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ABSTRACT 

Ionic Liquids have emerged as effective lubricants and additives to lubricants, in the last decade. 

Halogen-free ionic liquids have recently started to be considered as more environmentally stable 

than their halogenated counterparts, which tend to form highly toxic and corrosive acids when 

exposed to moisture. Most of the studies using ionic liquids as lubricants or additives of lubricants 

have been done experimentally. Due to the complex nature of the lubrication mechanism of these 

ordered fluids, the development of a theoretical model that predicts the ionic liquid lubrication 

ability is currently incomplete. In this study, a suitable and existing friction model to describe 

lubricating ability of ionic liquids in the elastohydrodynamic lubrication regime is identified and 

compared to experimental results.  

Two phosphonium-based, halogen-free ionic liquids are studied as neat lubricants and as additives 

to a Polyalphaolefin base oil in steel-steel contacts using a ball-on-flat reciprocating tribometer. 

Experimental conditions (speed, load and roughness) are selected to ensure that operations are 

carried out in the elastohydrodynamic regime. Wear volume was also calculated for all tests. A 

good agreement was found between the model and the experimental results when [THTDP][Phos] 

was used as an additive to the base oil, but some divergence was noticed when [THTDP][DCN] 

was added, particularly at the highest speed studied. A significant decrease in the steel disks wear 

volume is observed when 2.5 wt. % of the two ionic liquids were added to the base lubricant.   
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6.4 Wear  

The wear volume for each test was calculated using Eq. 14. The wear results at each speed are 

depicted in figures 22-27. As the surface roughness values at each speed are different, comparisons 

between lubricants can be made at the same speed only. The results at a speed of 0.01 m/s are 

depicted in Figure 22. At this speed, the addition of the ILs actually increases the amount of wear 

in the samples with [THTDP][DCN] performing better. This could be due to the fact that ILs 

require a certain amount of activation energy before they actually react with the surface and this 

speed, being fairly low, could not provide this required energy. 

 

Figure 22: Summary of wear results at 0.01 m/s 
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Figure 24: Summary of wear results at 0.02 m/s 

Figure 24 shows the summary of the wear results at 0.04 m/s. From the figure, when 2.5% of 

[THTDP][Phos] and all concentrations of [THTDP][DCN] are used, a significant reduction in the 

wear volume is observed. There is an 83% decrease in the wear volume when 0.5% of 

[THTDP][DCN] is added when compared to the base oil and a 58% reduction when 2.5% of 

[THTDP][Phos] is added to the PAO. It should also be noted that there is a significant reduction 

in wear when the ILs are used as neat lubricants. The optical micrographs of the samples are 

presented in Figure 23. 

         

 
(a) PAO+0.5% 

[THTDP][Phos] 

(b) PAO+1% 

[THTDP][Phos] 

(c) PAO+2.5% 

[THTDP][Phos] 
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Figure 25: Optical micrographs at 0.02 m/s 

The wear scar of the base oil PAO shows abrasive wear but when the ILs are added, we don’t see 

any abrasive wear. Also the amount of plastic deformation is clearly reduced when the ILs are 

added.  

 

Figure 26: Summary of wear results at 0.04 m/s 

(d) PAO+0.5% 

[THTDP][DCN] 

(e) PAO+1% 

[THTDP][DCN] 

(f) PAO+2.5% 

[THTDP][DCN] 

(g) [THTDP][Phos] (h) [THTDP][DCN] (i) PAO 
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At the highest speed of this study, both ILs perform very well except when 0.5% of 

[THTDP][Phos] is added. The most probable reason for this is that at this speed, the activation 

energy required for the reaction between the ILs and the metal surface is higher, thereby increasing 

the reactivity and facilitating the formation of a corrosion resistant tribolayer. As the concentration 

of [THTDP][Phos] is increased, the reduction in the wear volume increases. The greatest reduction 

(74%) is found when 2.5% of [THTDP][DCN] is used 

          

 

          

 

         

 

Figure 27: Optical micrographs at 0.04 m/s 

Figure 25 shows the optical micrographs of the samples. The test with the PAO indicates that the 

tracks are deeper and also the effect of vibrations in the machine are imparted on the track causing 

the widening and narrowing of the track at intervals. This phenomenon starts to vanish as the ILs 

are added and the best wear track is observed when 2.5% of [THTDP][DCN] is used. The neat ILs 

(a) PAO+0.5% 

[THTDP][Phos] 

(b) PAO+1% 

[THTDP][Phos] 

(c) PAO+2.5% 

[THTDP][Phos] 

(d) PAO+0.5% 

[THTDP][DCN] 

(e) PAO+1% 

[THTDP][DCN] 
(f) PAO+2.5% 

[THTDP][DCN] 

(g) [THTDP][Phos] (h) [THTDP][DCN] (i) PAO 
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also prove to be very good in reducing the amount of wear, as is evident from the optical 

micrographs. 

 

7. CONCLUSIONS 

In this study, the tribological behavior of two phosphonium-based ILs, 

Tetradecyltrihexylphosphonium bis(2,4,4-trimethylpentyl)phosphinate [THTDP][Phos] and 

Trihexyltetradecylphosphonium Decanoate [THTDP][DCN], is investigated as additives of a 

synthetic polyalphaolefin oil—Synton PAO-40 (PAO)—in steel–steel contact. PAO-IL blends 

containing between 0.5% wt. to 2.5% wt. of each IL are investigated using a block-on-flat 

reciprocating tribometer and the experimental results are compared to the results obtained from an 

existing elastohydrodynamic friction model. The following conclusions can be drawn from this 

study.  

 Halogen-free Ionic Liquids can be used to decrease the friction and wear volume. 

 There is not a large increase in the viscosity when the ILs are added to the PAO. 

 [THTDP][Phos] is a non-Newtonian fluid and exhibits shear thinning behavior. 

 [THTDP][DCN] is a Newtonian fluid.  

 Carreau’s model can be used to describe the behavior of [THTDP][Phos], when used as an 

additive to a base oil (PAO) for the concentrations and speeds used in this study. 

  Carreau’s model can describe the behavior of [THTDP][DCN] when used as an additive 

to the base oil at slower speeds. It is less accurate at higher speeds due to the increase in 

activation energy, thereby resulting in the formation of a tribolayer.  

 At a speed of 0.02m/s, a 58% reduction in wear volume is found when 2.5% 

[THTDP][Phos] is added to the PAO and an 83% reduction in wear volume is observed 

when 0.5% of [THTDP][DCN] is added to the base oil. 

  At 0.04 m/s, a mixture of PAO and 2.5% [THTDP][DCN]  reduces the wear volume by 

74% when compared to the base oil.  

 The primary wear mechanisms observed are abrasive wear and plastic deformation. These 

effects are reduced considerably by the addition of the ILs. 
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8. SCOPE FOR FUTURE WORK 

 Experimental determination of the pressure-viscosity coefficient will mostly provide more 

accurate results. Also will enable the prediction of the friction coefficient using these 

specific neat ionic liquids. 

 Studying different models, and comparing their results to Carreau’s model, thereby 

identifying the best model.  

 Combining the results from all such models and from using different ionic liquids could 

facilitate the creation of a theoretical model solely for ionic liquids.   
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10. APPENDICES 

Appendix A: MATLAB Code to estimate Pressure-Viscosity Coefficent 

clc 

v40=3310;                              %Viscosity at 40 C (Change for each Lubricant) 

v100=2180;                             %Viscosity at 100 C (Change for each Lubricant) 

H40=log10(log10(v40)+1.200);           %H40 

H100=log10(log10(v100)+1.200);         %H100 

a=H40-H100; 

F40=(0.885-0.864*H40);                 %F40 

v0=3310/1000;                          %Viscosity at Temperature at which alpha is desired 

z=((7.81*a)^1.5)*F40                   %Calculation of z 

pr=1.98*10^8; 

vinf=6.315*10^-5; 

a1=log(v0/vinf)*z/pr                   %Calculation of Barus Pressure Viscosity Coefficient 

astar=a1/(1+((1-z)/(a1*pr)))           %Calculation of Bloks Isoviscosu Pressure Coefficient 

Appendix B: MATLAB Code to calculate central film thickness, contact pressure and film 

parameter. 

v0=3310/1000;                             %Viscosity at 40 C (Change for each Lubricant) 

U=0.005/2;                                %Average sliding speed 

E1=210e9;                                 %Youngs modulus of Steel Sample 

E2=200e9;                                 %Youngs modulus of Steel Ball 

v1=0.3;                                   %Poissons Ratio of Steel Sample 

v2=0.27;                                  %Poissons Ratio of Steel Ball 

E_1=(((1-v1^2)/E1)+((1-v2^2)/E2)); 

E=1/E_1;                                  %Equivalent Youngs Modulus 

R=(2/(1.5*10^-3))^-1;                     %Reduced radius of curvature 

a=7.1938e-11;                             %Pressure-Viscosity Coefficient 

W=5;                                      %Load(N) 

h=1.39*((v0*U/(2*E*R)^0.67)*((a*E)^0.53)*((E*R*R/W)^0.067));  %Film Thickness 

s2=0.05e-6;                               %Roughness of Steel Ball 

s1=sqrt((h^2/9)-s2^2);                    %Estimate roughness of Steel Smaple 

s11=sqrt((h^2/100)-s2^2); 

s1=0.4e-6; 

l=h/sqrt(s1^2+s2^2);                     %Film Parameter 

a1=(3*W*R/(4*E))^(1/3);                  %Area of contact 

p=3*W/(2*pi*a1^2);                       %Contact Pressure 
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Appendix C: MATLAB Code to calculate the friction coefficient and compare with 

experimental results. 

%Carreau's Model for [THTDP][Phos] 

clc 

Film 

dU=[0.005,0.01,0.02]*2;                      % Sliding Speed of Voice Coil 

U=dU/2;                                      % Average sliding speed of both surfaces 

n=[0.1235,0.1242,0.1275,0.1267];             % Values of 'n' in Carreaus Model for each Lubricant 

G=[4.2859,4.3415,4.2756,4.3267]*10^6;        % Values of 'G' in Carreaus Model for each Lubricant 

v0=[325,330.09,330.35,331.99]/1000;          % Viscosity of each lubricant 

a=[16.379,16.389,16.474,16.553]*10^-9;       % Pressure-Viscosity Coefficient 

cm=zeros(4,3); 

h=0; 

for i=1:4; 

    for j=1:3; 

h=1.39*((v0(i)*U(j)/(2*E*R)^0.67)*((a(i)*E)^0.53)*((E*R*R/W)^0.067));     % Calculation of Film 

Thickness 

cm(i,j)=3*((v0(i).*dU(j)/h).^n(i))*(G(i).^(1-n(i)))*(exp(n(i).*a(i)*p)*(n(i).*a(i)*p-

1)+1)/((n(i).*a(i)).^2*p.^3);                % Calculation of Friction Coefficient 

    end 

end 

cex=[0.080123,0.099823,0.089858;0.08306,0.089,0.075628;0.093643,0.051566,0.083057;0.094253,0.1169

58,0.083684];                                % Experimental friction values for each lubricant 

figure 

subplot(3,1,1) 

plot(dU,cex(1,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(1,:),'-o',... 

    'LineWidth',2) 

legend('Experimental','Model') 

title('PAO') 

xlabel('Speed (m/s)') 

ylabel('Friction Coefficient') 

axis([0,0.05,0,0.5]) 

grid on 

hold off 

subplot(3,1,1) 

plot(dU,cex(2,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(2,:),'-o',... 

    'LineWidth',2) 

 legend('Experimental','Model') 

title('PAO+0.5%[THTDP][Phos]') 

xlabel('Speed (m/s)') 

ylabel('Friction Coefficient') 

axis([0,0.05,0,0.5]) 

grid on 

hold off 

subplot(3,1,2) 
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plot(dU,cex(3,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(3,:),'-o',... 

    'LineWidth',2) 

 legend('Experimental','Model') 

title('PAO+1%[THTDP][Phos]') 

ylabel('Friction Coefficient') 

xlabel('Speed (m/s)') 

axis([0,0.05,0,0.5]) 

grid on 

subplot(3,1,3) 

plot(dU,cex(4,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(4,:),'-o',... 

    'LineWidth',2) 

 legend('Experimental','Model') 

title('PAO+2.5%[THTDP][Phos]') 

xlabel('Speed (m/s)') 

ylabel('Friction Coefficient') 

axis([0,0.05,0,0.5]) 

grid on 

hold off 

for i=1:4; 

rms1p(i)=sqrt(sum((cm(i,:)-cex(i,:)).^2)/length(cm));                                 % 

Calculation of RMS error values 

end 

%Carreau's Model for [THTDP][DCN] 

clc 

Film 

dU=[0.005,0.01,0.02]*2;                    % Sliding Speed of Voice Coil 

U=dU/2;                                    % Average sliding speed of both surfaces 

n=[0.1235,0.1167,0.1089,0.0987];           % Values of 'n' in Carreaus Model for each Lubricant 

G=[4.2859,4.4156,4.6863,4.525]*10^6;       % Values of 'G' in Carreaus Model for each Lubricant 

v0=[325,339,360,343.3]/1000;               % Viscosity of each lubricant 

a=[16.379,16.514,17.52,17.563]*10^-9;      % Pressure-Viscosity Coefficient 

cm=zeros(4,3); 

 

for i=1:4; 

    for j=1:3; 

h=1.39*((v0(i)*U(j)/(2*E*R)^0.67)*((a(i)*E)^0.53)*((E*R*R/W)^0.067));  % Calculation of Film 

Thickness 

cm(i,j)=3*((v0(i).*dU(j)/h).^n(i))*(G(i).^(1-n(i)))*(exp(n(i).*a(i)*p)*(n(i).*a(i)*p-

1)+1)/((n(i).*a(i)).^2*p.^3);              % Calculation of Friction Coefficient 

    end 

end 

cex=[0.080123,0.099823,0.089858;0.068537,0.10628,0.083547;0.07274,0.076889,0.10048;0.050008,0.084

181,0.107319];    % Experimental friction values for each lubricant 

figure 

subplot(2,2,1) 

plot(dU,cex(1,:),'-*',... 

    'LineWidth',2) 
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hold on 

plot(dU,cm(1,:),'-o',... 

    'LineWidth',2) 

legend('Experimental','Model') 

title('Model vs Experiment PAO') 

ylabel('Friction Coefficient') 

xlabel('Speed (m/s)') 

axis([0,0.05,0,0.5]) 

grid on 

subplot(2,2,2) 

plot(dU,cex(2,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(2,:),'-o',... 

    'LineWidth',2) 

legend('Experimental','Model') 

title('PAO+0.5%[THTDP][DCN]') 

ylabel('Friction Coefficient') 

xlabel('Speed (m/s)') 

axis([0,0.05,0,0.5]) 

grid on 

subplot(2,2,3) 

plot(dU,cex(3,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(3,:),'-o',... 

    'LineWidth',2) 

legend('Experimental','Model') 

title('PAO+1%[THTDP][DCN') 

ylabel('Friction Coefficient') 

xlabel('Speed (m/s)') 

axis([0,0.05,0,0.5]) 

grid on 

subplot(2,3,4) 

plot(dU,cex(4,:),'-*',... 

    'LineWidth',2) 

hold on 

plot(dU,cm(4,:),'-o',... 

    'LineWidth',2) 

legend('Experimental','Model') 

title('PAO+2.5%[THTDP][DCN]') 

ylabel('Friction Coefficient') 

xlabel('Speed (m/s)') 

axis([0,0.05,0,0.5]) 

grid on 

for i=1:4; 

rms1(i)=sqrt(sum((cm(i,:)-cex(i,:)).^2)/length(cm));            % Calculation of RMS error values 

end 

 


