. This algebra was per-
formed correctly and here we present the revised formulas. The incorrect formula presented
in [14] is in Eq. 3.4 and the corrected formula is shown in Eq. 3.5. This formula defines
the addition of w1 +w2 = w3, given that wi = xi + yi and w0 = w2−w1. The curve parame-
ter 1

w0
does not change when utilized throughout the Montgomery ladder. As such, it can be

precomputed and utilized to speed up the arithmetic.



3.2 Edwards Addition Law 29

Algorithm 3.2 Montgomery algorithm [22] for point multiplication using w-coordinates.
Inputs: A point P = (x0,y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · ,k1,k0)2.
Output: w(Q) = w(kP) ∈ E(F2m).
1: set : w0← x0 + y0 and initialize

a: W1← w0 and Z1← 1 and c = 1
w0

(inversion)
b: (W2,Z2) = DiffDBL(W1,Z1)

2: for i from l−2 down to 0 do
a: if ki = 1 then

i): (W1,Z1) = MDiffADD(W1,Z1,W2,Z2,c)
ii): (W2,Z2) = DiffDBL(W2,Z2)

b: else
i): (W1,Z1) = DiffDBL(W1,Z1)

ii): (W2,Z2) = MDiffADD(W1,Z1,W2,Z2,c)
end if
end for

3: return w(kP)← (W1,Z1) and w((k+1)P)← (W2,Z2)

The w-coordinate differential addition formula over binary Edwards curves with d1 = d2

proposed in [14] does not provide correct formulation based on the following equation:

w3 = 1+
1

w0
(w2

1 +w2
2)

1
w0
(w2

1 +w2
2)+1

(3.4)

In the following equations, the correct w-coordinate differential addition formula over bi-
nary Edwards curves with d1 = d2 is discovered from the starting relation in [14].

w3w0

d1(w2
1 +w2

2)
=

w3 +w0 +1
d1

w3w0

(w2
1 +w2

2)
= w3 +w0 +1

w3w0

(w2
1 +w2

2)
+w3 = w0 +1

w3(
w0

(w2
1 +w2

2)
+1) = w0 +1

w3(w0 +w2
1 +w2

2) = (w0 +1)(w2
1 +w2

2)
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w3 =
(w0 +1)(w2

1 +w2
2)

w0 +w2
1 +w2

2

w3 =
(1+ 1

w0
)(w2

1 +w2
2)

1
w0
(w2

1 +w2
2)+1

Corrected w-Coordinate Differential Addition

w3 =
w2

1 +w2
2 +

1
w0
(w2

1 +w2
2)

1
w0
(w2

1 +w2
2)+1

. (3.5)

The explicit affine w-coordinate differential addition is

A = (w1 +w2)
2, B = A · 1

w0
, N = A+B, (3.6)

D = B+1, E = 1
D , w3 = N ·E.

The total cost of this corrected formula is still 1I+1M+1D+1S, but now the differential
addition functions as intended. Assuming that inversion requires at least two registers, a total
of three registers are required. 1

w0
is the inverse of the difference between the points and

will not be updated in each step of the point multiplication algorithm. For the application
in Montgomery Ladder [22], the difference between the two points is always P (specifically
w(P)). Therefore, this value can be determined at the start of the ladder and used throughout
to cut down on each step.

[14] uses the faulty formula (3.4) for determining explicit formulas in mixed w-coordinates,
but also gives a faster and correct formula for affine w-coordinate differential addition which
requires 1I +1M+2S, so long as the values 1

w0+w2
0

and w0 are known. This formula is shown
below.

w3 = w0 +1+
1

1
w0+w2

0
(w2

1 +w2
2 +w0)

(3.7)

The explicit affine w-coordinate differential addition is

A = (w1 +w2)
2, B = A+w0, D = B · 1

w0 +w2
0
, (3.8)

E =
1
D
, w3 = E +1+w0
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Assuming that w0 and 1
w0+w2

0
are known, the actual cost for w-coordinate differential addi-

tion can be reduced down to 1I +1D+1S. This method requires two registers for w1 and w2,
and the storage of w0 and 1

w0+w2
0

.

3.2.4.1 Retrieving x and y from w-Coordinates

The formula to retrieve the x-coordinate from w-coordinates is presented in [4], which is based
on the point doubling formula. This formula requires P, w(kP), and w(kP+1). Again, relating
back to the application of Montgomery Ladder [22], each consecutive step produces w(mP)

and w(mP+1), where m represents the scalar multiplication over each steps. The formula to
solve for the x-coordinate of mP is shown below [4]. In this formula, P= (x1,y1),w0 = x1+y1,
w2 = w(kP), and w3 = w(kP+1).

x2
2 +x2 =

w3(d1 +w0w2(1+w0 +w2)+
d2
d1

w2
0w2

2)+d1(w0 +w2)+(y2
1 + y1)(w2

0 +w2)

w2
0 +w0

(3.9)

This formula requires 1I+4M+4S if d2 = d1. After solving for x2
2+x2 = A, if Tr(A) = 0,

then the value of x2 or x2 +1 can be recovered by using the half-trace.

After the value of x2 has been found, y2 can be retrieved by solving the curve equation for
y2

2 + y2, Eq. 3.10, and also using the half-trace to solve for y2 or y2 +1.

y2
2 + y2 =

d(x2 + x2
2)

d + x2 + x2
2

(3.10)

Therefore, recovering y2 requires 1I+2M+S, and the total cost of recovering points from
w-coordinates is 2I +6M +5S. Even though the point (x2 +1, y2 +1) is not the same as (x2,

y2), both points will produce the same value in standard ECC applications. Algorithm 3.3
summarizes how to retrieve the x and y-coordinates.

3.2.5 Mixed Coordinates

Eq. 3.5 can be applied to mixed w-coordinate differential addition and doubling. The general
formula and explicit formula are shown below. This formula defines the addition of W1

Z1
+ W2

Z2
=

W3
Z3

, given that w0 = w2−w1.

W3

Z3
=

(W1Z2 +W2Z1)
2 + 1

w0
(W1Z2 +W2Z1)

2

Z2
1Z2

2 +
1

w0
(W1Z2 +W2Z1)2

(3.11)
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Algorithm 3.3 Retrieving x and y from w-coordinates
Inputs: A point P = (x0,y0) ∈ E(F2m) on a
binary curve and an integer k = (kl−1, · · · ,k1,k0)2.
Output: Q = kP ∈ E(F2m).
1: set: w0← x0 + y0 and initialize
2: compute: w2← w(kP), w3← w(kP+1)
3: solve (3.9) for x2 + x2

2
4: if Tr(x2 + x2

2) = 0 then
a: x2 =half-trace(x2 + x2

2)
end if
5: solve (3.10) for y2 + y2

2
6: if Tr(y2 + y2

2) = 0 then
a: y2 =half-trace(y2 + y2

2)
end if
7: return Q = (x2,y2) = kP ∈ E(F2m)

C = (W1Z2 +W2Z1)
2, D = (Z1Z2)

2, E =
1

w0
·C, (3.12)

W3 = E +C, Z3 = E +D

Thus, mixed w-coordinate differential addition requires 3M + 1D+ 2S. From a simple
analysis of the formula, four registers are needed.

For mixed w-coordinate differential addition and doubling, the doubling formula from
[4] can be used in conjunction with this corrected differential addition formula, with the as-
sumption that d1 = d2. This formula defines the addition of W1

Z1
+ W2

Z2
= W3

Z3
and doubling of

2× W1
Z1

= W4
Z4

given that w0 = w2−w1.

W4

Z4
=

(W1(W1 +Z1))
2

d1 �Z4
1 +(W1(W1 +Z1))2 (3.13)

C = (W1Z2 +W2Z1)
2, D = (Z1Z2)

2, E =
1

w0
·C, (3.14)

W3 = E +C, Z3 = E +D W4 = (W1(W1 +Z1))
2,

Z4 =W4 +d1 ·Z4
1

Thus, mixed w-coordinate differential addition and doubling requires 5M+1D+5S. From
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an analysis of the formula, five registers are needed.

3.2.5.1 Mixed w-Coordinate Differential Addition and Doubling with the Co-Z Trick

We note that in [39] the common-Z trick is proposed. This method to reduces the number
of registers required per step of the Montgomery Ladder [22] and simplifies the number of
operations per step. Each step of the Montgomery Ladder is a point doubling and addition.
By using a common-Z coordinate system, one less register is required for a step on the ladder,
and the method becomes more efficient, requiring one less squaring operation. The doubling
formula was obtained from [4] and it is assumed that d1 = d2. The general formula and explicit
formulas are shown below. This formula defines the addition of W1

Z + W2
Z = W3

Z′ and doubling
of 2× W1

Z = W4
Z′ given that w0 = w2−w1.

W3

Z′
=

(W1 +W2)
2 + 1

w0
(W1 +W2)

2

Z2 + 1
w0
(W1 +W2)2

(3.15)

W4

Z′
=

(W1(W1 +Z))2

d1 �Z4 +(W1(W1 +Z))2 (3.16)

C = (W1 +W2)
2, D = Z2, E =

1
w0
·C, (3.17)

U = E +C, V = E +D, S = (W1(W1 +Z))2,

T = S+d1 ·D2, W3 =U ·T, W4 =V ·S,

Z′ =V ·T

Thus, the mixed w-coordinate differential addition and doubling formula requires 5M +

1D+ 4S. An analysis of this formula shows that it requires only four registers. As will be
discussed later, this implementation incorporates shifting for the multiplication within the
register file, forcing the need for an additional register. This formula requires one less squaring
than that provided in [4], and also uses registers much more efficiently. Table 2 shows a
comparison of differential point addition schemes for BEC with d1 = d2.

3.3 Resistance Against Side-Channel Attacks

The binary Edwards curve features the unique properties that its addition formula is unified
and complete. Unified implies that the addition and doubling formulas are the same. This
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Table 3.2: Comparison of differential point addition schemes for BEC with d1 = d2.
Operation Eq. Complexity #Reg

Affine w-coordinate Differential Addition 3.6 1I +1M+1D+2S 3
Affine w-coordinate Differential Addition 3.8 1I +1D+1S 2

Mixed Differential Addition 3.12 3M+1D+1S 4
Mixed Differential Addition and Doubling 3.14 5M+1D+5S 5

Mixed Differential Addition and Doubling w/ Co-Z 3.17 5M+1D+4S 4

gives the advantage that no checking is required for the points to differentiate if an addition or
doubling needs to take place. Complete implies that the addition formula works for any two
input points, including the neutral point. Therefore, as long as two points are on the curve, no
checking is needed for the addition formula, as it will always produce a point for a complete
binary Edwards Curve [4].

One common attack to reveal bits of an ECC system’s key is to use the exceptional points
attack [33]. This attacks the common projective coordinate system. For the point at infinity
in a non-binary Edwards curve system, the point is often represented as (Xk,Yk,0). Hence,
a conversion back to the (xk,yk) coordinate system would attempt to divide by zero, causing
an error or revealing a point that is not on the curve [33]. In either case, an adversary could
detect that the point at infinity was attempted to be retrieved. The attack relies on picking
different base points, which after multiplied by the hidden key, reveal that the point at infinity
was retrieved. If the point at infinity is reached, then that reveals critical bits of the secret key,
which could be used to break the cryptosystem.

The binary Edwards curve’s completeness property and coordinate system make the curve
immune to this form of attack. For a complete binary Edwards curve, the projective coordi-
nate system representation for the neutral point, which is isomorphic to the point at infinity
of other curves, is (Xk,Yk,1). Furthermore, the completeness also ensures that no other sets
of points can be used to break the system and reveal critical information about the key. The
mixed w-coordinates that are used for their speed in the binary Edwards curve are also invul-
nerable to this attack as long as w0 ̸= 0,1, since the denominator will never be 0 [14]. With the
Montgomery Ladder [22], a proper curve and starting point will never violate this condition.

Montgomery Ladder [22] is a secure way to perform repeated point addition and point
doublings to thwart side channel attacks. The ladder provides a point addition and point dou-
bling for each step, with each step taking the same amount of time. Therefore, this application
provides an extremely powerful defense against power analysis attacks and timing attacks.
Power analysis attacks identify characteristics of the power consumption of a device to reveal
bits of the key and timing attacks identify characteristics of the timing as the point multiplica-
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tion is performed. By application of the binary Edwards curve with Montgomery Ladder, the
binary Edwards curve features an innate defense against many of the most common attacks on
ECC systems today.

It should be noted that there are many other types of attacks, such as differential power
analysis (DPA) [16] or electromagnetic (EM) radiation leaks. These require a much closer
look at key management and register usage, and are thus, more dependent on the architecture
rather than the curve coordinate system.





Chapter 4

Lightweight Implementation of ECC

This chapter details the lightweight implementation of a point multiplier over the revised for-
mulas for binary Edwards curves.

4.1 Design Methodology

This section details the methodology to create a small embedded crypto coprocessor.

4.1.1 Motivation: Embedded Crypto Coprocessor

With the increasing popularity of Radio Frequency Identification (RFID) technologies in ar-
eas such as the Internet of Things [19] and medical implants, there is a need to design a small
and efficient security coprocessor. Embedded devices have generally dominated the com-
puter market. With the transition to the Internet of Things, all tools and electronics will be
linked wirelessly. With so many devices connected for potentially sensitive applications, se-
curity must also be done correctly. However, functionality and connectivity monopolize an
embedded system’s area and power, so such a security coprocessor must be tiny, fast, and
power-efficient, illustrated in Fig. 4.1.

Such a coprocessor will be able to efficiently perform all of the security computations.
This could include generating a secret key through ECDH, signing a message to a host ma-
chine with ECDSA, or many others. ECC is the ideal implementation for these security needs
because it provides a secure application for far fewer bits than RSA and other public key
encryption schemes. Overall, the goal is to implement a coprocessor that achieves a tiny foot-
print, while still performing the calculations in a short amount of time. Thus, the main em-
phasis is on size, but the latency is also minimized so that power and energy remain relatively
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Figure 4.1: Security coprocessor design.

low.

4.1.2 NIST Binary Field Standards

In 2000, NIST standardized several elliptic curves over binary fields and prime fields [34]. In
particular, NIST standardized binary generic curves over the binary fields F2163 , F2233 , F2283.

These are not necessarily over binary Edwards curves, but the field sizes determine the ap-
proximate security of the implementation. For an elliptic curve defined over the binary field
F2283 , there are approximately 2283 points on the curve. Based on the progress of factoring
algorithms to solve the ECDL problem, this corresponds to a private key cryptography key
size of 128-bits. Thus, it requires approximately the complexity 2128 brute force attempts to
potentially determine the secret key k in Q = kP. We summarize NIST’s security of stan-
dardized curves in Table 4.1. Advanced Encryption Standard (AES) is the current standard
for private key cryptography, or symmetric key cryptography, at multiple security levels. The
security size of RSA, another popular public-key cryptography scheme is also included for
comparison. We note that F2163 , F2233 , F2283 correspond to a low, medium, and high level of
security. Typically, the convention is to implement a design over a single standardized curve,
but this paper implements point multiplications for the low, medium, and high level of security
to compare the scalability and security of the approaches.
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Table 4.1: NIST recommended curves and security [34].
Key Size (bits)

Symmetric key RSA ECC (prime field) ECC (binary field)
80 1,024 192 163

112 2,048 224 233
128 3,072 256 283
192 7,680 384 409
256 15,360 521 571

Table 4.2: NIST recommended curve binary field parameters [34].
Key Size (bits) Irreducible GNB

Symmetric key ECC (binary field) Polynomial Type
80 163 x163 + x7 + x6 + x3 +1 4

112 233 x233 + x74 +1 2
128 283 x283 + x12 + x7 + x5 +1 6
192 409 x409 + x87 +1 4
256 571 x571 + x10 + x5 + x2 +1 10

4.1.3 GNB or Polynomial Basis

This thesis will focus on the binary fields F2163,F2233,and F2283 as they are standardized by
NIST and provide a low, medium, and high level of security [34]. The complexity of the
multiplier is dependent on the irreducible modulus for polynomial basis and type of GNB. For
polynomial basis, the smallest irreducible modulus for F2163 is F(x) = 2163 +27 +26 +23, for
F2233 is F(x) = 2233 +274, for F2283 is F(x) = 2283 +212 +27 +25. For GNB, F2163 has a type
4 GNB, F2233 has a type 2 GNB, and F2283 has a type 6 GNB. These factors are summarized
with the size of each NIST standardized curve in Table 4.2.

The complexity of a bit-serial multiplier over polynomial basis is relatively simple. The
Least-Significant Bit (LSB) method is shown in Algorithm and illustrated in Fig. 4.2. For
this type of multiplier, there are m AND gates, m+ω XOR gates, 2 registers, and a shift
register. ω represents the number of non-zero terms in the irreducible modulus. Thus, there
are 2 additional XOR gates in the modulus term in a polynomial basis over F2283 as compared
to a modulus term in a polynomial basis over F2233 .

Squaring over polynomial basis is much more difficult. A bit-parallel squaring unit ef-
fectively performs all reduction operations at once, which is more efficient since the original
value can be extended by inserting ’0’s between each bit and then reducing. Trinomials are
much more efficient for this purpose. As noted in [36], the general complexity of a bit-parallel
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Algorithm 4.1 The LSB-first bit-serial polynomial basis multiplier [1].
Input: A,B ∈ GF(2m), F(x)
Output: C = A×B mod F(x).
1. A′ = A, Y = 0
2. For i from 0 to m−1 do
3. Y = biA′+Y
4. A′ = A′x mod F(x)

5. end for
6. Return C = Y

mod 

F(x)

Multiply by x

A C Cout

Initialize with A
(0)

bi

Initialize with 0

mm mmm mm

m

1

m

A(i+1)

C(i+1)

bm-1 bm-2 ... b0

Shift Register

<<

m

AND  

Figure 4.2: Polynomial basis bit-serial multiplier [1].
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Table 4.3: Comparison among bit-level multipliers for type T GNB over GF(2m) with 2m−
1≤CN ≤ T m−T +1.

Bit-level # # XOR # Critical
Multipliers AND F2m F2283 F2233 F2163 FFs path delay

MO [18] CN CN−1 1692 464 648 2m TA + ⌈log2 CN⌉TX

RH [30] m+1
2 ≤ CN+2m−1

2 1129 465 487 3m TA +(1+ ⌈log2(T +1)⌉)TX

Feng[10] 2m-1 CN +3m−1 2541 1163 1173 3m TA +(2+ ⌈log2 T⌉)TX

AR[3], [29] m ≤ CN+m
2 964 349 401 3m TA +(1+ ⌈log2 T⌉)TX

AJL [27] m ≤ CN+m
2 817 349 401 3m TA +(1+ ⌈log2 T⌉)TX

squaring unit over is (m+ k− 1)/2 for the case that m is odd and k is even. For F2233 , that
means that there are 153 XOR gates. The forms of the irreducible pentanomials do not demon-
strate form suitable for efficient bit-parallel squaring in shifted polynomial basis [37]. Thus,
a bit-parallel squaring can be done by unrolling all of the different possibilities of the irre-
ducible, which is as much as 3 XOR’s per bit. Bit-parallel squaring is applicable for F2233 , but
not for F2163 or F2283.

Table 4.3 compares several different GNB multiplication schemes. CN denotes the com-
plexity of normal basis and it is measured by the number of entries of multiplication matrix R.
For more details about its values, one can refer to [23] and [2]. It is not explicitly stated, but
these multipliers can be Serial-in-Serial-out (SISO), Serial-in-Parallel-out (SIPO), Parallel-in-
Serial-out (PISO), or Parallel-in-Parallel-out (PIPO). For the purposes of using the multiplier
with a register file, PIPO is preferred. Even if PISO is used, there will still be a shift register
accumulator to accumulate the full result. The last bit-level multiplier, in [27] provides the
smallest complexity in terms of XOR gates, and a reasonable complexity of AND gates and
registers. Further, it is PIPO multiplier. Therefore, this multiplier is a suitable choice for a
lightweight implementation of ECC. We note the critical path delay of each of the multipliers
as well, but this is not necessarily an important metric for a security coprocessor, as the critical
path of the device will most likely be the limiting factor, and not the security coprocessor. We
illustrate this multiplier in Fig. 4.3.

As a comparison between GNB and polynomial basis, it is noted that squaring is free in
GNB. Bit-serial squaring is expensive in polynomial basis, unless the irreducible modulus is
a trinomial. In terms of multipliers, both multipliers require m AND gates. Polynomial ba-
sis requires one fewer fewer shift register than GNB. However, squaring is perhaps the main
distinguishing factor. Squaring is found numerous times throughout the point arithmetic for-
mulas, and approximately m times for inversion. If a squaring unit was left out, in the case of
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Figure 4.3: Gaussian normal basis bit-serial PIPO multiplier [27]

a polynomial basis architecture, then the increase in latency for each step of the Montgomery
ladder and inversion would be massive. Bit-parallel squaring for F2233 is relatively cheap as it
only requires 153 XOR gates. However, when compared with 349 XOR gates for a squaring
unit and a multiplication unit, the polynomial basis system requires 388 XOR gates. There-
fore, GNB appears to be a clear winner in reduction of multiplication and squaring units.
Polynomial basis could be considered in the case of using the standard expand and reduce
methodology for squaring, but this requires more control logic, i.e. multiplexers. Thus, GNB
multiplication was chosen for the arithmetic involved in this architecture.

4.1.4 Curve Selection

The implementation of the revised binary Edwards curves point arithmetic require a binary
Edwards curve with d1 = d2. The standardized NIST curves over binary generic curves [34]
could be converted to binary Edwards curves. However, there is no guarantee that these iso-
morphic binary Edwards curves would satisfy d1 = d2. Therefore, values for x and d were
randomly picked and used in conjunction with Eq. 3.10 to solve for y. If the point (x,y) was
on the curve, then the point and corresponding binary Edwards curve were valid and could
be used with the above algorithms. It can also be noted that there are no restrictions on d, so
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it could be chosen to be small for faster arithmetic. This design uses a full register to store
values, so a smaller value is not helpful in this case.

We provide a sample point and curve for F2283 in Eq. 4.1.

d(x+ y)+d(x2 + y2) = (x+ x2)(y+ y2)

F2283



d = 59da32313070c f 9c9296a984782aa0aaa33747b9bc82b29018 f 8ca1 f 6668735b52c267 f

x0 = 4aad94334c0ba0131029aa662 f 4e2dc19759ea7ab1430 f 3c f a0096b214 f 82e6ed f ec025

y0 = 45be47b3a58d7d f d1a6bcb2edb1 f 5b4d9ab7 f bb94529e6e72 f 810663a42ac094381d7ec
1

w0
= 116ab9e363 f ddcd697da67caad49a7 f 0 f 7365d09207a82d762 f dc f 6715b602791a3c42e

(4.1)

4.2 Architecture

The architecture of the ECC co-processor that was implemented resembles that of [28]. How-
ever, there are several major differences. An analysis of the explicit formula presented for
mixed w-coordinate addition and doubling revealed that five registers (T0,T1,R0,R1,R2) and
four constants ( 1

w0
,d1,x1,y1) were required. Additionally, it was deemed that the neutral el-

ement in GNB multiplication (all ’1’s) was not required for any part of the multiplication,
which reduced the size of the 4:2 output multiplexer to a 3:2 multiplexer. These following
sections will explain the design in more detail. The architecture for the field arithmetic unit
is shown in Fig. 4.4. The architecture of the register file is shown in Fig. 4.5. The top-level
design of the point multiplier is shown in Fig. 4.6.

4.2.1 Field Arithmetic Unit

The field arithmetic unit is designed to incorporate the critical finite field operations in as small
of a place as possible. In particular, this requires multiplication, squaring, and addition. The
XOR gate to add two elements was reused in the multiplication and addition to reduce the
total size of the FAU. Since the neutral element was not necessary for this point multiplier, the
neutral element select from the output multiplexer in [28] was removed to save area. Swap
functionality was added to incorporate quick register file swap operations. The field arithmetic
unit incorporates the GNB multiplier from [27]. The operations are as follows:

• Addition C = A+B : Addition is a simple XOR of two inputs. The first input is loaded
to Z by selecting the first input in the register file, and setting s1 = ”01” and s2 = ”00”.
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Figure 4.4: Proposed field arithmetic unit.

The next cycle, the second operand is selected from the register file, and s2 = ”01” so
that the output register has the addition of the two input elements. The output is written
on the third cycle. This operation requires three clock cycles.

• Squaring C = A≫ 1 : Squaring is a right circular shift of the input. The input is loaded
to Z by selecting the input in the register file, and setting s1 = ”01” and s2 = ”00”. The
next cycle, s1 = ”10” and s2 = ”10” so that the output register has been shifted. The
output is written on the third cycle. This operation requires three clock cycles.

• Multiplication C = T0×T1 : Multiplication is a series of shifted additions. For the first
cycle, s1 = ”00”,s2 = ”00”, and sT0 = sT1 = ”1”. The next cycle, s2 = ”01”. After m

cycles of shifts and addition, sT0 = sT1 = ”0”,and the output is ready. The output is
written on the mth cycle. This operation requires m clock cycles.

• Swapping A,B = B,A : Swapping is a switch of two registers within the register file.
The first register is loaded to Z by selecting the input in the register file, and setting
s1 = ”01” and s2 = ”00”. The next cycle, the first register is written to the second
register’s location as it is being loaded to Z. The second register’s value is written to the
first register’s place on the third cycle. This operation requires three clock cycles.

4.2.2 Register File

Similar to [28] and [15], the register file was designed to contain registers, with two particular
registers that perform special shifting for the finite field multiplication. An analysis of the
formulas used in this ECC unit revealed that four registers and four constants were required.
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Figure 4.6: GNB top-level control unit.

However, with two registers being designated as multiplication registers, an extra register is
needed for swapping in the value of d1 for a multiplication with D2. The other three regis-
ters would be holding (U,V,S). Thus, the formulas require five registers with the Co-Z trick
implementation.

For unified access to constants and not impact the retrieval, the registers and constants are
co-located in the register file. However, since this implementation targets a future standardiza-
tion of a binary Edwards curve, the idea was that a starting point and curve parameters would
be strictly defined. Therefore, there is no reason to add flexibility to the parameters of the base
point or d1. Hardwiring these coordinates to the register file provides the advantage that they
can be used on-the-fly and that no extra control is necessary to bring these into the register
file. For instance, [15] uses a small and external RAM chip to hold these constants. Such a
design requires extra interfacing and extra cycles to load the value into the register file. After
NIST standards for ECC are revised, hardwiring the constants in a place close to the register
file is the best solution to save power and area.

The register file is random access to values including the constants. A register is written
to when write is enabled and the multiplexer for writing selects that register.

4.2.3 Control Unit

The control unit handles the multiplexers for reading, writing, and performing operations. The
four operations are ADD, SQ, MULT, and SWAP. The control unit uses a Finite State Machine
to switch between these operations. A program counter is sent to an external ROM device that
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feeds in the current instruction. Instructions are ten bits long. The first two bits indicate which
instruction is being used. The next four bits indicate the input register. This value does not
matter for multiplication. The last four bits indicate the output register.

The key is never stored in the control unit, such as how it was in [28]. The controller
signals the master device to provide the next bit as the Montgomery Ladder [22] is being
performed. Special SWAP instructions that depend on the key were left inside the controller
to handle each step of the ladder, depending on the provided bit of the key. The subroutine
for a step on the Montgomery Ladder with the corresponding register usage is shown below in
Table 4.4. Table 4.4 shows the registers after each instruction. Six multiplications are required
for each step.
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Table 4.4: Point addition and doubling register usage.
# Op T0 T1 R0 R1 R2

1 ADD T0 T1 W1 W1 +W2 Z

2 SQ T1 R1 W1 W1 +W2 Z C

3 SWAP T1 R0 W1 Z W1 +W2 C

4 SQ T1 R0 W1 Z D C

5 ADD T0 T1 W1 W1 +Z D C

6 MULT T1 T0 W1 · (W1 +Z) W1 +Z D C

7 SQ T0 R2 W1 · (W1 +Z) W1 +Z D C S

8 SWAP R1 T1 W1 · (W1 +Z) C D W1 +Z S

9 SWAP R3 T0 1
w0

C D W1 +Z S

10 MULT T0 R1 1
w0

C D E S

11 ADD R1 T1 1
w0

U D E S

12 ADD R0 R1 1
w0

U D E S

13 SQ R0 R0 1
w0

U D2 V S

14 SWAP R0 T1 1
w0

D2 U V S

15 SWAP R4 T0 d D2 U V S

16 MULT T1 T0 d ·D2 D2 U V S

17 ADD R2 T0 T D2 U V S

18 SWAP R0 T1 T U D2 V S

19 MULT T0 T1 T W3 D2 V S

20 SWAP T1 R1 T V D2 W3 S

21 MULT T0 T0 Z′ V D2 W3 S

22 SWAP T0 R2 S V D2 W3 Z′

23 MULT T0 T1 S W4 D2 W3 Z′

24 SWAP R0 R2 S W4 Z′ W3 D2

25 SWAP T0 R1 W3 W4 Z′ S D2

To save area, the half-trace functionality was left as a series of squarings and additions.
Adding additional area to handle the half-trace saves a relatively small fraction of instructions
but adds an additional multiplexer select in the FAU.

Inversion and the half-trace were implemented as subroutines within the ROM for instruc-
tions. The half traces uses a repetitive combination of double SQ then ADD. This was used
to recover the x and y-coordinates of the final point. The special property of the half-trace as
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Initialization Reg: w0,w2,0,0,w3 23: T0← T0 + y0
1: T0← x1 Recover x2 24: T1← T 2

0
2: T0← T0 + y1 1: R0← T0×T1 25: T0← T0 +T1

3: T1← T 2
0 2: T0← T0 +R0 26: T0← T−1

0
4: T1← T1 +T0 3: T0← T0 +T1 27: T1,R2← R2,T1
5: R0← T 2

1 4: T1,R0← R0,T1 28: T0← T0×T1
6: T1← d 5: T0← T0×T1 29: T0← hal f Tr(T0)
7: T1← T1 +R0 6: T0← T0 +d Reg: x2,0,0,0,0
8: T0← T0×T1 7: T1,R2← R2,T1 Recover y2
9: T1,R0← R0,T1 8: R2← T0×T1 1: R2← T 2

0
Reg: W1,W2,Z,0,0 9: T0← x0 2: R2← R2 +T0
Mont. Ladder 10: T0← T0 + y0 3: R1,T0← T0,R1
Reg: W3,W4,Z′,0,0 11: T0← T0 +R0 5: T0← T0 +R2

Recover w2 and w3 12: T0← T0 +R0 6: T0← T−1
0

1: R1,T0← T0,R1 13: T1← d 7: T1,R2← R2,T1
2: T1,R2← R2,T1 14: T0← T0×T1 8: T0← T0×T1
3: T0,R0← R0,T0 15: R2← R2 +T0 9: T1← d
4: T0← T−1

0 16: T0← y2
1 10: T0← T0×T1

5: T1,R2← R2,T1 17: T0← T0 + y1 11: T0← halfTr(T0)
6: R2← T0×T1 18: T1← R2

0 12: T2← Z
7: T1,R1← R1,T1 19: T1← T1 +R0 13: T0,T1← T1,T0
8: T1← T0×T1 20: T0← T0×T1 14: T0,R1← R1,T0
9: T0← x0 21: R2← R2 +T0 Reg: x2,y2,0,0,0
10: T0← T0 + y0 22: T0← x0

Figure 4.7: Main program listing for point multiplication using binary Edwards curves.

a bit-wise XOR was not selected for this application because that would add more complexity
to the FAU and the half-trace requires relatively little time as it does not use a multiplication.
Inversion was used to obtain wi =

Wi
Zi

, recover the x-coordinate, and recover the y-coordinate.
Itoh-Tsujii inversion algorithm [13] was used to reduce the number of multiplications. For
F2283 , the addition chain (1,2,4,8,16,17,34,35,70,140,141,282) was used. By implementing
these repeated functionalities as subroutines, the number of instructions in the ROM is dra-
matically reduced. The main program is shown in Fig. 4.7. The subroutines for inversion in
F2283 and the half-trace are shown in Fig. 4.8. The total instruction count of the point multiplier
for F2283 is shown in Table 4.5. Approximately 132, 10-bit instructions were needed.
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Inversion 15: T0← T0×T1 30: T1,R0← R0,T1
1: T1← T 2

0 16: T1,R0← R0,T1 31: T0← T 2
0

2: T1← T0×T1 17: T0← T 2
1 32: T0← T0×T1

3: T0,R0← R0,T0 18: T0← T 216

0 33: T0← T 2
1

4: T0← T 2
1 19: T0← T0×T1 34: T0← T 2140

0
5: T0← T 2

0 20: T1,R0← R0,T1 35: T0← T0×T1
6: T0← T0×T1 21: T0← T 2

0 36: T0← T 2
0

7: T0← T 2
1 22: T0← T0×T1 Half-Trace

8: T0← T 23

0 23: T1,R0← R0,T1 1: T1← T 2
0

9: T0← T0×T1 24: T0← T 2
1 2: T1← T 2

1
10: T0← T 2

1 25: T0← T 234

0 3: T0← T0 +T1

11: T0← T 27

0 26: T0← T0×T1 4: T1← T 2
1

12: T0← T0×T1 27: T0← T 2
1 5: T1← T 2

1
13: T1,R0← R0,T1 28: T0← T 269

0 6: T0← T0 +T1

14: T0← T 2
0 29: T0← T0×T1 *Repeat steps 4-6 m−2

2 times

Figure 4.8: Itoh-Tsujii [13] inversion (F2283) and half-trace subroutines.

Table 4.5: Necessary subroutines for point multiplication.
Subroutine Iterations #ADD #SQ #MULT #SWAP Latency (cc)

Init 1 3 2 1 4 310
Step 281 5 4 6 10+21 494,841

x Recovery 1 16 5 9 13 2,649
y Recovery 1 3 2 3 6 882
Half Trace 2×141 1 2 0 0 2×1,269
Inversion 3×1 0 282 11 6 3×3,977

Total 1,705 2,540 1,730 3,410 512,555
1. Special SWAP’s that the controller handles.



4.3 Comparison and Discussion 51

4.3 Comparison and Discussion

This design was synthesized using Synopsys Design Compiler in F2283,F2233, and F2163 , each a
different standardized binary field size by NIST [34]. The TSMC 65-nm CMOS standard tech-
nology and CORE65LPSVT standard cell library were used for results. This implementation
was optimized for area.

The area was converted to Gate Equivalent (GE), where the size of a single NAND gate is
considered 1 GE. For our particular technology library, the size of a synthesized NAND gate
was 1.4 µm2, so this was used as the conversion factor. Latency reports the total number of
cycles to compute the final coordinates of a point multiplication. Parameters such as the type
of curve used and if Montgomery Ladder were used to indicate some innate security properties
of the curve. Power and energy results were not included as a comparison because they are
dependent on the underlying technology, frequency of the processor, and testing methodology.
The comparison results are shown in Table 4.6.

This ECC implementation over BEC does make a few assumptions that not necessarily
each of these other implementations make. This architecture’s area does not include the ROM
to hold the instructions. The ROM was not synthesized, but approximately 165 bytes of ROM
were required. By the estimate that 1,426 bytes is equivalent to 2,635 GE in [6], 165 bytes of
ROM is roughly equivalent to 274 GE. This architecture assumes that each bit of the key will
be fed into the co-processor. These assumptions are explained in previous sections. The areas
of the implementation for F2163 , F2233 , and F2283 excluding the register file and program ROM
are 3,248 GE, 3,788 GE, and 5,566 GE, respectively.

Looking at timing for these implementation, the number of clock cycles appears to rise
quadratically when comparing F2163 to F2283 . This is to be expected, as the Montgomery
Ladder performs 6 multiplications each step. A multiplication takes m clock cycles and there
are m−2 steps.

The area appears to have a linear relationship. This is also to be expected, as the register
file’s size increases linearly. The area of the FAU depends on the underlying finite field and
the area of the controller is fairly constant. The area of the FAU and controller for F2233 is only
a slight increase over the area of the FAU and controller for F2163 because the F2233 is type II
GNB, in contrast to F2163 and F2283 are type IV GNB. Therefore the p′ block in F2233 requires
much fewer XOR gates.

The underlying architecture of this implementation was similar to [28]. This implemen-
tation uses more area because an additional register and two additional constants were used
in the register file. However, one less multiplexer was required in the FAU since the neutral
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element in GNB was not required in any formulas. Other than that, the implementation in [28]
does not use the Montgomery Ladder and performs over Koblitz curves, which speeds up the
point multiplication at the cost of some security.

The only other light-weight implementation of BEC point multiplication is found in [15].
Many of the internals of our point multiplier are different. For instance, this implementation
uses a circular register structure, and also a different bit-serial multiplier in Polynomial Basis.
A Polynomial Basis parallel squaring unit was used in this implementation, which is costly
when compared to the GNB. This implementation uses Common-Z differential coordinate sys-
tem for the Montgomery Ladder, but each step requires 8 multiplications. Our implementation
requires only 6 multiplications, representing a reduction of latency in the Montgomery Ladder
by approximately 25%. Lastly, this implementation requires a register file to hold 6 regis-
ters, whereas our register file only requires 5 registers. Hence, our implementation features a
smaller and faster point multiplication scheme than that in [15].

The introduction of extremely area-efficient crypto-processors with comb-serial multipli-
cation schemes [21] like the one proposed in [32] indicates that there is a need for new trade-off
for future implementations of these ECC targeted at RFID chips. Bit-parallel multiplication
architectures are among the fastest approaches to perform finite field multiplications, but this
requires a tremendous amount of area. Digit-serial schemes require a factor more of cycles, but
use less area. The most popular scheme for RFID chip point multiplication is bit-serial, which
requires a fraction of the area of digit-serial and requires m cycles to perform a multiplication.
Comb-serial multiplication takes this a step further by performing small multiplications over
many small combs. Depending on the multiplication scheme, this could require more than
m cycles but holds new records for area-efficiency. The work presented in [32] is among the
smallest ECC co-processors, even in F2283 . It was designed as a drop-in concept, such that
the co-processor can share RAM blocks with a microcontroller. This implementation utilizes
a comb-serial multiplicationscheme in polynomial basis over Koblitz curves. As such, the
latency of each operation is larger than that of this work. Field addition, squaring, and mul-
tiplication require 60, 200, and 829 cycles, respectively. This implementation needs space to
hold 14 intermediate elements throughout the point multiplication operation. Including the
constants, our implementation requires 9 intermediate values. The area of the co-processor
without the RAM for the register file is 4,323 GE. Moreover, in [32], the RAM results that
were included were extrapolated from a different implementation of ECC appeared in [6].
With these extrapolated results, the total area of the co-processor would be 10,204 GE. Our
crypto-processor with the register file uses 87% more area, but performs the point multiplica-
tion approximately three times faster, reducing the need to run at higher speeds to meet timing
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requirements in a device. Further, [32] utilizes zero-free tau-adic expansion to enforce a con-
stant pattern of operations, similar to the Montgomery ladder [22], to protect against timing
and power analysis attacks. However, this new technique has not been thoroughly explored
like the Montgomery ladder. Furthermore, the co-processor does not have any protection
against exceptional points attacks such as the ones presented in [33]. In summary, for higher
levels of security as was implemented in [32], the time complexity was several factors higher,
but the area was comparable to an implementation of a smaller finite field. As there is a push
for larger field sizes for higher security levels, the time complexity of the comb-serial method
of multiplication and other operations becomes inefficient.



Chapter 5

Conclusion

In this thesis, it is shown that new mixed w-coordinate differential addition and doubling
formulas for binary Edwards curve produce a fast, small, and secure implementation of point
multiplication. Corrected formulas for addition in this coordinate system have been provided
and proven. Binary Edwards curves feature a complete and unified addition formula. The
future of point multipliers targeted at RFID technology depends on the trade-offs among area,
latency, and security. The binary Edwards curves implementation presented in this thesis
has demonstrated that BEC is highly-competitive with the dominant elliptic curve systems
standardized by NIST and IEEE. As such, new standardizations that include binary Edwards
curves are necessary for the future of elliptic curve cryptography. The detailed analysis in this
thesis also suggests that binary Edwards curves are among the fastest and most secure curves
for point multiplication targeting resource-constrained devices.
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Appendix A

Implementation Code Listing

A.1 Sage Scripts

These scripts are run with Sage math. Sage math is based on Python, but has been designed
to work well with many number theoretic functions, such as finite-field arithmetic. The setup
script, in Algorithms A.1 and A.2, contains most of the preliminaries for the setup of BEC,
and only the a few sets of equations need to be added where <add code here> is.
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Algorithm A.1 Sage setup script for w-coordinate differential addition (1)

d e f mynumerator ( x ) :
i f p a r e n t ( x ) == R :

r e t u r n x
r e t u r n n u m e r a t o r ( x )

c l a s s f a s t f r a c :
d e f _ _ i n i t _ _ ( s e l f , top , b o t = 1 ) :

i f p a r e n t ( t o p ) == ZZ or p a r e n t ( t o p ) == R :
s e l f . t o p = R( t o p )
s e l f . b o t = R( b o t )

e l i f t o p . _ _ c l a s s _ _ == f a s t f r a c :
s e l f . t o p = t o p . t o p
s e l f . b o t = t o p . b o t * b o t

e l s e :
s e l f . t o p = R( n u m e r a t o r ( t o p ) )
s e l f . b o t = R( d e n o m i n a t o r ( t o p ) ) * b o t

d e f r e d u c e ( s e l f ) :
r e t u r n f a s t f r a c ( s e l f . t o p / s e l f . b o t )

d e f s r e d u c e ( s e l f ) :
r e t u r n f a s t f r a c ( I . r e d u c e ( s e l f . t o p ) , I . r e d u c e ( s e l f . b o t ) )

d e f i s z e r o ( s e l f ) :
r e t u r n s e l f . t o p i n I and n o t ( s e l f . b o t i n I )

d e f i s d o u b l i n g z e r o ( s e l f ) :
r e t u r n s e l f . t o p i n J and n o t ( s e l f . b o t i n J )

d e f __add__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p + s e l f . b o t * o t h e r , s e l f . b o t )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . b o t + s e l f . b o t * o t h e r . top , s e l f . b o t * o t h e r . b o t )
r e t u r n NotImplemented d e f __sub__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p − s e l f . b o t * o t h e r , s e l f . b o t )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . b o t − s e l f . b o t * o t h e r . top , s e l f . b o t * o t h e r . b o t )
r e t u r n NotImplemented

d e f __neg__ ( s e l f ) :
r e t u r n f a s t f r a c (− s e l f . top , s e l f . b o t )

d e f __mul__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r , s e l f . b o t )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . top , s e l f . b o t * o t h e r . b o t )
r e t u r n NotImplemented d e f __rmul__ ( s e l f , o t h e r ) :
r e t u r n s e l f . __mul__ ( o t h e r ) d e f __d iv__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . top , s e l f . b o t * o t h e r )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . bot , s e l f . b o t * o t h e r . t o p )
r e t u r n NotImplemented d e f __pow__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p ^ o t h e r , s e l f . b o t ^ o t h e r )
r e t u r n NotImplemented
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Algorithm A.2 Sage setup script for w-coordinate differential addition (2)

d e f i s i d e n t i t y ( x ) :
r e t u r n x . i s z e r o ( )

d e f i s d o u b l i n g i d e n t i t y ( x ) :
r e t u r n x . i s d o u b l i n g z e r o ( )

R. < ud , ud2ove rd1p lus1 , ux3 , uy3 , ux2 , uy2 , uw1 , uw2 , uw3> = Po lynomia lR ing (GF ( 2 ) , 9 , o r d e r = ’ i n v l e x ’ )
ux_2 = ( uy2 )
uy_2 = ( ux2 )
ux1 = ( ( ud *( ux3+ux_2 )+ ud *( ux3+uy3 ) * ( ux_2+uy_2 ) + ( ux3+ux3 ^ 2 ) * ( ux_2 *( uy3+uy_2 +1)+ uy3 * uy_2 ) )
/ ( ud +( ux3+ux3 ^ 2 ) * ( ux_2+uy_2 ) ) )
uy1 = ( ( ud *( uy3+uy_2 )+ ud *( ux3+uy3 ) * ( ux_2+uy_2 ) + ( uy3+uy3 ^ 2 ) * ( uy_2 *( ux3+ux_2 +1)+ ux3 * ux_2 ) )
/ ( ud +( uy3+uy3 ^ 2 ) * ( ux_2+uy_2 ) ) )
I = R . i d e a l ( [ mynumerator ( ( ud * ( ux1+uy1 )+ ud *( ux1 ^2+ uy1 ^2 ) ) − ( ( ux1+ux1 ^ 2 ) * ( uy1+uy1 ^ 2 ) ) )
, mynumerator ( ( ux1+uy1 )−(uw1 ) )
, mynumerator ( ( ud * ( ux2+uy2 )+ ud *( ux2 ^2+ uy2 ^2 ) ) − ( ( ux2+ux2 ^ 2 ) * ( uy2+uy2 ^ 2 ) ) )
, mynumerator ( ( ux2+uy2 )−(uw2 ) )
, mynumerator ( ( ud * ( ux3+uy3 )+ ud *( ux3 ^2+ uy3 ^2 ) ) − ( ( ux3+ux3 ^ 2 ) * ( uy3+uy3 ^ 2 ) ) )
, mynumerator ( ( ux3+uy3 )−(uw3 ) ) , mynumerator ( ( u d 2 o v e r d 1 p l u s 1 )−( ud / ud + 1 ) ) ] )
ud = f a s t f r a c ( ud )
u d 2 o v e r d 1 p l u s 1 = f a s t f r a c ( u d 2 o v e r d 1 p l u s 1 )
ux3 = f a s t f r a c ( ux3 )
uy3 = f a s t f r a c ( uy3 )
ux2 = f a s t f r a c ( ux2 )
uy2 = f a s t f r a c ( uy2 )
uw1 = f a s t f r a c ( uw1 )
uw2 = f a s t f r a c ( uw2 )
uw3 = f a s t f r a c ( uw3 )
ux_2 = f a s t f r a c ( ux_2 )
uy_2 = f a s t f r a c ( uy_2 )
ux1 = f a s t f r a c ( ux1 )
uy1 = f a s t f r a c ( uy1 )

<INSERT TEST CODE HERE FOR DIFFERENTIAL ADDITION>

ux5 = ( ( ( ud * ( ux3+ux2 )+ ud *( ux3+uy3 ) * ( ux2+uy2 ) + ( ux3+ux3 ^ 2 ) * ( ux2 *( uy3+uy2+ f a s t f r a c ( 1 ) ) + uy3 *uy2 ) )
/ ( ud +( ux3+ux3 ^ 2 ) * ( ux2+uy2 ) ) ) ) . r e d u c e ( )
uy5 = ( ( ( ud * ( uy3+uy2 )+ ud *( ux3+uy3 ) * ( ux2+uy2 ) + ( uy3+uy3 ^ 2 ) * ( uy2 *( ux3+ux2+ f a s t f r a c ( 1 ) ) + ux3 *ux2 ) )
/ ( ud +( uy3+uy3 ^ 2 ) * ( ux2+uy2 ) ) ) ) . r e d u c e ( )
p r i n t i s i d e n t i t y ( ( ud * ( ux5+uy5 )+ ud *( ux5 ^2+ uy5 ^ 2 ) )
−(( ux5+ux5 ^ 2 ) * ( uy5+uy5 ^ 2 ) ) ) o r i s i d e n t i t y ( uy1 *uy1*uy2*uy3 *ux1*ux1* ux2*ux3

* ( ( ud *( ux5+uy5 )+ ud *( ux5 ^2+ uy5 ^2 ) ) − ( ( ux5+ux5 ^ 2 ) * ( uy5+uy5 ^ 2 ) ) ) )
p r i n t i s i d e n t i t y ( ( ux5+uy5 )−(uw5 ) ) o r i s i d e n t i t y ( uy1*uy1 *uy2*uy3*ux1 *ux1*ux2*ux3 * ( ( ux5+uy5 )−(uw5 ) ) )

The code in Algorithm A.3 demonstrates that the proposed equations in K. Kim, C. Lee,
and C. Negre [14] were incorrect, most likely caused by an algebra mistake.

Algorithm A.3 Sage script disproving w-coordinate differential addition presented in K. Kim,
C. Lee, and C. Negre [14]

uN = ( uw2^2+uw3 ^2)
uD = ( uw2^2+uw3 ^ 2 ) / uw1 + f a s t f r a c ( 1 )
uw5 = f a s t f r a c ( 1 ) + uN / uD

The code in Algorithm A.4 proves that the w-coordinate addition formulas proposed in
this thesis are valid.
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Algorithm A.4 Sage script proving explicit formula 3.7 for w-coordinate differential addition

uA = ( uw2+uw3 )^2
uB = uA / uw1
uN = uA+uB
uD = uB + f a s t f r a c ( 1 )
uE = f a s t f r a c ( 1 ) / uD
uw5 = uN*uE

The next Sage scripts prove the formulas in the mixed w-coordinate Differential Addition
system. Again, this sets up the curve and automatically converts back to affine coordinates at
the end of the program to verify the formulas. Algorithms A.5 and A.6 demonstrate the setup
code.
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Algorithm A.5 Sage setup script for WZ coordinate system (1)

d e f mynumerator ( x ) :
i f p a r e n t ( x ) == R :

r e t u r n x
r e t u r n n u m e r a t o r ( x )

c l a s s f a s t f r a c :
d e f _ _ i n i t _ _ ( s e l f , top , b o t = 1 ) :

i f p a r e n t ( t o p ) == ZZ or p a r e n t ( t o p ) == R :
s e l f . t o p = R( t o p )
s e l f . b o t = R( b o t )

e l i f t o p . _ _ c l a s s _ _ == f a s t f r a c :
s e l f . t o p = t o p . t o p
s e l f . b o t = t o p . b o t * b o t

e l s e :
s e l f . t o p = R( n u m e r a t o r ( t o p ) )
s e l f . b o t = R( d e n o m i n a t o r ( t o p ) ) * b o t

d e f r e d u c e ( s e l f ) :
r e t u r n f a s t f r a c ( s e l f . t o p / s e l f . b o t )

d e f s r e d u c e ( s e l f ) :
r e t u r n f a s t f r a c ( I . r e d u c e ( s e l f . t o p ) , I . r e d u c e ( s e l f . b o t ) )

d e f i s z e r o ( s e l f ) :
r e t u r n s e l f . t o p i n I and n o t ( s e l f . b o t i n I )

d e f i s d o u b l i n g z e r o ( s e l f ) :
r e t u r n s e l f . t o p i n J and n o t ( s e l f . b o t i n J )

d e f __add__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p + s e l f . b o t * o t h e r , s e l f . b o t )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . b o t + s e l f . b o t * o t h e r . top , s e l f . b o t * o t h e r . b o t )
r e t u r n NotImplemented

d e f __sub__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p − s e l f . b o t * o t h e r , s e l f . b o t )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . b o t − s e l f . b o t * o t h e r . top , s e l f . b o t * o t h e r . b o t )
r e t u r n NotImplemented

d e f __neg__ ( s e l f ) :
r e t u r n f a s t f r a c (− s e l f . top , s e l f . b o t )

d e f __mul__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r , s e l f . b o t )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . top , s e l f . b o t * o t h e r . b o t )
r e t u r n NotImplemented

d e f __rmul__ ( s e l f , o t h e r ) :
r e t u r n s e l f . __mul__ ( o t h e r )

d e f __d iv__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . top , s e l f . b o t * o t h e r )
i f o t h e r . _ _ c l a s s _ _ == f a s t f r a c :

r e t u r n f a s t f r a c ( s e l f . t o p * o t h e r . bot , s e l f . b o t * o t h e r . t o p )
r e t u r n NotImplemented

d e f __pow__ ( s e l f , o t h e r ) :
i f p a r e n t ( o t h e r ) == ZZ :

r e t u r n f a s t f r a c ( s e l f . t o p ^ o t h e r , s e l f . b o t ^ o t h e r )
r e t u r n NotImplemented



68 Implementation Code Listing

Algorithm A.6 Sage setup script for WZ coordinate system (2)

d e f i s i d e n t i t y ( x ) :
r e t u r n x . i s z e r o ( )

d e f i s d o u b l i n g i d e n t i t y ( x ) :
r e t u r n x . i s d o u b l i n g z e r o ( )

R. < ud1 , ud2 , ux3 , uy3 , ux2 , uy2 , uW1, uZ1 , uW2, uZ2 , uW3, uZ3> = Po lynomia lR ing (GF ( 2 ) , 1 2 , o r d e r = ’ i n v l e x ’ )
ux_2 = ( uy2 )
uy_2 = ( ux2 )
ux1 = ( ( ud1 *( ux3+ux_2 )+ ud2 *( ux3+uy3 ) * ( ux_2+uy_2 ) + ( ux3+ux3 ^ 2 ) * ( ux_2 *( uy3+uy_2 +1)+ uy3 * uy_2 ) )
/ ( ud1 +( ux3+ux3 ^ 2 ) * ( ux_2+uy_2 ) ) )
uy1 = ( ( ud1 *( uy3+uy_2 )+ ud2 *( ux3+uy3 ) * ( ux_2+uy_2 ) + ( uy3+uy3 ^ 2 ) * ( uy_2 *( ux3+ux_2 +1)+ ux3 * ux_2 ) )
/ ( ud1 +( uy3+uy3 ^ 2 ) * ( ux_2+uy_2 ) ) )
I = R . i d e a l ( [ mynumerator ( ( ud1 *( ux1+uy1 )+ ud2 *( ux1 ^2+ uy1 ^2 ) ) − ( ( ux1+ux1 ^ 2 ) * ( uy1+uy1 ^ 2 ) ) )
, mynumerator ( ( ux1+uy1 )−(uW1/ uZ1 ) )
, mynumerator ( ( ud1 *( ux2+uy2 )+ ud2 *( ux2 ^2+ uy2 ^2 ) ) − ( ( ux2+ux2 ^ 2 ) * ( uy2+uy2 ^ 2 ) ) )
, mynumerator ( ( ux2+uy2 )−(uW2/ uZ2 ) )
, mynumerator ( ( ud1 *( ux3+uy3 )+ ud2 *( ux3 ^2+ uy3 ^2 ) ) − ( ( ux3+ux3 ^ 2 ) * ( uy3+uy3 ^ 2 ) ) )
, mynumerator ( ( ux3+uy3 )−(uW3/ uZ3 ) )
, mynumerator ( ( ud1 )−( ud2 ) )
, mynumerator ( ( uZ2)−(uZ3 ) )
, mynumerator ( ( uZ1 ) − (1 ) ) ] )
ud1 = f a s t f r a c ( ud1 )
ud2 = f a s t f r a c ( ud2 )
ux3 = f a s t f r a c ( ux3 )
uy3 = f a s t f r a c ( uy3 )
ux2 = f a s t f r a c ( ux2 )
uy2 = f a s t f r a c ( uy2 )
uW1 = f a s t f r a c (uW1)
uZ1 = f a s t f r a c ( uZ1 )
uW2 = f a s t f r a c (uW2)
uZ2 = f a s t f r a c ( uZ2 )
uW3 = f a s t f r a c (uW3)
uZ3 = f a s t f r a c ( uZ3 )
ux_2 = f a s t f r a c ( ux_2 )
uy_2 = f a s t f r a c ( uy_2 )
ux1 = f a s t f r a c ( ux1 )
uy1 = f a s t f r a c ( uy1 )

<INSERT CODE HERE FOR WZ DIFFERENTIAL ADDITION>

ux5 = ( ( ( ud1 *( ux3+ux2 )+ ud2 *( ux3+uy3 ) * ( ux2+uy2 ) + ( ux3+ux3 ^ 2 ) * ( ux2 *( uy3+uy2+ f a s t f r a c ( 1 ) ) + uy3 *uy2 ) )
/ ( ud1 +( ux3+ux3 ^ 2 ) * ( ux2+uy2 ) ) ) ) . r e d u c e ( )
uy5 = ( ( ( ud1 *( uy3+uy2 )+ ud2 *( ux3+uy3 ) * ( ux2+uy2 ) + ( uy3+uy3 ^ 2 ) * ( uy2 *( ux3+ux2+ f a s t f r a c ( 1 ) ) + ux3 *ux2 ) )
/ ( ud1 +( uy3+uy3 ^ 2 ) * ( ux2+uy2 ) ) ) ) . r e d u c e ( )
p r i n t i s i d e n t i t y ( ( ud1 *( ux5+uy5 )+ ud2 *( ux5 ^2+ uy5 ^ 2 ) )
−(( ux5+ux5 ^ 2 ) * ( uy5+uy5 ^ 2 ) ) ) o r i s i d e n t i t y ( uy1 *uy1*uy2*uy3 *ux1*ux1*ux2 *ux3*
( ( ud1 *( ux5+uy5 )+ ud2 *( ux5 ^2+ uy5 ^2 ) ) − ( ( ux5+ux5 ^ 2 ) * ( uy5+uy5 ^ 2 ) ) ) )
p r i n t i s i d e n t i t y ( ( ux5+uy5 )−(uW5 / uZ5 ) ) o r i s i d e n t i t y ( uy1*uy1*uy2*uy3 *ux1*ux1*ux2 *ux3

* ( ( ux5+uy5 )−(uW5/ uZ5 ) ) )

The code in Algorithm A.7 proves the mixed w-coordinate addition formula in the WZ
coordinate system.
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Algorithm A.7 Sage script proving explicit formula 3.12 for mixed w-coordinate differential
addition

uC = (uW2*uZ3+uW3*uZ2 )^2
uD = ( uZ2*uZ3 )^2
uE = uC /uW1
uW5= uE + uC
uZ5 = uE + uD

The code in Algorithm A.8 proves that the mixed w-coordinate differential addition works
with the Co-Z trick and is more efficient.

Algorithm A.8 Sage script proving explicit formula 3.17 for mixed w-coordinate differential
addition with the co-Z trick

uC = (uW2+uW3)^2
uD = uZ2^2
uE = uC /uW1
uW5 = uE + uC
uZ5 = uE + uD

A.2 Subroutines

This contains a code listing of the program in assembly.

Algorithm A.9 shows the Itoh-Tsujii Itoh and Tsujii [13] inversion subroutine for F2283 .
This follows the addition chain (1,2,4,8,16,17,34,35,70,140,141,282). Eleven multiplications
are required for this binary field. A similar approach was done for F2163 and F2233 .
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Algorithm A.9 Itoh-Tsujii Itoh and Tsujii [13] inversion subroutine for GF(2283)
SQ T0 T1
MULT T1 T1 –2^2-1
SWAP T0 R0
SQ T1 T0
SQ T0 T0
MULT T1 T0 –2^4-1
SQ T0 T1
SQ T1 T1 3 Times
MULT T1 T0 –2^8-1
SQ T0 T1
SQ T1 T1 7 Times
MULT T1 T0 –2^16-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 –2^17-1
SWAP T1 R0
SQ T0 T1
SQ T1 T1 16 Times
MULT T1 T0 –2^34-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 –2^35-1
SWAP T1 R0
SQ T0 T1
SQ T1 T1 34 Times
MULT T1 T0 –2^70-1
SQ T0 T1
SQ T1 T1 69 Times
MULT T1 T0 –2^140-1
SWAP T1 R0
SQ T0 T0
MULT T1 T0 –2^141-1
SQ T0 T1
SQ T1 T1 140 Times
MULT T1 T0 –2^282-1
SQ T0 T0

Algorithm A.10 shows the half-trace subroutine. This is a simple double square and add
routine that produces the result after m−1

2 iterations.
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Algorithm A.10 Half-trace subroutine
SQ T0 T1
SQ T1 T1
ADD T1 T0
{SQ T1 T1
SQ T1 T1
ADD T1 T0} loop for m−2

2 times

Algorithm A.11 shows the beginning of the main program that was used. This includes the
initialization of the point and the repeated step of the Montgomery ladder Montgomery [22].
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Algorithm A.11 General program flow (1)
INIT
SWAP R5 T0
ADD R6 T0
SQ T0 T1
ADD T0 T1
SQ T1 R0 –W4
SWAP R4 T1
ADD R0 T1 –Z4
MULT T1 T0 –W1 revised
SWAP T1 R0 –W1 W4 Z4
STEP
SWAP T0 T0 –OUTPUT register selected by k bit
ADD T0 T1
SQ T1 R1
SWAP T1 R0
SQ T1 R0
ADD T0 T1
MULT T1 T0
SQ T0 R2 –S
SWAP R1 T1
SWAP R3 T0 –1/w0
MULT T0 R1 –E
ADD R1 T1 –U
ADD R0 R1 –V
SQ R0 R0
SWAP R0 T1
SWAP R4 T0 –d1
MULT T1 T0
ADD R2 T0 –T
SWAP R0 T1
MULT T0 T1 –W3
SWAP T1 R1
MULT T0 T0 –Z’
SWAP T0 R2
MULT T0 T1 –W4
SWAP R0 R2
SWAP T0 R1
SWAP T0 T0 –Output register selected by k bit. Repeat for every step

Algorithms A.12 and A.13 show the end of the main program that was used. This includes
the recovery of w2,w3,x2,y2.
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Algorithm A.12 General program flow (2)
RECOVER X
SWAP T0 R1
SWAP T1 R2
SWAP R0 T0
Invert T0 –1/Z
SWAP R2 T1
MULT T1 R2 –w3
SWAP R1 T1
MULT T1 T1 –w2
SWAP R5 T0
ADD R6 T0
MULT T1 R0
ADD R0 T0
ADD T1 T0
SWAP R0 T1 –(w1w2+w1+w2) w1w2 w2 0 w3
MULT T1 T0
ADD T1 T0
ADD R4 T0 –d1+w1w2+w1w2*(w1+w2+w1w2) w1w2 w2 0 w3
SWAP T1 R2
MULT T1 R2 –1st part of the numerator – 0 0 w2 0 1st
SWAP R5 T0
ADD R6 T0
ADD R0 T0 –w1+w2
SWAP R4 T1
MULT T1 T0
ADD T0 R2 –0 0 w2 0 1st+2nd
SQ R6 T0
ADD R6 T0
SQ R0 T1
ADD R0 T1
MULT T1 T0
ADD T0 R2 –Numerator complete, compute inversion now
SWAP R5 T0
ADD R6 T0 –w1 0 0 0 Numerator
SQ T0 T1
ADD T1 T0 –w1^2+w1 0 0 0 Numerator, now inversion
Invert T0 –1/(w0^2+w0)
SWAP R2 T1
MULT T1 T0
T0 = HalfTrace(T0) –x2 or x2+1
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Algorithm A.13 General Program Flow (3)
RECOVER Y
SQ T0 R2
ADD T0 R2
SWAP T0 R1
SWAP R4 T0
ADD R2 T0
Invert T0 –1/(d+x+x^2)
SWAP T1 R2
MULT T1 T0
SWAP R4 T1
MULT T1 T0
T0 = HalfTrace(T0) –y2 or y2+1
SWAP T0 T1
SWAP R1 T0 –Solution is x, y in T0 T1
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