Characterization of Gait Patterns in Common Gait Rehabilitation Exercises

Jared Green, Elizabeth A. DeBartolo, Ph.D. and Kathleen Lamkin-Kennard Ph.D.
Mechanical Engineering Department

Rochester Institute of Technology
Rochester, NY 14623-5604 USA

Background
- In prior work [1], a gait and terrain monitoring system was developed and validated on people with no known gait impairment on 5 terrain types: level ground, up stairs, down stairs, up ramp, and down ramp.
- A new and improved device allowed gait readings to be measured without the need for a laptop.

Motivation
- People undergoing gait rehabilitation may perform exercises that differ from the type of walking that occurs in standard community ambulation.
- A new and improved device allowed gait readings to be measured without the need for a laptop.
- People with gait impairments may traverse stairs in a step-to-step pattern, rather than the step-over-step pattern seen in normal gait [2].
- A tool to monitor walking activity as well as long-term changes in gait patterns is an important tool for clinicians.

Research Goal
Demonstrate the ability to quantify gait patterns during some of the unique walking activities performed in physical therapy such as sidestep, backwards walking, and step-by-step on stairs.

Experimental Procedure

<table>
<thead>
<tr>
<th>Test</th>
<th>Duration</th>
<th>Leading leg</th>
<th>Number of trials</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward walking</td>
<td>100 feet approximate</td>
<td>N/A</td>
<td>5</td>
<td>Standard walking</td>
</tr>
<tr>
<td>Sidestep</td>
<td>50 feet approximate</td>
<td>Instrumented</td>
<td>3</td>
<td>Standard walking</td>
</tr>
<tr>
<td>Sidestep (step-to-step)</td>
<td>13 steps per flight</td>
<td>Non-</td>
<td>4</td>
<td>Standard walking</td>
</tr>
<tr>
<td>Upstairs (step-to-step)</td>
<td>13 steps per flight</td>
<td>Non-</td>
<td>4</td>
<td>Standard walking</td>
</tr>
<tr>
<td>Downstairs (step-to-step)</td>
<td>13 steps per flight</td>
<td>Non-</td>
<td>4</td>
<td>Standard walking</td>
</tr>
</tbody>
</table>

Data Analysis
- Complete analysis procedures are outlined in [1].
- Data were fit to 4th order Fourier series in Matlab using a modified RANSAC (RAandom Sample Consensus) algorithm.
- Fourier coefficients are relatively insensitive to frequency, so all raw data were scaled to a common frequency to compensate for slight variations in walking speed.

Conclusions & Future Work
- Distinct gait patterns can be captured for unique walking activities seen during rehabilitation and physical therapy.
- Differences in gait patterns between leading and trailing leg can be captured.
- This monitoring device may be helpful in monitoring gait symmetry.
- This monitoring device may be helpful in monitoring client’s use of “up with the good leg, down with the bad leg” [2] stair walking routines.

Acknowledgements
The authors would like to extend a very special thanks to the following faculty and staff for their contributions in this project.
- Dr. Dan Phillips and the Department of Biomedical Engineering
- Dr. Mario Gomes
- Dr. J.J. Mowder-Tinney and her clients at the Nazareth College Physical Therapy Clinic
- The RIT-ME machine shop staff: David Hathaway, Jan Maneti, and Rob Kraynak

References