Design of VCOs in Global Foundries 28 nm HPP CMOS

Evan Jorgensen
33rd Annual Microelectronics Conference
Rochester Institute of Technology
Department of Electrical and Microelectronic Engineering
May 12, 2015
Outline

I. Motivation
II. Contributions of this work
III. VCO Theory
 I. General
 II. VCO Characteristics
 III. Ring Oscillators
 IV. LCVCOs
IV. VCO Topologies
 I. Ring Oscillators
 II. LCVCOs
V. Design Method
 I. Ring Oscillators
 II. LCVCOs
VI. Results
 I. Ring Oscillators
 II. LCVCOs
 III. Physical Design
VII. Conclusions
Motivation

- Demand for faster and lower power communications networks and devices is increasing
 - SoCs being designed in more scaled technologies
 - Current demands require PLL in GHz range
 - Frequency synthesis for clock generation
 - Clock and data recovery (CDR) for high speed IOs
 - Frequency modulation and demodulation
 - VCOs are a core block in PLLs
- Design challenges in deep sub-micron
 - Lower supply voltage (sub 1 V)
 - Worse short-channel effects
 - Higher process variation
 - More influence from parasitics
 - Higher flicker and thermal noise

Basic PLL

CDR circuit
Contributions of this work

1. MATLAB model for predicting center frequency and phase noise of single-ended ring oscillators
2. MATLAB model for design of NMOS-only and self-biased CMOS LCVCOs
3. Case study showing disadvantages of using an LDO for tuning and regulation of ring oscillators in deep sub-micron technology
4. New digital tuning method for LCVCOS
5. Detailed performance comparison of ring oscillators and LCVCOS in a deep sub-micron technology
6. Test chip in GlobalFoundries 28 nm HPP CMOS process
Theory: VCOs

- VCO characteristics
 - Center frequency and tuning range
 - Center frequency is frequency in middle range of V_{ctrl}
 - LCVCO generally has higher center frequency
 - Tuning range is range of frequency around center
 - Ring VCO generally has greater tuning range
 - Power consumption and area
 - LCVCO has higher power consumption and area
 - Mostly due to size of integrated inductor
 - Manufacturability
 - LCVCO is harder to integrate into some processes due to integrated inductor
 - Phase noise
 - Phase noise is jitter in frequency domain seen as sideband noise power around center frequency
 - LCVCO generally has lower phase noise

VCO frequency

$$f_{VCO} = f_0 + K_{VCO} V_{ctrl}$$

VCO gain

$$K_{VCO} = \frac{\delta f_c}{\delta V_{ctrl}}$$

$$\mathcal{L}(f_c, \Delta f) = 10 \cdot \log \left[\frac{P_{\text{sideband}}(f_c + \Delta f, 1\,Hz)}{P_{\text{carrier}}} \right]$$
Theory: Ring Oscillators and LC VCOs

Single-ended ring oscillator

Center frequency

\[f_0 = \frac{1}{2N \cdot t_d} \]

Delay time

\[t_d = \eta R_{DS_{eff}} C_L \]

Effective resistance

\[R_{DS_{eff}} = \frac{1}{\beta_n (V_{DD} - V_{in})} + \frac{1}{2 \beta_p (V_{DD} - V_{pp})} \]

Tank capacitance

\[C_L = C_{in} + C_{para} \]

Phase noise of ring VCO

\[L \{ f_c, \Delta f \} = \frac{8}{3 \eta P} \frac{kT V_{DD}}{V_{char}} \frac{f_c^2}{\Delta f^2} \]

\[P = 2 \eta N V_{DD} q_{max} f_0 \]

\[V_{char} = \frac{E_c L}{\gamma} \]

\[E_c \text{ related to } v_{sat} \text{ and } \mu_{eff} \text{ from SCM} \]

LC oscillator with cross-coupled differential pair

Negative resistance \(-2/g_m\) must be equivalent to parasitic tank resistance \(2R_p\)

LC voltage-controlled oscillator with cross-coupled differential pair

Center frequency

\[\omega_0 = \frac{1}{\sqrt{LC}} \quad \text{or} \quad f_0 = \frac{1}{2\pi \sqrt{LC}} \]

Phase noise of LC VCO

\[L \{ \Delta f \} = \frac{1}{8\pi^2 f_{off}^2} \cdot \frac{1}{V_0^2 C_{tank}^2} \cdot \sum_{n} \left(\frac{\gamma_n}{\Gamma_{rms,n}} \right) \]
VCO Topologies: Ring Oscillators

• Five ring oscillators of 5, 7, 9, 11, and 15 stages (with no LDO) were designed and simulated to check accuracy of frequency prediction model versus simulation results.

• Three 5 GHz ring VCO systems were designed and simulated for a case study of LDO versus no LDO
 • VCO1 is a 7 stage LDO regulated ring VCO
 • With LDO using thin oxide devices and a 0.85 V supply
 • Supply across ring oscillator delay stages is reduced by roughly 0.15 V due to drop across regulator
 • VCO2 is a 15 stage LDO regulated ring VCO
 • With LDO using medium oxide devices and a 1.5 V supply
 • Enables full 0.85 V across the ring oscillator delay stages
 • VCO3 is 11 stage varactor-tuned ring VCO with 0.85 V supply and no LDO

Five ring oscillators of 5, 7, 9, 11, and 15 stages (with no LDO) were designed and simulated to check accuracy of frequency prediction model versus simulation results.

Three 5 GHz ring VCO systems were designed and simulated for a case study of LDO versus no LDO:

- **VCO1** is a 7 stage LDO regulated ring VCO:
 - With LDO using thin oxide devices and a 0.85 V supply.
 - Supply across ring oscillator delay stages is reduced by roughly 0.15 V due to drop across regulator.

- **VCO2** is a 15 stage LDO regulated ring VCO:
 - With LDO using medium oxide devices and a 1.5 V supply.
 - Enables full 0.85 V across the ring oscillator delay stages.

- **VCO3** is 11 stage varactor-tuned ring VCO with 0.85 V supply and no LDO.
VCO Topologies: Ring Oscillators

Low dropout regulator (LDO) tuned ring VCO

- Advantages
 - Good power supply noise rejection
- Disadvantages
 - More power consumption and area
 - Limited output swing
 - More noise sources contributing to phase noise

Varactor-tuned ring VCO

- Advantages
 - Less power consumption and area
 - Output swing up to V_{DD}
 - Fewer noise sources contributing to phase noise
- Disadvantages
 - Poor power supply noise rejection

Varactor-tuned ring VCO may be more preferable in deep sub-micron technologies
VCO Topologies: LCVCOs

- Four LCVCO were designed
 - 15 GHz Varactor-tuned NMOS-only (VT NMOS)
 - 14.2 GHz Digitally-tuned NMOS-only (DT NMOS)
 - 9 GHz Varactor-tuned self-biased CMOS (VT CMOS)
 - 8.2 GHz Digitally-tuned self-biased CMOS (DT CMOS)

- The varactor-tuned topologies are tuned using one varactor pair receiving V_{ctrl} in range of 0-0.85 V

- The digitally-tuned topologies tuned using four banks of varactor pairs biased at either 0 V or 0.85 V
 - Varactors operate only in min or max capacitance region of C-V curve
 - Increases tuning range and selectivity
VCO Topologies: NMOS-only LCVCOs

- Varactor-tuned NMOS-only LCVCO (VT NMOS)
 - NMOS-only has higher speed
 - V_{DD} on inductor enables higher output swing

- Digitally-tuned LCVCO bias scheme:
 - Encode 16 capacitance values from 4-bit digital bias
 - Capacitors $C_{v2}=2C_{v1}$, $C_{v3}=4C_{v1}$, and $C_{v4}=8C_{v1}$
 - Controlled through 4-bit external bias voltages V_{b1}, V_{b2}, V_{b3}, and V_{b4}, where V_{b1} is the LSB and V_{b4} the MSB.
 - Bias voltages either 0 V or 0.85 V, making capacitance minimum or maximum.
VCO Topologies: Self-biased CMOS LCVCOs

- **Varactor-tuned self-biased CMOS LCVCO (VT CMOS)**

- Uses same bias scheme as Digitally-tuned NMOS LCVCO

- Removing current source maximizes output swing

- Removes associated noise

- **Digitally-tuned self-biased CMOS LCVCO (DT CMOS)**
Design Method: Ring Oscillators

- Design method based on more accurate expression for center frequency
 - Accurate consideration of inter-stage capacitances
 - Effect from gate resistance

- Design variables W_n, W_p, L, V_{DD}, and N are inputs
- Center frequency is output

Inter-stage input and parasitic capacitances

\[
C_L = C_{in} + C_{para}
\]
\[
C_{in} = C_{g\#n} + C_{g\#p}
\]
\[
C_{para} = C_{db_n} + C_{db_p} + C_{gd_n} + C_{gd_p} + C_v
\]

Gate resistance affects circuit through voltage drop across R_g onto C_{in}
- This shifts the time when the output voltage swing crosses midpoint $V_{DD}/2$

\[
R_{sh} = \frac{R_{sh1} R_{sh2}}{R_{sh1} + R_{sh2}}
\]
\[
R_g = R_{sh} \left(\left(\frac{d_{CC}}{L} \right) + \left(\frac{W_{eff}}{mL} \right) \right)
\]

After considering this effect and going through calculations, end up with R_g frequency multiplier term

\[
f_0 = \frac{1}{2N \cdot t_d} \left(1 - \frac{R_g C_{para}}{R_{DS_{eff}}(C_{in} + C_{para})} \left(2 - N \left(\frac{1}{2} - \frac{1}{\pi} \right) \right) + \frac{2\sqrt{2N}}{\pi} \right)
\]
Design Method: LCVCOs

- Design method based on the following criteria:
 - Frequency and tuning range
 - Tank amplitude constraint
 - Startup condition

Frequency and tuning range

\[
\omega = \frac{1}{\sqrt{L_{\text{tank}}C_{\text{tank}}}} \quad \text{or} \quad f = \frac{1}{2\pi\sqrt{L_{\text{tank}}C_{\text{tank}}}}
\]

\[
C_{\text{tank}} = 0.5(C_{\text{NMOS}} + C_{\text{PMOS}} + C_L + C_v + C_{\text{load}})
\]

\[
C_{\text{NMOS}} = 4C_{g_{d,n}} + C_{g_{s,n}} + C_{d_{b,n}}
\]

\[
C_{\text{PMOS}} = 4C_{g_{d,p}} + C_{g_{s,p}} + C_{d_{b,p}}
\]

\[
\omega_{\text{min}} \geq \frac{1}{\sqrt{L_{\text{tank}}C_{\text{tank,\text{max}}}}} \quad \omega_{\text{max}} \leq \frac{1}{\sqrt{L_{\text{tank}}C_{\text{tank,\text{min}}}}}
\]

Tank amplitude constraint

\[
V_{\text{tank,min}} = \frac{I_{\text{bias}}}{g_{\text{tank,max}}}
\]

\[
g_{\text{tank}} = 0.5(g_{\text{in}} + g_{\text{op}} + g_v + g_L)
\]

\[
g_L = \frac{1}{R_p} + \frac{R_s}{\omega^2 L_{\text{ind}}^2}
\]

\[
g_v = \omega^2 C_v^2 R_v
\]

\[
g_{\text{tank,max}} \text{ occurs at } C_v,\text{max}
\]

Expressions for \(\omega_{\text{min}}\) and \(\omega_{\text{max}}\), \(V_{\text{tank,min}}\), and \(g_{\text{active}}\) are solved for \(C_v,\text{max}\) in terms of \(W_n\) and plotted in MATLAB over a range of \(W_n\)

Startup condition

\[
g_{\text{active}} \geq \alpha_{\text{min}} g_{\text{tank,max}}
\]

\[
g_{\text{active}} = 0.5(g_{\text{in}} + g_{\text{mp}})
\]
Results: Ring Oscillator Frequency Model and Phase Noise

- Ring oscillators of 7, 9, 11, 13 and 15 stages designed and simulated
 - R_g has significant effect on frequency
 - Model without R_g overestimates frequency by about 15%
 - Model with R_g predicts frequency within 1-2%

- Predicted versus simulated phase noise
 - Beyond 1 MHz offset frequency simulated and predicted are close
 - Within 1 MHz simulated is worse than predicted due to flicker noise not being accounted for in expression
Results: Ring Oscillator LDO Comparison

- Tuning range of VCO3 is lower than that of both LDO-tuned VCOs
 - Selectivity of VCO3 is greater
- Phase noise of both LDO-tuned VCOs are nearly the same with and without PSN
 - Shows LDO PSR is working
- Phase noise of VCO3 is significantly lower than VCO1 and VCO2 even with PSN
 - Shows varactor-tuning method may be preferred over LDO-tuning method

<table>
<thead>
<tr>
<th></th>
<th>VCO1</th>
<th>VCO2</th>
<th>VCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning Range (%)</td>
<td>90%</td>
<td>80%</td>
<td>40%</td>
</tr>
<tr>
<td>Phase Noise (1 MHz) with PSN (dBc/Hz)</td>
<td>-53.79</td>
<td>-57.35</td>
<td>-66.24</td>
</tr>
<tr>
<td>Phase Noise (1 MHz) without PSN (dBc/Hz)</td>
<td>-53.96</td>
<td>-57.59</td>
<td>-73.86</td>
</tr>
<tr>
<td>P_{avg} (μW)</td>
<td>77</td>
<td>1940</td>
<td>750</td>
</tr>
<tr>
<td>Active area (μm²)</td>
<td>311.2</td>
<td>11730</td>
<td>28.6</td>
</tr>
</tbody>
</table>
Results: LCVCOs

- Valid design space
 - below upper TR limit
 - above lower TR limit
 - below tank amplitude constraint
 - below startup condition
- Optimize through parametric simulation within valid design space
Results: LCVCOS

- Tuning range of digitally-tuned LCVCOS is nearly double that of varactor-tuned.
- Frequency tuned in flat steps giving greater selectivity.

![Tuning Range for Varactor Tuned NMOS and CMOS LCVCOS](image1)

![Tuning Range for Digitally Tuned NMOS and CMOS LCVCOS](image2)
Results: LCVCO Phase Noise

- Phase noise in general is fairly close to predicted
- VT NMOS has best phase noise -97 dBc/Hz at 1 MHz offset
- DT CMOS improves phase noise over VT CMOS by -3 dBc/Hz

\[FOM = L(f_{\text{off}}) - 20 \cdot \log \left(\frac{f_0}{f_{\text{off}}} \right) + 10 \cdot \log \left(\frac{P_{\text{DC}}}{1\text{mW}} \right) \]

\[FOMT = FOM - 20 \cdot \log \left(\frac{TR}{10} \right) \]

<table>
<thead>
<tr>
<th></th>
<th>NMOS</th>
<th>NMOS DT</th>
<th>CMOS</th>
<th>CMOS DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_c) (GHz)</td>
<td>15</td>
<td>14.2</td>
<td>9</td>
<td>8.2</td>
</tr>
<tr>
<td>TR (%)</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>PN 1 MHz (dBc/Hz)</td>
<td>-97</td>
<td>-94</td>
<td>-80</td>
<td>-83</td>
</tr>
<tr>
<td>(P_{\text{DC}}) (mW)</td>
<td>6.8</td>
<td>6.8</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>FOM (dBc/Hz)</td>
<td>-172.20</td>
<td>-168.72</td>
<td>-146.78</td>
<td>-148.97</td>
</tr>
<tr>
<td>FOMT (dBc/Hz)</td>
<td>-167.76</td>
<td>-167.81</td>
<td>-140.76</td>
<td>-148.97</td>
</tr>
</tbody>
</table>
Physical Design and Layout of all VCOs

- Octagonal structures are symmetric spiral inductors
- one for each of the 4 LCVOs
- Output signals from all VCOs are shielded by GND lines
- Output of all LCVCOS goes to RF probe pads through CML buffers
- Output of ring oscillators goes to bondpads through tapered inverter buffers
Conclusions

Ring Oscillators

<table>
<thead>
<tr>
<th>VCO1</th>
<th>VCO2</th>
<th>VCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuning Range (%)</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Phase Noise (1 MHz) with PSN (dBc/Hz)</td>
<td>-53.79</td>
<td>-57.35</td>
</tr>
<tr>
<td>Phase Noise (1 MHz) without PSN (dBc/Hz)</td>
<td>-53.96</td>
<td>-57.59</td>
</tr>
<tr>
<td>(P_{\text{avg}}) ((\mu \text{W}))</td>
<td>77</td>
<td>1940</td>
</tr>
<tr>
<td>Active area ((\mu \text{m}^2))</td>
<td>311.2</td>
<td>11730</td>
</tr>
</tbody>
</table>

- \(R_g \) has significant effect on predicting center frequency
 - With inclusion of \(R_g \) model is accurate to within 1-2%
- Varactor-tuned ring oscillators are preferred to LDO-tuned ring oscillators

LCVCOs

<table>
<thead>
<tr>
<th>(f_c) (GHz)</th>
<th>NMOS</th>
<th>NMOS DT</th>
<th>CMOS</th>
<th>CMOS DT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR (%)</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>PN 1 MHz (dBc/Hz)</td>
<td>-97</td>
<td>-94</td>
<td>-80</td>
<td>-83</td>
</tr>
<tr>
<td>(P_{\text{DC}}) (mW)</td>
<td>6.8</td>
<td>6.8</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>FOM (dBc/Hz)</td>
<td>-172.20</td>
<td>-168.72</td>
<td>-146.78</td>
<td>-148.97</td>
</tr>
<tr>
<td>FOMT (dBc/Hz)</td>
<td>-167.76</td>
<td>-167.81</td>
<td>-140.76</td>
<td>-148.97</td>
</tr>
</tbody>
</table>

- VT NMOS LCVCO has overall best phase noise of -97 dBc/Hz at 1 MHz offset
- Digitally-tuned method improves tuning range
 - NMOS LCVCO by 50%
 - CMOS LCVCO by 100%
- Phase noise improved by 3 dBc/Hz with DT CMOS LCVCO
Future Work

• Design in 14 nm FinFET PDK
• Preliminary results for VCOs designed in 14 nm FinFET
 – Tuning range of LC VCOs in 14 nm FinFET is roughly 2X that of those designed in 28 nm planar CMOS
 – Phase noise of LC VCOs is affected more by V_{ctrl}
• Further work in 14 nm FinFET PDK will continue with other students in research group
Acknowledgments

- Support through Rambus
 - Anand Gopalan
 - Fred Heaton
 - John Eble

- Fabrication
 - GlobalFoundries

- Thesis Advisor
 - Dr. Mukund

- Thesis Committee Members
 - Dr. Moon
 - Dr. Pearson

- Colleagues
 - Jonathan Zimmermann
 - Sagar Saxena
 - Narendra Mane
 - Lucas Prilenski
 - Srujan Shivanakere

- System administration
 - Jim Stefano
 - Emilio Del Plato

- Assistance with maintaining Cadence tools
 - Mark Indovina