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Abstract 

 
Two very important factors in determining the effectiveness of a pump are its volumetric and 

energy efficiencies. Yin and Ghoneim constructed a prototype of a flexible body pump with a high 

volumetric efficiency (pumping potential). The high volumetric efficiency was attributed to the 

geometry of the pump’s structure (hyperboloid) as well as the high negative effective Poisson’s 

ratio of the 3-layer ([θ/β/θ]) flexible matrix composite (Carbon/Polyurethane) laminate adopted 

for the body of the pump. The energy efficiency was not evaluated. An important factor in 

assessing the energy efficiency is the effective damping (energy dissipation) of the flexible body 

material. The objective of the current research is to evaluate the viscoelastic material properties 

(Analytically & Experimentally) and the effective damping of the 3-layer ([θ/β/θ]) 

Carbon/Polyurethane laminate as a function of the two angle orientations θ and β. Consequently, 

identify the fiber angle orientation for the best volumetric and energy efficiencies of the flexible 

body pump. 
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Chapter 1 

Introduction 
Viscoelasticity is the property of materials that exhibits both viscous and elastic characteristics 

when undergoing deformation. When an elastic material undergoes deformation due to an 

external force, it experiences internal forces (or stress) that oppose the deformation and restore 

it to its original state after the external forces are removed. However, for viscous materials on 

the other hand, when stress is removed part of the energy is not returned back to the forcing 

agent but rather is dissipated with respect to time. The behavior of elastic materials are time/rate 

independent, whereas the behavior of viscoelastic materials are time/rate dependent. Figure.1 

shows the schematic representation of the stress strain diagram for both elastic and viscoelastic 

materials. Purely elastic materials do not dissipate energy when a load is applied and then 

removed (Fig 1a); Purely viscous materials dissipate all the energy when a load is applied and 

then removed (Fig 1b); however viscoelastic materials partially dissipate energy when a load is 

applied and removed (Fig 1c), i.e., hysteresis is observed in the stress strain curve, with the area 

enclosed by the loop being equal to the amount of energy lost during the cycle.  

 
Figure.1: Schematic representation of the stress-strain diagrams for elastic and viscoelastic materials (a) Elastic 

materials (b) Viscous materials (c) Viscoelastic materials 

 

1.1. Damping and Dynamic Behavior 

Damping is defined as the decrease in the amplitude of oscillation (free vibration) as a result of 

energy being drained from the system. Damping can be achieved by active or passive means, or 

a combination of both. Active damping mechanisms in general add weight and complexity but 

provide good damping results. On the other hand, passive damping mechanisms increase the 

reliability and also reduce the complexity of the system and can be achieved by structural 

modifications and using damping materials. 

Viscoelasticity of a material can be best studied using Dynamic Mechanical Analysis, i.e., by 

applying small oscillatory stress and measuring the resulting strain (which will be further 

explained in the literature review).  For purely elastic materials the stress and strain vectors are 

in phase, whereas for viscous materials there is a phase lag of 90 degrees (i.e. output strain lags 

input stress).   Viscoelastic materials, on the other hand, exhibit behavior somewhere in between 

these two materials, i.e. exhibiting some lag in strain.  
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1.2. Vibration Isolators 

Viscoelastic materials are well adapted to be used as vibration isolators because they dissipate 

part of the energy absorbed as heat. The most effective way to reduce unwanted vibration is to 

stop or modify the source of the vibration. If this cannot be done, it is sometimes possible to 

design a vibration isolation system to isolate the source of vibration from the system of interest 

or to isolate the device from the source of vibration. Most polymers are viscoelastic and are also 

used as vibration isolators. Certain polymer materials can be manufactured with a wide range of 

properties such as high damping and strength over a useful range of temperatures and 

frequencies, but most of these materials lack sufficient rigidity and good creep resistance (ability 

to resist deformation under prolonged loads). To make up for these deficiencies, polymer 

materials can be reinforced to produce a composite material [1].  

 

1.3. Composite Materials 

A composite material is formed by the combination of two or more chemically distinct materials 

to obtain a new material with enhanced properties. The characteristics of the composites are 

completely different from the individual constituents used. Most composite materials consist of 

two distinct phases i.e. the primary phase and the secondary phase. The primary phase forms the 

matrix within which the secondary phase is embedded, and the secondary phase is the 

embedded phase, also known as the reinforcing agent. Based on the type of reinforcements used, 

the composites can be classified as fiber reinforced composites or particle reinforced composites. 

For our research we use fiber reinforced composites because particles and flakes are not as 

effective as using fibers since the composites are usually much stronger and stiffer in this form.  

 

1.3.1. Fibers 

Fibers provide most of the stiffness and strength, i.e. they enhance the mechanical and physical 

properties of the composites. The fiber materials are classified in two ways: continuous fibers 

(Fig. 2.a) and discontinuous fibers (Fig. 2.b). The most commonly used fibers are glass fibers, 

silicon fibers and carbon fibers. For our current research work we use carbon fibers. Carbon 

fibers, also called graphite fibers, are lightweight and strong with excellent chemical resistance. 

They have a high specific modulus and specific strength. The mechanical properties of carbon 

fibers are determined by the atomic configuration of carbon chains and their connections, which 

are similar to the graphite crystal structure. The strength of carbon fiber is controlled by orienting 

the carbon atomic structures with their strongest atomic connections along the carbon fiber 

direction. Unlike glass fibers, carbon fibers are available with a broad range of stiffness values. In 

a carbon fiber, the layers of carbon are oriented along the fiber axis, thus making the mechanical 

properties stronger along the axial direction. 
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                                           (a)                                                                        (b) 

Figure.2:  Fiber classification (a) Continuous fibers (b) Discontinuous fibers  

 

1.3.2. Matrix 

The matrix has many functions: it holds the fibers together, thus transferring the load through 

the interface to the reinforcing fibers. Some properties of the composites such as transverse 

stiffness and strength are matrix dominated. The matrix also plays a leading role in heat and 

electrical conductivity of the composite. The matrix materials can be polymers, metals or 

ceramics. Polymer matrices are the most common because of their ease of fabrication, light 

weight, low tooling cost, low capital investment and low manufacturing costs. The polymer 

matrices are classified into thermosets, thermoplastics and elastomers. For our current research 

work we use Polyurethane (PU) as the matrix material. 

Polyurethane is an ideal example of an elastomer. Elastomers generally have low modulus, high 

strength, superior tear strength and abrasion resistance and good low temperature impact 

properties. They are commonly used in automobile bumpers and flexible composite applications. 

 

1.3.3. Laminates 

A unidirectional lamina (ply) is made up of a set of fibers oriented in a single direction within the 

matrix. Laminates (Fig.3) are made by stacking many unidirectional laminae at different fiber 

orientation angles. The properties of a composite as a whole change with fiber orientation angle, 

thickness and stacking order of individual laminas. 

 
Figure.3: Schematic representation of laminate 
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1.3.4. Flexible Matrix Composites (FMC) 

The Flexible Matrix Composites (FMC) are a branch of composite materials wherein strong and 

stiff reinforcements are combined with elastomeric polymer matrix materials such as 

polyurethanes, silicones, natural rubbers, etc. Flexible Matrix Composites (FMC) when 

manufactured along with continuous fibers can withstand large strains in the transverse direction 

plus retain their strength and stiffness in the fiber direction. The elastic properties of FMCs can 

be tailored over a much broader range than that offered by the conventional rigid matrix 

composites (RMCs). FMC have found a wide range of applications including flexible body pump 

and vibration isolation mounts. The diaphragm pumps, the jellyfish inspired flexible pump [2] and 

the left ventricle pump [3] are examples of compliant body pumps. The tunable fluidic composite 

mounts [4] and the controllable suspension system invented by Carlson et al, [5] are examples of 

FMC in vibration isolation mounts.   

 

1.4. Objective of Proposed Work 

There are two research objectives in this study: 

1. To determine the viscoelastic characteristics (longitudinal, transverse and shear complex 

moduli, as well as the complex in-plane Poisson's ratio) of a polyurethane/carbon 

composite. 

2. Provide a detailed study on the effect of the two fiber orientation angles  and  on the 

effective damping factors of a three-layer laminate [θ/β/θ] as shown in Figure 4.  

 
 

Figure.4: A schematic representation of a 3-layer laminate to be investigated. 

 

Using this research coupled with a similar study on the negative Poisson's ratio [6], in 

general the best fiber orientation angle ( and ) for structural applications (pumps, 

suspensions etc.) can be defined, more specifically the fiber orientation of a novel pump 

proposed by Dr. Ghoneim can be suggested. 

 

 

 

θ 

β 

θ 
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Chapter 2 

Viscoelasticity and Literature Review 
This chapter gives us an insight into the basic analytical techniques and experimental work used 

to determine the viscoelastic properties and effective damping of a Carbon/Polyurethane 

laminate. For all standard linear viscoelastic solids, the harmonically varying stress and strain 

relations are given by [7], 

                                           (1) 

                                          (2) 

where 𝜎(𝑡) is the stress at time (t), 𝜖(𝑡)is the strain at any time (t), 𝜎0 is the amplitude of the 

stress,  is the strain amplitude, ω is the frequency of oscillation and t is the time [7]. As per the 

standard linear model or the Zener Model [8], the relationship between stress σ and strain ε is 

given by,  

  (3) 

where, ‘a’ is the retardation time and ‘b’ is the creep relaxation time. 

From Eqns 1-3, we get the stress-strain relationship in the frequency domain to be,  

  (4) 

where, E’ and E’’ are the storage and loss moduli, respectively: 

The Storage Modulus (E’) represents the stiffness of a viscoelastic material and is proportional to 

the energy stored during a loading cycle. It is an in-phase component,  

,                                                                                     (5) 

The Loss Modulus (E”) is the measure of viscous response of the material. It is also called the 

imaginary modulus or out of phase component, 

  .                                                                                 (6) 

It should also be mentioned that, the damping factor (tan𝛿) is also introduced as a measure of 

damping. It is a dimensionless property, which represents the ratio of loss modulus over the 

storage modulus.  

 (7) 

In equations [3-7], E stands for the extensional or shear modulus depending on the type of 

loading applied. 
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2.1. Experimental Determination of the Viscoelastic Properties of Polymers 

Viscoelastic properties of polymers are best determined using the Dynamic Mechanical Analysis 

(DMA), where a small oscillatory stress is applied and the resulting strain is measures [7].  

 

2.1.1 Dynamic Mechanical Analysis  

The Dynamic Mechanical Analysis (DMA) is a widely accepted research technique in the polymer 

industry, measuring modulus and damping over a wide range of temperatures and frequencies 

and providing important information about the cure of thermoset resins and aging of 

thermoplastics [7]. A typical example of a Dynamic Mechanical Analyzer (Perkins Elmer DMA 

8000) is shown in Figure. 5. This technique can be expanded to investigate damping properties 

of composite materials [9].  The method provides fast and reliable results using very small 

amount of material, which can in many cases be taken directly from the part, in addition to 

precise temperature and atmosphere control [8].  

 
Figure.5: The Perkins Elmer DMA 8000 [11]. 

 

The DMA’s usually have built-in functions to directly evaluate viscoelastic properties. The DMA 

measured properties can be used along with the time-temperature superposition to predict the 

long term behavior of the material [10]. Frequency scans are the most commonly used technique 

to study the material behavior in DMA; however, the frequency scan is an ill-defined technique 

associated with a predictive method called Time-Temperature Superposition. To collect 

frequency data, the simplest approach is to hold the temperature constant and scan several 

frequencies while scanning the temperature [9]. The DMA works by applying a sinusoidal 

deformation to a sample of known geometry. The sample can be subjected by a controlled stress 

or a controlled strain. For a known stress, the sample will then deform a certain amount. In the 

DMA this is done sinusoidally. How much it deforms is related to its stiffness. A drive motor is 

used to generate the sinusoidal wave and this is transmitted to the sample via a drive shaft [9]. 

A schematic representation of the DMA used is shown in Figure. 6. 
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Figure.6: A schematic representation of a DMA (Perkins Elmer DMA 8000) [11]. 

 

2.1.2. Time Temperature Superposition 

The Time Temperature Superposition (TTS) principle makes it possible to characterize the 

viscoelastic properties of materials at various temperatures over the range of experimentally 

convenient frequencies [23]. The curve shifting procedure creates a master curve that represents 

frequency response of a material over a wide range of temperatures, and frequencies at a 

selected reference temperature [10]. Based on this principle, plots of the material properties vs 

frequency at various temperatures can be collapsed onto one master curve, with the use of the 

appropriate Temperature Shift Factor (𝛼T) [13].  

The application of the principle involves the following steps:- 

1. Experimental determination of frequency dependent curves of isothermal viscoelastic 

mechanical properties at several temperatures and for a small frequency range. 

2. Computation of the Shift Factor to correlate these properties for the temperature and 

frequency range. 

3. Use of the Shift Factor to determine the master curve showing the effect of frequency for 

a wider range of frequencies at a reference temperature.  

 

2.1.3. Shift Factor (αT) 

The WLF Equation was coined by William-Landel-Ferry and is used to represent the temperature 

shifting function [13]. It is often calculated using an empirical relation which is given by,  

 (8) 

where C1 and C2 are the WLF constants to be determined experimentally, T0 is the reference 

temperature on which the master curve is created and αT is the temperature shift factor. This 

equation is proven useful for a broad range of viscoelastic materials. A typical representation of 

the data collected using a DMA-8000 at various temperatures within a limited range of 
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frequencies is shown in Figure.7 [14]. A graph representing a typical master curve created after 

the TTS is applied to the data obtained from the DMA-8000 is as shown in Figure. 8. 

 

 

 
Figure.7: Typical representation of data from the DMA [14]. 

 

 
Figure.8: A typical representation of a master curve [14]. 

 

2.1.4. Temperature Dependence of Viscoelastic Behavior 

The temperature dependence has two primary points of interest. Firstly, from a single 

experimental technique (at a given temperature), it is impossible to obtain a complete range of 

measuring frequencies to evaluate the relaxation spectrum. Therefore as a matter of 

convenience we change the temperature of the experiment to bring the relaxation process of 

interest within a time-scale that is readily available. Secondly, polymers change from glass-like to 

rubber-like behavior as either the temperature is increased or the frequency of the experiment 

is decreased.  

According to J.D.D Melo and Donald W. Radford [13] the viscoelastic properties of PEEK/IM7 

were determined over a temperature range of -20 C to +120 C. The storage modulus and loss 

factor (tan δ) data, from two specimens of PEEK/IM7 tested for different fiber orientation angles, 

and the corresponding curve fits are presented in Figures 9-11. It was found that for all 

unidirectional laminae there was an increase in tan δ (Damping) and slight decrease in dynamic 
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moduli (Storage or Loss Moduli) with increasing temperature. However the temperature 

influence was different between unidirectional laminae specimens with different fiber 

orientations. It is understood that in specimens where the properties are more fiber dominated, 

the temperature effect is reduced [13].   

 
Figure.9: Temperature data for unidirectional lamina with fibers oriented at 0’ [13]. 

 

 
Figure.10. Temperature data for unidirectional lamina with fibers oriented at 30’ [13]. 

 

 
Figure.11: Temperature data for unidirectional lamina with fibers oriented at 90’ [13]. 
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2.1.5. Frequency Dependence of Viscoelastic Behavior 

According to Alexander RASA [24] the Dynamic Mechanical Analysis (DMA) is used as a method 

to investigate and characterize the damping properties of viscoelastic materials. A variety of 

polymer based materials were tested for their damping properties. The DMA was able to return 

precise results. The DMA can also be useful for quality assurance because of its ability to identify 

minor variations in the material composition and processing [24].  According to A. Katunin and 

W. Hufenbach [25] the influence of temperature and frequency on the loss rigidity for linearly 

viscoelastic laminate was determined. The DMA experiments conducted showed good 

agreement of measurements with the theoretical models [25]. In a study conducted by J.D.D. 

Melo and Donald W. Radford [13], the frequency effects on the viscoelastic properties of 

PEEK/IM7 unidirectional laminae with different fiber orientation angles were investigated by 

sweeping the frequency across a range of 2 decades (0.1 Hz to 10 Hz) at room temperature (20C). 

The storage modulus and loss factor (tan δ) data, from the two specimens of PEEK/IM7 tested 

for different fiber orientation angles, and the corresponding curve fits are presented in Figures 

12-14. It was found that as the frequency was increased there was a decrease in tan δ (damping) 

and a slight increase in the dynamic moduli (Storage or Loss Moduli). Damping, tan δ, is 

considerably more responsive to changes in frequency than storage modulus [25]. At low 

frequencies polymeric materials flow more, acting in a similar fashion to the flow at elevated 

temperatures, thus showing larger damping [13].  

 

 
Figure.12: Frequency data for unidirectional beams with fibers oriented at 0’ [13]. 

 



22 | P a g e  
 

 
Figure.13: Frequency data for unidirectional beams with fibers oriented at 30’ [13]. 

 
Figure.14: Frequency data for unidirectional beams with fibers oriented at 90’ [13].  

 

2.2. Viscoelastic Properties of Flexible Matrix Composite (FMC) Lamina 

This section presents the technique used to determine the viscoelastic properties of a FMC 

lamina. After finding the complex shear and extensional moduli of the matrix material 

(polyurethane), the in-plane viscoelastic properties of FMC lamina can be evaluated using the 

Principle of Correspondence and the Micromechanics Approach [27]. 

 

2.2.1. Correspondence Principle 

The correspondence principle states that the linear elastostatic analysis can be converted to 

dynamic linear viscoelastic analysis by replacing static stresses and strains with corresponding 

dynamic stresses and strains, and by replacing elastic moduli or compliances with complex 

moduli or compliances respectively [16]. This method has been employed to predict the damping 

in aligned discontinuous or continuous fiber-reinforced composites [17]. Correspondence 

principle has also been used in combination with the classical lamination theory [CLT] to 

determine the loss factor of laminated composites.  The extensional (shear) loss factor has been 

expressed as a ratio of the imaginary extensional (shear) stiffness (E’’ or G’’) to the real 

extensional (shear) stiffness (E’ or G’) for a lamina [16].  
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  (9) 

 

2.2.2. Micro-Mechanics 

Micromechanics is concerned with the study of composite materials on the level of the individual 

constituents that constitute these materials [18].  Micromechanics can be used to predict 

stiffness and strength (with lesser success) of a lamina. Micromechanical approach has been used 

for both continuous and short fiber reinforced composite materials.  

Some basic concepts and definitions used in our research are described in the section:- 

a) Volume and Mass Fractions – The properties of the composite are controlled by the relative 

volume of the fiber and matrix used. The fiber volume fraction is defined as  

 (10) 

The amount of matrix by volume is the matrix volume fraction, can be defined as  

                      (11) 

Since the total volume is the sum of the fiber volume plus the matrix volume, we have  

                                                               (12) 

The amount of fiber by weight in the composite of the fiber weight fraction 

                              (13) 

The amount of matrix by weight (mass) is the matrix weight fraction  

                              (14) 

Similarly, since the total weight is the sum of the fiber weight plus the matrix weight,  

                                                                                            (15) 

In the design of composite structures, volume fractions are used because they enter directly 

in the computations of stiffness.  But during processing, weight fractions are used because 

it is much easier to weigh the components to be mixed than to measure their volume [14].  

b) Longitudinal Modulus - The longitudinal modulus is the modulus of elasticity in the fiber 

direction and can be predicted using the Rule of Mixture (ROM) formula [26]. The main 

assumption in this formulation is that strains in the direction of fibers are the same in both 

the matrix and the fiber, i.e. the fiber-matrix bond is perfect [18]. 

                                               (16) 

where E1 is the longitudinal modulus (or modulus in the fiber direction), Em is the modulus 

of the matrix material, Ef is the modulus of fiber material, Vf and Vm are the volume fractions 

of fibers and matrix materials, respectively. 

c) Transverse Modulus (E2) - The transverse modulus is the modulus of elasticity in a direction 

transverse to the fibers and can be predicted using the Inverse Rule of Mixtures (IROM) 
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formula. The main assumption in this formulation is that the stress in the direction 

transverse to the fibers is same in the fibers and matrix [18]. 

                                                (17) 

where E2 is the transverse modulus. 

d) In-Plane Poisson’s Ratio ( ) - The Poisson’s Ratio is defined as the negative ratio of the 

resulting strain vs the applied strain, i.e. in a test in which load is applied in the i-direction, 

strain induced by Poisson’s effect on the perpendicular j-direction [18].   

                                                                       (18) 

The Mechanics of Materials approach leads to the rule of mixture equation for the in-plane 

Poisson’s Ratio 

                                                 (19) 

An approximate prediction of Poisson’s ratio is usually sufficient in design,  in general the 

Poisson’s ratio for the matrix and the fibers are not very different [18]. 

e) In-Plane Shear Modulus (G12) – A simple Strength of Material approach leads to the inverse 

rule of mixtures equation for the in-plane shear modulus [18].  

                                                                (20) 

The inverse rule of mixtures gives a simple but less accurate equation for the prediction of 

the in-plane shear modulus. The Tsai Hahn gives a better approximation [18],  

                            (21a) 

                                                                                              (21b) 

 

2.2.3. Ply-Mechanics 

The main objective of ply mechanics is to present the constitutive equations of a lamina (also 

called ply) randomly oriented with respect to a reference co-ordinate system [16]. A review of 

the coordinate transformations and constitutive equations for a lamina are discussed below.   

a) Coordinate Systems  

There are two coordinate systems that are used in the composite design. The material 

coordinate system (denoted by axes 1, 2, 3), that has 1-axis aligned with the fiber 

direction, the 2-axis is the axis perpendicular to the fiber direction. Each lamina has its 

own material coordinate system aligned with the fiber direction. The global coordinate 

system (laminate coordinate system, denoted by x, y, z) is common to all the laminae in 

the laminate as shown in Figure 15. The orientation of the laminate system is chosen for 

convenience during structural analysis [18]. 
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Figure.15: Coordinate relations between material axes (1, 2 and 3) and reference axes (x, y and z) [22]. 

 

b) Stress-Strain Equations 

Most composite materials are used in the form of plates and shells, which have two major 

dimensions (length and width) much larger than the third dimension (thickness). When 

thickness of a composite plate is reasonably small as compared to the other dimensions, 

it is safe to assume that the transverse stress is zero (i.e. σ3=0). 

When a stress (σ1) is applied along the fiber direction (1-axis) as shown in Figure 15, the 

strain can be computed as  

                                                                                    (22) 

And when applying a transverse stress (σ2), the strain in the fiber direction is computed 

using the Poisson’s Ratio, 

                                                      (23) 

From the principle of superposition, the total resulting strain due to both stresses, in the 

fiber direction is,  

                                                                   (24) 

Repeating the procedure along the transverse direction,  

                                                                    (25) 

The shear terms are obtained directly from the shear version of the Hooke’s Law, 

                                                                    (26) 

                                                                    (27) 

                                                                     (28) 

Assuming that the composite material is transversely isotropic (i.e. they have the same 

properties in one plane (2-3 Plane) but different properties in a direction normal to this 

plane (1-plane)), we have the compliance equations as,  

                                             (29) 
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and 

                                                    (30) 

Since the compliance must be symmetric [12], we have 

                                                                                           (31) 

The stresses σ4 and σ5 are neglected if the sample is very thin. The compliance equations 

(29) and (30) can be written in compact forms as,  

                                                                                           (32) 

                                                                                        (33) 

Where, [S] is called the compliance Matrix and [S*] is the inter-laminar compliance matrix. 

                                                             (34)    

                                                                             (35) 

 

c) Coordinate Transformation 

Most composite structures have more than one lamina because the properties in the 

transverse direction of a lamina are relatively low when compared to the longitudinal 

properties. Therefore, several laminae are stacked in different orientations so that 

reinforcements (fibers) are placed along all directions of loading. For a specific kind of 

loading (axial, shear), the stress vector in the global coordinate system (Laminate 

Coordinate system) is given or can be determined. Using the transformation matrix [T], 

the strain vector in the material coordinate system can be computed for any fiber angle 

orientation (ϴf), as follows,  

                                                                                (36) 

where [T] is the transformation matrix and m=Cos (θ) and n=Sin (θ)  

                                                        (37) 
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2.3. Viscoelastic Properties and Effective Damping of a FMC Laminate.  

Most composite structures are built with laminates having several laminae with various 

orientations as shown in Figure. 3. The lamina orientations are chosen to provide adequate 

stiffness and strength in the direction of the applied loads, taking into account that the composite 

material is much stronger and stiffer in the fiber direction than in any other direction.  

 

2.3.1. Viscoelastic Properties of a FMC Laminate  

The correspondence principal in accordance with the Classical Lamination Theory (CLT) is used to 

determine the viscoelastic properties of a Polymer Matrix Composite (PMC) laminate. The 

thickness of a laminate is small compared to the in-plane dimensions (i.e. length and width) of 

the plate, every lamina is in a state of stress. Therefore, the stress strain relations in the material 

coordinate system is given by, 

 

        (38) 

                                                     

Or  

 

 (39) 

 

 
Figure.16: Geometry of a laminate with N laminae [18]. 

 

where the superscript k indicates the lamina number as shown in Figure 16 and [Q] is the stiffness 

matrix, [Q] =inverse [S]. The stress-strain relation in laminate coordinates is given by, 

 



28 | P a g e  
 

 (40) 

where, 𝑄 is the reduced transformed stiffness matrix and is given by, 

 (41) 

 

And,  

 (42) 

In case of a laminate made up of several layers of homogenous anisotropic materials the 

constitutive equation can be written as,  

 (43) 

where,                                                                                         

 (44) 

[N] and [M] are the force and moment vectors resultants acting on a section (per unit length), 

[ε0] and [k] are the in-plane strain and curvature vectors.  

In equation 42, [A] is the in-plane stiffness matrix because it directly relates the in-plane strains 

to the in-plane forces,   

 (45) 

[B] is the bending extension coupling matrix since it relates the in-plane strains to bending 

moments and curvatures to the in-plane forces   

 (46) 

and [D] is the bending stiffness matrix because it directly relates the curvatures to bending 

moments.  

 (47) 
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2.3.2. Effective Damping in a FMC Laminate 

Damping is an important parameter related to the study of dynamic behavior in fiber-reinforced 

composite structures [16]. It can be defined as the dissipation of energy in a material under cyclic 

load [9]. Damping mechanisms in composite materials are completely different from those in 

conventional metals and alloys [16]. In the automobile and aerospace industry considerable 

amount of research is being done to improve the damping of mechanical vibrations which can be 

achieved in three ways, (i) removing or isolating the source of vibration, (ii) Changing the mass 

and/or stiffness of the structure which intern will increase or decrease the natural frequency of 

the structure, and (iii) Absorbing the vibrational energy [20]. Some of the different sources of 

energy dissipation are: - 

1. Viscoelastic Nature of Matrix and/or Fiber Materials - Most of the damping in composite 

materials is attributed to the matrix, however the damping due to fibers must also be 

taken into account while dealing with carbon and kevlar fibers since these fibers possess 

the highest damping when compared to other fiber materials [16].  

2. Damping due to Interphase - Interphase is the region adjacent to the fiber surface along 

the entire length of the fiber [19] as shown in Figure 17. The nature of the interphase 

accordingly affects the mechanical properties as well as the damping characteristics of 

the fiber reinforced composites [16]. 

 

 
Figure.17: An ideal representation of Interface [19]. 

 

3. Damping due to Damage - There are two types of damping due to damage, (i) frictional 

damping mainly due to slip in the unbound regions between the fibers and matrix 

interface and (ii) damping due to energy dissipation in the area of matrix cracks or broken 

fibers [16].   

4. Visco-plastic Damping – At large amplitudes of vibration and high stress levels, especially 

for thermoplastic materials, materials exhibit an evident degree of non-linear damping 

due to the presence of high stress and strain concentration that exist in local regions 

between fibers[16].  

5. Thermo-elastic Damping - Occurs due to the cyclic heat flow from a region of compressive 

stress to the region of tensile stress in the composite. Thermoplastic composites show 
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high temperature rise which is a function of applied load, frequency, sample thickness 

and number of cycles [16].  

In this research we consider damping due to the viscoelastic nature of the matrix and, we neglect 

the damping effects of the fiber (carbon) since when compared to the damping in the matrix, 

especially polyurethane (PU), the damping due to fibers is negligible [16]. 

 

2.3.3. Analytical Prediction of Damping 

Many analytical models for the prediction of damping at micromechanical, macro-mechanical 

and structural level are based on the assumption of linear viscoelasticity. Adams and Bacon [21] 

developed a macro-mechanical model for damping in unidirectional fiber-reinforced composites 

which is being referred to as Adams-Bacon criteria. It states that the sum total of energy 

dissipated in a unidirectional lamina is equal to the energy dissipated separately by longitudinal 

stress, transverse stress and shear stress [16].  

A widely recognized method for predicting the composite damping behavior in a laminate is the 

Strain Energy Method, which can be viewed as a special case of Adams-Bacon criteria. This 

method relates the total damping in the material or structure to the damping of each element 

and the fraction of the total strain energy stored in that element [16]. According to this theory 

for any system of linear viscoelastic elements the loss factor can be expressed as a ratio of 

summation of the product of individual element loss factor and strain energy stored in each 

element to the total strain energy [16]. When applying these methods to composites, the 

composite becomes a system, and on the nature of element depends whether the analysis is 

micro-mechanical or macro-mechanical [16]. In micromechanical analysis the elements include 

the constituents such as fibers, matrix and their interaction, void content and the interphase. On 

the other hand for macro-mechanical analysis, the individual lamina are the elements whose 

strain and dissipation energies combine to give the overall loss factor of the laminate [16]. In our 

research the effective extensional and shear loss factors of the laminate are considered. Using 

the classical lamination theory, complex A-B-D matrices are obtained and longitudinal, transverse 

and shear loss factors are determined. Accordingly, the effective loss factor (η) is given by, 

 

 

                                       (48) 

 

where We is the total elastic strain energy (energy stored) per cycle of loading, Wd is the total 

dissipated energy per cycle and k is the lamina (ply) number and the specific damping capacity is 

an alternate measure of damping for laminates.                                                    

If W is the total work done per cycle, then 
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 (49) 

where σk and εk are the in-plane stress and strain vectors in the material co-ordinates for 

lamina k.  

 

Chapter 3 

Experimental Work and Discussions 
The primary objective of the experimental work is to manufacture a 3-layer Carbon-Polyurethane 

laminate and find its viscoelastic characteristics. Section 3.1, introduces the manufacturing 

process used to make the 3-layer laminate. Secondly, Section 3.2 introduces the DMA test 

procedure. Section 3.3 discusses the extensional and shear moduli of the matrix Polyurethane 

(PU). Section 3.4 discusses the viscoelastic properties of a Carbon-Polyurethane (PU) lamina and 

finally section 3.5 discusses the viscoelastic properties of a sample 3-Layer laminate.  

 

3.1. The Manufacturing Procedure. 

The manufacturing of the laminate is a combination of both the filament winding and hand lay-

up process. It may be viewed as a manual layup (fiber placing) process. In this work, the Hexcel 

M40JB 12K carbon fibers and the Smooth-On PMC® 121-30 urethane rubber (matrix) are used. It 

is also important to note that urethane rubber is made by the mixture of pre-polymer (Part-A) 

and curative (Part-B) at an 1:1 ratio by volume, and takes roughly 30 minutes to solidify and about 

16 hours to fully cure (Curing is a chemical process of hardening of a polymer material). 

Following are the main steps for the manufacturing of the FMC laminate: - 

1. A flat plate is used as a base (open mold) for the manual placing of the fiber. Dowell pins 

are placed at specific intervals as shown in Figure 18 and details of the drawing are 

displayed in the Appendix B. These pins guide the manual fiber placing process at the 

proper orientation angles. Guided by the pins the fibers are manually placed at the 

required orientation angle as shown in Figure 19. During the layup process the fibers are 

witted with the PU resin using a brush so that it is evenly distributed and every fiber is 

properly saturated with resin. A fiber and matrix volume fraction between 0.3 to 0.35 and 

0.7 to 0.65, respectively, are used. It is difficult to maintain the same volume fraction since 

different batches of samples were employed. For the analysis a constant fiber volume 

fraction of 0.33 was used.  
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Figure.18: Teflon plate with dowel (guide) pins. 

 

2. The process is repeated for the second layer. In order to ensure a proper adhesion 

between the two layers, the second layer is placed on top of the first layer before the 

process of curing (Curing is a chemical process of hardening of a polymer material) is 

completed.  

 
Figure.19: The laminate under manufacturing. 

3. Once the three layers are placed (Figure 20), the laminate together with the plate are 

pressed (by a hydraulic press) under an optimum pressure of two metric tons in order to 

consolidate the layers and achieve good inter-laminar bonding. Care is taken to apply only 

the required pressure in order to avoid disorienting the fibers.  The laminate along with 

the mold are left in the hydraulic press for a few days to cure.   
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Figure.20: Completed laminate structure.  

4. Once the curing press is complete, the mold is taken out of the press. The guide pins are 

carefully removed and the laminate is ready for use.  

3.2. DMA Test Procedure. 

This section briefly discusses the various steps involved in setting up the DMA-8000 to perform 

the tension and the shear test in general. In tension the geometry of the sample is being pulled. 

It is most useful for thin films and fiber analysis. The sample is anchored on one end by a fixed 

clamp and by the drive shaft on the other. Tension stress is being applied by the drive shaft 

(mounted on the motor) as shown in Figure 21. The DMA control software is used to apply a force 

of 1N. The fixtures required to perform the tension test on the sample were readily available.  
 

 
Figure.21: Schematic depicting the tension test fixtures. 

 

Figure 22 shows the actual tension test fixtures. The tension geometry may require loosening 

and rotation of the geometry disk to get the required set of holes vertically aligned. This is done 

by loosening the four screws holding the geometry disk to the insulating disk and gently rotating 

Drive Shaft Clamps

Fixed Clamps 

Sample Test Piece 

Drive Shaft 
Support Columns 
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it to the appropriate position. The support structures are placed as shown. The sample length is 

determined by the spacers provided in the kit.  

 
Figure.22: The tension test fixtures. 

 

Figure 23 shows the actual set up of the shear fixture. In the shear test two identical samples are 

gently squeezed between two side plates and a center paddle which is screwed to the drive shaft 

(Figure 24).It should be mentioned that the shear fixture is a little counter intuitive to setup. The 

setup of the gap between the side plates and the center paddle depends on the nature of the 

sample (solids, rubber like foams or liquids). An optimum pressure needs to be applied which is 

sufficient enough to prevent slipping of the sample, without affecting the applied shearing.  

 

 

 

 
Figure.23:  Final arrangement of the shear test fixtures. 
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Figure.24: Schematic depicting the shear test fixtures. 

 

Figure 25 shows the actual set up of the 3pt-bending fixture. In the 3-pt bending test the samples 

are placed on the outer knife edges without being clamped. A center knife driven by the drive 

shaft is placed on the sample right at the center (Figure 26). The nuts on the center knife should 

be adjusted such that it remains in contact across the entire width of the sample. It is used for 

accurate modulus values for very stiff, high modulus materials, i.e., steel, and composites. 

 

 
Figure.25:  Final arrangement of the 3-pt bending test fixtures. 
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Figure.26: Schematic depicting the 3-pt bending test fixtures. 

 

It should also be mentioned that the fixtures required to perform the shear test on the sample 

were missing. The fixtures were designed, drawn using SolidWorks, and manufactured in our 

machine shop. The fixtures were made out of stainless steel and were manufactured using 

precision manufacturing techniques. The schematic of the fixture is shown in Figure 27, and 

details of the drawing are displayed in the Appendix B.  

 

 
Figure.27:  Shear test fixtures created using Solidworks. 

 

The choice of the geometry to run the sample in is dictated by the sample’s physical state at the 

beginning of the experiment. Table 1 shows the geometry of the sample selected for the tension, 

shear and bending test. 
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Table.1: Sample geometry for different tests. 

3.3. Extensional and Shear Moduli of Polyurethane (PU). 

Samples of the results of the work done for polyurethane (PU) are presented below [28]. The 

DMA measures the variation of the storage and loss moduli of a viscoelastic material as a function 

of frequency over a range of temperature. The Time-Temperature Superposition (TTS) principle 

is applied to generate the master curve [23] that represents the extensional (shear) modulus vs 

the ‘Reduced Frequency’, fαt. The TTS principle uses the William-Landel-Ferry (WLF) Shift factor, 

αt [9] to collapse the moduli curve at various temperatures onto the master curve.  

 

 (52) 

where C1 and C2 are material constants to be determined experimentally, T is temperature in 

Kelvin and T0 is the reference temperature on which the master curves are created. 

The complex shear (G*) and extensional (E*) moduli are given by, 

 (53) 

 (54) 

where, E’ is the extensional storage modulus, E’’ is the extensional loss modulus, G’ is the shear 

storage modulus and G’’ is shear loss modulus. The results of the extensional and shear moduli 

along with the loss tangent [Tan(δ)] (for both extensional and shear modulus) are presented in 

Figures 28, 29, 30 and 31, respectively. A sample of the plot of the raw data is shown in Appendix 

C.  It is important to note that no peaks are experienced for the loss modulus and loss factor. This 

is because the glass transition temperature, where the peak normally occurs is significantly below 

the range of temperatures studied in this work.  

 

 

 

Tension Test Shear Test Bending Test

Geometry of Sample Rectangular Circular Rectangular

Length [Diameter] (mm) 10.9 10 20

Width (mm) 7.4 Nil 10

Thickness mm) 2.33 2.06 2

Frequency Range (Hz) 1-100 1-100 1-100

Points/Decade 5 5 5

Temperature Range (K) 263-313 263-313 263-313
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Figure.28: The dynamic extensional storage and loss modulus. 

 

 
Figure.29: The dynamic shear storage and loss modulus. 
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Figure.30: The loss tangent [Tan(δ)] for extensional moduli. 

 

 
Figure.31: The loss tangent [Tan(δ)] for shear moduli. 

 

Since polyurethane (PU) is a homogenous material, the Poisson’s Ratio can be calculated using, 

                                                                                                                    (54a) 

The plot of Poisson’s Ratio vs Frequency is shown in Figure 32. Notice that the imaginary Poisson’s 

Ratio (ν’’) is negligible compared to the real part and consequently may be treated as real; an 

observation confirmed by Victor et al [29]. Also note that the Poisson’s Ratio is more than 0.5. 

For a rubbery viscoelastic material like polyurethane the Poisson’s Ratio is approximately 0.5 [29], 

which suggests that the measurement of the modulus (E* or G*) may not be accurate.  
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Figure.32: The Poisson’s Ratio for Polyurethane(PU). 

 

It should be mentioned that determination of the Poisson’s ratio as a function of time and/or 

frequency is extremely difficult. Because of the considerable experimental difficulties, 

information on this function is still rather scanty. In addition, even this scant literature is replete 

with reports of work based on incorrect equations.  In general, the determination of any bulk 

functions by calculation from any other parameters requires the source parameters to be 

obtained using a strict protocol known as the standard protocol [30]. The standard protocol 

states that the source parameters be determined simultaneously on the same specimen, under 

the same conditions of the experimental environment. This guarantees identical initial and final 

boundary conditions along with high accuracy and precision [30].   

Thus, viscoelastic Poisson’s ratio cannot be calculated indirectly by combining response functions 

such as E*(ω) and G*(ω), obtained from separate measurements. If any bulk response function is 

to be calculated from two other response functions, it is absolutely mandatory that the source 

functions be determined in accordance with the Standard Protocol. This demands that highly 

accurate measurements be made on the same specimen, at the same time, and under the same 

conditions of the experimental environment. This may require the construction of novel 

apparatus.  It should be pointed out that the effect of Poisson’s Ratio is negligible on the results 

presented. The four moduli and Tan(δ) values are approximated by a quadratic polynomial fit, 

that is  

 (55) 
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where E stands for any of the four moduli or damping depending on the type of loading, αt is the 

WLF Shift Factor and x is the frequency. The values of the material constants a2, a1, a0, C1 and C2 

are shown in Table 2. 

 
a2 a1 a0 

Standard 

Deviation 

WLF 

Constants 

E’ (KPa) 97.61 31.12 965.2 6.65E+04 C1 0.47 

E’’(KPa) 71.51 -30.41 111.84 4.47E+04 C2(0K) 43.36 

η [Tan(δ)] 0.03 -6E-05 0.11 3.51E-02   

G’(KPa) 15.49 24.08 259.32 2.38E+04 C1 0.53 

G’’(KPa) 13.26 -0.84 26.03 5.92E+03 C2(0K) 46.45 

η [Tan(δ)] 0.027 0.002 0.01 1.28E-02   

Table.2: Material properties of the extensional and shear moduli. 

 

The corresponding shift factor versus temperature for tension and shear test respectively, are 

shown in Figure 33. 

 

 
(a) 
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(b) 

Figure.33: A plot of shift factor vs temperature (a) Tension test (b) Shear test. 

 

3.4. Viscoelastic Properties of a Carbon-Polyurethane Lamina.  

After finding the complex extensional (E*) and shear (G*) moduli of the matrix material 

(polyurethane), the next step is to determine the in-plane viscoelastic characteristics of a Carbon-

Polyurethane (PU) lamina experimentally, and to compare it with the analytical models used. In 

these experiments only properties such as effective transverse complex modulus (E2
*) and the 

effective in-plane shear modulus (G12
*) were evaluated. The effective complex longitudinal 

modulus (E1
*) was ignored because the complex longitudinal modulus (E1

*) i.e. the elastic 

modulus in the direction of the fibers, is a fiber dominated property and is almost equal to the 

modulus of the fibers. The Dynamic Mechanical Analyzer (DMA 8000) used does not support the 

measurement of the effective in-plane Poisson’s Ratio (ν12
*). It needs to be determined using 

other experiments, which is beyond the scope of this work. The complex in-plane transverse (E2
*) 

and shear (G12
*) moduli are given by, 

 (56) 

 (57) 

where, E2’ is the in-plane transverse storage modulus, E2’’ is the in-plane transverse loss modulus, 

G12’ is the in-plane shear storage modulus and G12’’ is in-plane shear loss modulus. The results of 

the transverse elastic modulus and in-plane shear modulus are presented in Figures 34 and 35, 

respectively. The loss tangent (Tan(δ)) for the lamina for each of the types of loading are 

presented in Figures 36 and 37, respectively. A sample of the plot of the raw data is shown in 

Appendix C. 
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Figure.34: The dynamic in-plane transverse storage and loss modulus. 

 

 
Figure.35: The dynamic in-plane shear storage and loss modulus. 
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Figure.36: The loss tangent [Tan(δ)] for transverse moduli 

 

 
Figure.37: The loss tangent [Tan(δ)] for in-plane shear moduli. 

 

The four moduli and the loss tangent are approximated by a quadratic polynomial fit, that is  

 (58) 

where E stands for any of the four moduli or the loss tangent value depending on the type of 

loading, αt is the WLF Shift Factor and x is the frequency. The values of the material constants a2, 

a1, a0, C1 and C2 are shown in Table 3. 
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a2 a1 a0 

Standard 

Deviation 

WLF 

Constants 

E’ (KPa) 186.31 432.93 400 1.53E+05 C1 0.67 

E’’(KPa) 115.09 87.53 388.61 5.56E+04 C2(0K) 37.61 

η [Tan(δ)] 0.008 0.027 0.106 8.13E-03   

G’(KPa) 49.91 57.15 700.85 1.07E+04 C1 0.34 

G’’(KPa) 41.26 -24.21 123.93 9.41E+03 C2(0K) 38.16 

η [Tan(δ)] 0.026 0.021 0.172 9.61E-03   

Table.3: Material Properties of a carbon/polyurethane lamina. 

 

The corresponding shift factor versus temperature for tension and shear test respectively, are 

shown in Figure 38. 
 

 
(a) 

 
(b) 

Figure.38:  A plot of shift factor vs temperature (a) Tension test (b) Shear test. 
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3.5. Viscoelastic Properties of a 3-Layer Carbon-Polyurethane (PU) Laminate.  

After finding the complex transverse (E2
*) and in-plane shear (G12

*) moduli of a carbon-

polyurethane lamina, the next step is to determine the material properties of a 3-layer laminate 

with fiber orientation angles equal to [θ/β/θ] and compare it with the analytical models used. 

According to Ghoneim and Zhen [2] in the manufacturing of a FMC pump, a high negative 

effective Poisson’s ratio lies in the zone between θ= 00 to 50 and β= 100 to 500. A sample laminate 

of [θ/β/θ] equal to [5/35/5] was chosen. The DMA was used to measure the laminate modulus, 

i.e., extensional modulus in the X-direction (Ex), extensional modulus in the Y-direction (Ey), the 

in-plane shear modulus (Gxy) and the extensional bending modulus (Eb). But based on the 

preliminary analysis (as discussed in Section 4.2) it was found that the extensional modulus (Ex) 

in the X-direction and the shear modulus (Gxy) for a [5/35/5] laminate lies beyond the measurable 

range of the DMA. To accommodate this, another laminate with [θ/β/θ] equal to [30/-60/30], 

whose modulus lies within the measurable range of the DMA was selected. The laminates 

selected was manufactured using the steps discussed in section 3.1.  Table 4 shows the type of 

laminate selected for measuring each of the laminate modulus.  

 

Sl No. Type of Modulus Measured Type of Laminate Selected 

1 Extensional Modulus in X-direction (Ex) [30/-60/30] 

2 Extensional Modulus in Y-direction (Ey) [5/35/5] 

3 In-Plane Shear Modulus (Gxy) [30/-60/30] 

4 Extensional Bending Modulus (Eb) [5/35/5] 

Table.4: Types of laminates selected for experimentation.  

 

The complex extensional (Ex
*), (Ey

*), shear (Gxy
*) and bending (Eb

*) moduli are given by 

  

                                                                                                                             (59) 

                                                                       (60) 

                                                                                          (61) 

                                                                                             (62) 

where, Ex’ is the in-plane longitudinal storage modulus, Ex’’ is the in-plane longitudinal loss 

modulus (in the x-direction), Ey’ is the in-plane transverse storage modulus, Ey’’ is the in-plane 

transverse loss modulus (in the y-direction), Gxy’ is the in-plane shear storage modulus, Gxy’’ is in-

plane shear loss modulus, Eb’ is the bending storage modulus and Eb’’ is the bending loss modulus. 

The results of the extensional modulus (both in X and Y direction), in-plane shear modulus and 

bending modulus are presented in Figures 39, 40, 41 and 42, respectively. The loss tangent 

(Tan(δ)) for the laminate for each of the types of loading are presented in Figures 43, 44, 45 and 

46, respectively. A sample of the plot of the raw data is shown in Appendix C. 
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Figure.39: The laminate elastic (Ex) storage and loss modulus. 

 

 
Figure.40: The laminate elastic (Ey) storage and loss modulus. 
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Figure.41: The laminate shear (Gxy) storage and loss modulus. 

 

 

 
Figure.42: The laminate bending (Eb) storage and loss modulus. 
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Figure.43: The loss tangent [Tan(δ)] for laminate elastic moduli (Ex). 

 

 
Figure.44: The loss tangent [Tan(δ)] for laminate elastic moduli (Ey). 

 

 



50 | P a g e  
 

 
Figure.45: The loss tangent [Tan(δ)] for laminate shear moduli (Gxy). 

 

 

 
Figure.46: The loss tangent [Tan(δ)] for laminate bending moduli (Eb). 

 

The six moduli and the loss tangent are approximated by a quadratic polynomial fit, that is  

 (63) 

where E stands for any of the four moduli or the loss tangent value depending on the type of 

loading, αt is the WLF Shift Factor and x is the frequency. The values of the material constants a2, 

a1, a0, C1 and C2 are shown in Table 5. 
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a2 a1 a0 

Standard 

Deviation 

WLF 

Constants 

    Ex’ (KPa) 385.23 306.99 500 2.65E+05 C1 0.875 

Ex’’(KPa) 220.1 -8.11 579.69 9.91E+04 C2(0K) 44.5 

η [Tan(δ)] 0.015 0.01 0.1198 0.011   

    Ey’ (KPa) 289.99 590.747 500 1.13E+05 C1 0.86 

Ey’’(KPa) 214.929 0.404 577.3 5.44E+04 C2(0K) 44.5 

η [Tan(δ)] 0.014 0.013 0.1189 0.01   

Gxy’(KPa) 188.70 433.40 400 1.24E+05 C1 1.12 

Gxy’’(KPa) 124.45 66.12 398.74 4.19E+04 C2(0K) 41.85 

η [Tan(δ)] 0.0135 0.0165 0.1097 0.00673   

Eb’ (MPa) 30.00 20.00 2000.00 1.07E+04 C1 1 

Eb’’ (MPa) 20.00 40.00 200.00 9.40E+03 C2(0K) 41.58 

η [Tan(δ)] 0.0051 0.0184 0.1087 0.0096   

Table.5: The Laminate Material Properties. 

 

The corresponding shift factor versus temperature for tension, shear and bending test, 

respectively, are shown in Figure 47. 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

Figure.47:  A plot of shift factor vs temperature (a) Tension test (b) Tension test (c) Shear test (d) Bending test.  
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Chapter 4 

Analytical Work and Discussions 
The primary purposes of the analytical work are as follows: first, to find the in-plane viscoelastic 

properties of a Carbon/Polyurethane (C/PU) lamina and a laminate. Second, estimate the optimal 

fiber orientations and material properties for achieving a high effective damping. In this chapter, 

section 4.1 presents the analysis of the viscoelastic material properties of a Carbon-Polyurethane 

(PU) lamina; section 4.2 discusses the material properties of the laminated structure and section 

4.3 studies the effective damping on a sample 3-layer laminate. 

 

4.1. Viscoelastic Properties of a Carbon-Polyurethane (C/PU) Lamina using 

different Analytical Models.  

After finding the complex extensional (E*) and shear (G*) moduli of the matrix material 

(polyurethane), the in-plane viscoelastic properties of the Carbon/Polyurethane lamina are 

evaluated using the Principle of Correspondence and the Micro-Mechanics Approach. We made 

certain assumptions while evaluating the in-plane characteristics:  
1. Carbon fibers are considered to be purely elastic with an Elastic Modulus (Ef) equal to 231 

GPa and Poisson’s Ratio (νf) equal to 0.2. 

2. The composite laminate is considered to be transversely isotropic, i.e. a material with 

physical properties which are symmetric about an axis [14]. 

3. There is a perfect bonding between the matrix and the fibers [14]. 

4. The experimentally calculated volume fraction is accurate. 

5. The fibers are properly aligned.  

6. The interfacial effect between the fibers and matrix is negligible.  

In our research the Rule of Mixture (ROM) is applied to evaluate the effective complex 

longitudinal modulus (E1*) and the effective in-plane Poisson’s Ratio (ν12*).  

 (63) 

  

 (64) 

where Vf is the fiber volume fraction and Vm is the matrix volume fraction and Em is determined 

experimentally as discussed in Section 3.3.  

In the determination of the modulus in the direction transverse to the fibers and the in-plane 

shear modulus, the most commonly used model to predict the transverse modulus is the Inverse 

Rule of Mixture (IROM) as discussed in chapter 2. But a better prediction can be obtained with 

other various semi-emperical formulae such as Halpin Tsai, Cylindrical Assembly Model (CAM) 

and the Periodic Microstructure Model(PMM). In our research work, we select the Halpin Tsai 

Model because it is a flexible model with a curve fitting parameter, which is a measure of 
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reinforcement of the matrix by the fibers. It is also the  only emperical model that also takes into 

consideration the environmental factors which affect the structural performance of composite 

materials [31]. i.e. 

                                                                                                            (65)  

                                                                                                      (66) 

where E2
* is the complex transverse modulus, ζ is the curve fitting parameter which is also the 

measure of reinforcement of the matrix by the fibers.  

And,  

                                                                                     (67) 

                                                                                            (68) 

where, G12
* is the in-plane complex shear modulus and ζ is an emperical parameter obtained by 

curve fitting with the results of an analytical solution. A value of ζ = 2 or 3 usually gives a good fit 

for the case of circular or square fibers.  

Figure 48(a), 48(b) and 48(c) respectively shows the analytical results of viscoelastic properties 

of the in-plane longitudinal, the transverse and the in-plane shear moduli (storage and loss) 

versus reduced frequency. The analysis is conducted using a MATLAB code written based on the 

classical lamination theory (as discussed in Chapter 2), and can be found in Appendix A. Notice 

that E’ and E’’ for the longitudinal elastic moduli are almost constant, since the properties are 

dominated by the carbon fibers, which are assumed to be constant.  

 

 
(a) 
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(b) 

 

 
(c) 

Figure.48: Plot of in-plane viscoelastic properties of the carbon/polyurethane lamina vs reduced frequency (a) 

Longitudinal modulus (E1) (b) Transverse modulus (E2) (c) In-plane shear modulus (G12) vs Frequency. 

 

The predicted analytical results of the in-plane transverse and in-plane shear complex moduli 

(storage and loss) for different methods (Halpin-Tsai, Tsai-Hahn, CAM and Inverse Rule of 

Mixture) for the transverse modulus and (Halpin-Tsai, CAM and PMM) for the shear modulus are 

displayed in Figures 49a and 49b respectively. The analysis is conducted using a MATLAB code 

written based on the classical lamination theory and different analytical models (as discussed in 

Chapter 2) and can be found in Appendix A. 
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(a) 

 

 
(b) 

 
Figure.49: Plot comparing the material properties using different analytical models (a) Complex transverse 

modulus (E2) (b) In-plane complex shear modulus (G12) vs Frequency. 

 

The method that fits the corresponding experimental results the best is chosen. The Halpin–Tsai 

with ζ=3 is chosen for predicting the in-plane transverse modulus and with ζ=2 for the evaluation 

of the in-plane shear modulus. The comparison between the experimental and analytical results 

of the transverse and in-plane shear modulus are shown in Figures 50(a) and 50(b) respectively.   
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(a) 

 

 
(b) 

Figure.50: Plot comparing the experimental and analytical results (a) Complex transverse modulus (E2) (b) In-plane 

complex shear (G12) modulus vs Frequency. 

 

A comparison between analytical and experimental results of the loss tangent for the transverse 

and in-plane shear modulus are shown in Figures 51(a) and 51(b).  
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(a) 

 

 
(b) 

Figure.51: Plot comparing the experimental and analytical results of the loss tangent values (a) Complex transverse 

modulus (E2) (b) In-plane complex shear (G12) modulus vs Frequency. 

 

4.2. Viscoelastic Properties of a 3-Layer Carbon-Polyurethane (C/PU) Laminate. 

After finding the complex transverse (E2) and in-plane shear (G12) moduli of a carbon-

polyurethane lamina using different analytical models and comparing it with the experimental 

results, the next step is to determine the material properties of a sample 3-layer laminate. A 

sample laminate with orientation angles [θ/β/θ] similar to the laminate structure used by 

Ghoneim and Zhen [2] in the FMC pump was used. Preliminary analysis was conducted to 

determine the laminate modulus of the 3-layer laminate.  
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A set of equivalent laminate moduli Ex, Ey, Gxy and Eb can be defined for symmetric laminates. 

These moduli represent the stiffness of a fictitious, equivalent, orthotropic plate that behaves 

like the actual laminate under in-plane loads. It should be pointed out that the same laminates 

presented in Table. 4 are analytically studied. The analysis was done using MATLAB, and the code 

can be found in Appendix A. Figure 52 shows the analytical laminate moduli vs frequency; i.e. the 

complex extensional modulus (Ex) in x-direction for the two different laminates (Figure 52a), the 

complex extensional modulus (Ey) in y-direction (Figure 52b), the complex in-plane shear 

modulus (Gxy) for the two different laminates (Figure 52c) and the bending modulus (Eb) (Figure 

52d) vs. the reduced frequency. 

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

Figure.52: Plot of laminate moduli vs reduced frequency (a) Extensional modulus (Ex) (b) Extensional Modulus (Ey) 

(c) Shear modulus (Gxy) (d) Extensional bending modulus (Eb) vs Frequency. 

 

Based on the experiments conducted in Section 3.4, Figure 53 shows the comparison between 

the experimental and analytical laminate moduli vs frequency, i.e., the complex extensional (Ex) 

in x-direction (Figure 53a), the complex extensional (Ey) in y-direction (Figure 53b), the complex 

in-plane shear (Gxy) modulus (Figure 53c) and the bending (Eb) modulus (Figure 53d) vs the 

reduced frequency.  

 

 
(a) 
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(b) 

 

 
(c) 
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(d) 

Figure.53: Plot comparing the experimental and theoretical results (a) Laminate elastic modulus (Ex) (b) Laminate 

elastic modulus (Ey) (c) Laminate shear modulus (Gxy) (d) Laminate bending modulus (Eb) vs Frequency. 

 

Figure 54 shows the comparison between analytical and experimental results of the loss tangent 

for different laminate moduli, i.e., the complex extensional (Ex) in x-direction (Figure 54a), the 

complex extensional (Ey) in y-direction (Figure 54b), the complex in-plane shear (Gxy) modulus 

(Figure 54c) and the bending (Eb) modulus (Figure 54d) vs the reduced frequency. 

 

 
(a) 
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(b) 

 

 

 
(c) 
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(d) 

Figure.54: Plot comparing the experimental and theoretical results for the loss tangent values (a) Laminate elastic 

modulus (Ex) (b) Laminate elastic modulus (Ey) (c) Laminate shear modulus (Gxy) (d) Laminate bending modulus (Eb) 

vs Frequency. 

In general, though the predicted analytical results of the storage moduli underestimate the 

corresponding experimental one. The loss tangent (Tan(δ)) results are reasonable within the 

targeted range of study.  

 

4.3. Effective Damping of a 3-Layer Carbon-Polyurethane (C/PU) Laminate 

After finding the laminate moduli and comparing it with the experimental results, the next step 

is to use the correspondence principle in combination with the Adams and Bacon method (as 

discussed in chapter 2) to evaluate the overall effective damping of the laminate structure. This 

depends on the type of loading. In the current work, uniaxial loading and shear loading is being 

investigated. In general the effective damping (η) is given by  

                                                                                                                 (69) 

where We is the total elastic strain energy per cycle of loading, Wd is the total dissipated energy 

per cycle, and k is the layer (lamina) number. If W is the total work done per cycle, then 

 

 

                                                          

                                                                                                       (70)                                                    
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where σk and εk are the in-plane stress and strain vectors in the material co-ordinates for lamina 

k and [Sk
*] = inv [Qk

*] is the reduced in-plane compliance matrix as discussed in Chapter 2. For a 

specific kind of loading (axial and shear), the stress and the strain vectors in the global 

coordinates are determined. These stress and strain vectors are used to determine the stress and 

strain vectors in the material coordinates, which in turn is used to calculate the work done and 

damping factor as shown in equations (69) and (70).  

In our research work, the effective extensional damping factor (due to uniaxial loading) and shear 

damping factor (due to pure shear loading) are evaluated for the 3-layer [//] laminate 

structure as functions of the two angles  and . The results are presented next. All results 

presented next are purely analytical. The analysis was done using MATLAB and the code can be 

found in Appendix A.   

Figure. 55 shows the color map plot of the effective axial (extensional) damping factor as a 

function of the two angles θ and β of the 3-layer laminate at two frequencies of 1Hz (Figure 55a) 

and 10Hz (Figure 55b). It is clear that at 1 Hz a high damping factor of more than 0.11 can be 

found at a wide range of θ and β, whereas at 10 Hz a higher damping factor of more than 0.12 

can be found at the same range. So in general, since a higher damping is preferred for vibration 

isolation application (in order to dissipate more of the excessive energy of vibration), high 

damping can be easily achieved under uniaxial loading of the 3-layer laminate. But, on the other 

hand low damping is confined to a very narrow region which is difficult to achieve. Consequently, 

this is not suitable to be used for pumping applications.  

 

 
(a) 
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(b) 

Figure.55: Plot of axial damping factor vs laminate angles (a) Axial damping factor at 1Hz (b) Axial damping factor 

at 10Hz vs Laminate angles. 

 

Similarly, Figure. 56 shows the color map plot of the effective shear damping factor as a function 

of the two angles θ and β of the 3-layer laminate at two frequencies of 1Hz (Figure 56a) and 10Hz 

(Figure 56b). It is clear that at 1 Hz a high damping factor of more than 0.11 can be found at a 

wide range of θ and β, whereas at 10 Hz a higher damping factor of more than 0.12 can be found 

at the same range of θ and β [which roughly ranges between (θ=200–900 and β= 200-900)].  
 

 
(a) 
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(b) 

 Figure.56: Plot of shear damping factor vs laminate angles (a) Shear damping factor at 1Hz (b) Shear damping 

factor at 10Hz vs Laminate angles. 

 

Taking a closer look (zooming in) at the color-map plots of the effective axial and shear loss 

factors is displayed in Figures 57 (a & b) and 58 (a & b), respectively. They reveal that there exists 

a very tight area of high effective loss factor in the vicinity of θ=β (any slight deviation from θ= β 

renders a huge change in η). This range is very impractical since it is too tight to be achieved.  
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.  
(a) 

 

 

 
 (b) 

Figure.57: A zoom in plot of axial damping factor vs laminate angles (a) Axial damping factor at 1Hz (b) Axial 

damping factor at 10Hz vs Laminate angles. 
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(a) 

 

 

(b) 

Figure.58: A zoom in plot of shear damping factor vs laminate angles (a) Shear damping factor at 1Hz (b) Shear 

damping factor at 10Hz vs Laminate angles. 

 

According to Ghoneim and Yin [2], the high negative effective Poisson’s ratio values are confined 

to a very tight zone. This tight zone occurs in the vicinity of θ = 00 - 50 and β = 100 – 500, which 

requires a very precise fiber lay-up technique to manufacture. This zone, in general, is 

characterized by a high effective axial (extensional) and shear loss factor, as shown in Figures 59 
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and 60 respectively. Consequently, the problem of selecting the proper fiber-angle orientation 

may be a trade-off problem between the high negative Poisson’s ratio, which contributes to 

increasing the volumetric efficiency, and the low damping factor required to achieve a high power 

efficiency. 

 

 

 
(a) 

 

 
(b) 

Figure 59: Zoom in plot of the effective axial loss factor (a) at 1Hz (b) at 10Hz. 
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(a) 

 

 
(b) 

Figure 60: Zoom in plot of the effective shear loss factor (a) at 1Hz (b) at 10Hz. 
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Chapter 5 

Conclusions and Future Work 
The viscoelastic material characteristics of Polyurethane (PU) were found using the Dynamic 

Mechanical Analyzer (DMA). Assuming that the carbon fiber is purely elastic, the in-plane 

viscoelastic properties such as longitudinal (E1), transverse (E2) and shear (G12) moduli were 

computed using the correspondence principle along with the micromechanics approach. Since 

the longitudinal modulus (E1) is a fiber dominated property, only transverse (E2) and in-plane 

shear (G12) moduli were tested using the DMA. A fair agreement in the moduli are found between 

the experimental results and the analytical prediction. Applying the Classical Lamination Theory 

(CLT), the laminate moduli (Ex, Ey, Gxy and Eb) were calculated and compared with the 

corresponding experimental results for two different laminates ([5/35/5] and [30/-60/30]). A fair 

agreement in the moduli between the experiments and the analytical prediction was found. The 

differences in the results can be attributed to the following: 

 Imperfect test specimens. Though care has been exercised upon the preparation and 

manufacturing of the laminates, they are being prepared manually, which may render 

inconsistent thickness and fiber angle orientation. 

 Use of a different batches of PU for the laminate, which may have a slightly different 

viscoelastic properties. 

 The assumptions which are employed, as discussed in Section 4.1, for the analytical 

evaluation of the viscoelastic properties of the carbon/PU laminae (Rule of mixture and 

Tsai-Hahn assumptions).  

 The difficulty in determining the shear modulus experimentally. The optimum pressure 

needed to prevent the shear sample from slipping without affecting the applied shearing 

poses major challenge.   

By applying the Adams Bacon criteria, the effective axial (extensional) and shear loss factors of 

the 3-layer laminate [θ/β/θ] were realized as functions of the two angles θ and β. The results 

were compared with the corresponding results of the effective Poison’s Ratio provided by 

Ghoneim and Yin [6]. No clear correlation between the damping factor and Poisson’s Ratio are 

found. The high pumping potential (PP) of the [5/35/5] laminate, with a negative effective 

Poisson’s Ratio as proposed by Ghoneim and Yin [6], has an inherent high damping and is not 

suitable for the novel pump proposed. However, the arrangement may be appropriate for 

vibration isolation applications.  

The recommended future work includes: 

1. Apply a more accurate method (manufacturing process) for preparing the laminates, for 

example, the composite 3-D printer; which renders a more accurate volume fraction and 

orientation angles and a better inter laminar bonding.  
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2. Investigate the relationship between the damping factors under combined loading and 

the effective negative Poison’s ratio.  

3. Investigate the applications of different types of FMC materials on the damping factors.   
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Chapter 7 
Appendix 
Appendix A 

Code Listing  

A.1. MATLAB Codes for Composite Laminates 
A.1.1. Function calculating the volume fraction of matrix and fiber 
clc 

clear all 

%Calculation of Volume Fractions% 

%wf - Weight of Fiber in Kg% 

wf=25.515e-3; 

%wc - Weight of Composite in Kg% 

wc=60.91e-3; 

%wm - Weight of Matix in Kg% 

wm=wc-wf; 

%Wf - Fiber Weight Fraction% 

Wf=wf/wc; 

%Wm - Matrix Weight Fraction% 

Wm=wm/wc; 

%pf - Density of Fiber in Kg/m3% 

pf=1750; 

%pm - Density of Matrix in Kg/m3% 

pm=1200; 

%pc - Density of Composite% 

pc=(pm*pf)/((Wf*pm)+(Wm*pf)); 

%Vf - Volume Fraction of Fiber % 

Vf=(Wf*pc)/pf; 

%Vm - Volume Fraction of Matrix% 

Vm=(Wm*pc)/pm; 

 

A.1.2. Function for calculating the in-plane properties of the lamina 
clc 

clear all 

close all 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Calculation of Volume Fractions% 

%wf - Weight of Fiber in Kg% 

wf=25.515e-3; 

%wc - Weight of Composite in Kg% 

wc=60.91e-3; 

%wm - Weight of Matix in Kg% 

wm=wc-wf; 

%Wf - Fiber Weight Fraction% 

Wf=wf/wc; 

%Wm - Matrix Weight Fraction% 

Wm=wm/wc; 

%pf - Density of Fiber in Kg/m3% 
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pf=1750; 

%pm - Density of Matrix in Kg/m3% 

pm=1200; 

%pc - Density of Composite% 

pc=(pm*pf)/((Wf*pm)+(Wm*pf)); 

%Vf - Volume Fraction of Fiber % 

Vf=(Wf*pc)/pf; 

%Vm - Volume Fraction of Matrix% 

Vm=(Wm*pc)/pm; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Modulus is in the form of the Equation, E = a2*x^2 + a1*x + a0% 

%Where, x= log(at*w) is the Reduced Frequency%=288 

%Properties of Polyurethane% 

a21 = 97.611e3; a11 = 31.112e3; a01 = 965.287e3; 

a22 = 71.511e3; a12 = -30.415e3; a02 = 111.848e3; 

b21 = 15.494e3; b11 = 24.085e3; b01 = 259.327e3; 

b22 = 13.629e3; b12 = -0.84646e3; b02 = 26.003e3; 

w=1:1:100; %Reference Frequency in Hz% 

T0=288; %Reference Temperature in Kelvin% 

C1e=0.47;  %Shift Factor Constants% 

C2e= 43.36; %Shift Factor Constants% 

C1g=0.53; %Shift Factor Constants% 

C2g=46.45; %Shift Factor Constants% 

% For Reference Temperature of 15C or 288K% 

T=288; 

%calculation of Shift Factor% 

Xe=(-C1e*(T-T0))/(C2e+(T-T0)); 

Xg=(-C1g*(T-T0))/(C2g+(T-T0)); 

Ate=10^Xe;         %Shift Factor of Elastic Modulus% 

Atg=10^Xg;         %Shift Factor of Shear Modulus% 

xe=log10(Ate*w); 

xg=log10(Atg*w); 

Eprime=(a21*xe.^2)+(a11*xe)+a01;    %Elastic Storage Modulus of Poly-

Urethane in KPA% 

Edprime=(a22*xe.^2)+(a12*xe)+a02;   %Elastic Loss Modulus of 

Polyurethane in KPA% 

Gprime= (b21*xg.^2)+(b11*xg)+b01;   %Shear Storage Modulus of 

Polyurethane in KPA% 

Gdprime=(b22*xg.^2)+(b12*xg)+b02;   %Shear Loss Modulus of 

Polyurethane in KPA% 

Em=Eprime+Edprime*i;             %Extentional Modulus(Complex) of 

Polyurethane in KPA% 

Gm=Gprime+Gdprime*i;             %Shear Modulus(Complex) of 

Polyurethane in KPA % 

vm=(Em)/(2*Gm)-1;         %Poisson's Ratio(Complex) of Polyurethane% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of Carbon Fiber% 

Ef=231*10^9;                    %Elastic Modulus of Carbon Fiber in 

KPA% 

vf=0.2;                            %Poisson's Ratio of Carbon Fiber% 
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Gf=Ef/(2*(1+vf));                % Shear Modulus of Carbon Fiber% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of the Lamina(Carbon-PolyUrethane)% 

Vf= 0.3308; 

Vm=0.6692; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Longitudinal Modulus (E1) Calculated using Different Models% 

%Using Rule of Mixture% 

E1=(Ef*Vf)+(Em*Vm);   

%%%%%%%%%%%%%%%%%%%%%%% 

%Seperating Real and Imaginary Values% 

E1r=real(E1); 

E1i=imag(E1); 

%%%%%%%%%%%%%%%%%%%%%% 

figure 

loglog(w,E1r,'*b') 

hold on 

loglog(w,E1i,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Longitudinal Modulus [E1] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Longitudinal Modulus [E1] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%In Plane Poisson's Ratio Calculated using Different Models% 

%Using Rule of Mixture% 

v12=(vf*Vf)+(vm*Vm); 

%Seperating Real and Imaginary Parts% 

v12r=real(v12); 

v12i=imag(v12); 

%%%%%%%%%ROM%%%%%%%%%%% 

figure 

loglog(w,v12r,'*b') 

hold on 

loglog(w,v12i,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('In-plane Poissons Ratio [v12] ') 

title('In-plane Poissons Ratio [v12] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Transverse Modulus (E2) Calculated Using Different Emperical models% 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Seperating Real and Imaginary Parts% 



80 | P a g e  
 

E2r=real(E2); 

E2i=imag(E2); 

%%%%%%%%%Halpin-Tsai%%%%%%%%%%% 

figure 

loglog(w,E2r,'*b') 

hold on 

loglog(w,E2i,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Shear Modulus Calculated Using Different Emperical Models% 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Gf./Gm)-1)./((Gf./Gm)+Z); 

G12= Gm.*((1+Z*n*Vf)./(1-n*Vf)); 

%Seperating Real and Imaginary Parts% 

G12r=real(G12); 

G12i=imag(G12); 

%%plot%% 

figure 

loglog(w,G12r,'*b') 

hold on 

loglog(w,G12i,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Shear Modulus[G12](Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Shear Modulus[G12] vs Frequency') 

  

A.1.3. Function for comparing the in-plane properties of the lamina 
clear all 

clc 

close all 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Calculation of Volume Fractions% 

%wf - Weight of Fiber in Kg% 

wf=25.515e-3; 

%wc - Weight of Composite in Kg% 

wc=60.91e-3; 

%wm - Weight of Matix in Kg% 

wm=wc-wf; 

%Wf - Fiber Weight Fraction% 

Wf=wf/wc; 

%Wm - Matrix Weight Fraction% 
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Wm=wm/wc; 

%pf - Density of Fiber in Kg/m3% 

pf=1750; 

%pm - Density of Matrix in Kg/m3% 

pm=1200; 

%pc - Density of Composite% 

pc=(pm*pf)/((Wf*pm)+(Wm*pf)); 

%Vf - Volume Fraction of Fiber % 

Vf=(Wf*pc)/pf 

%Vm - Volume Fraction of Matrix% 

Vm=(Wm*pc)/pm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Modulus is in the form of the Equation, E = a2*x^2 + a1*x + a0% 

%Where, x= log(at*w) is the Reduced Frequency%=288 

%Properties of Polyurethane% 

a21 = 97.611e3; a11 = 31.112e3; a01 = 965.287e3; 

a22 = 71.511e3; a12 = -30.415e3; a02 = 111.848e3; 

b21 = 15.494e3; b11 = 24.085e3; b01 = 259.327e3; 

b22 = 13.629e3; b12 = -0.84646e3; b02 = 26.003e3; 

w=1:1:100; %Reference Frequency in Hz% 

T0=288; %Reference Temperature in Kelvin% 

C1e=0.47;  %Shift Factor Constants% 

C2e= 43.36; %Shift Factor Constants% 

C1g=0.53; %Shift Factor Constants% 

C2g=46.45; %Shift Factor Constants% 

% For Reference Temperature of 15C or 288K% 

T=288; 

%calculation of Shift Factor% 

Xe=(-C1e*(T-T0))/(C2e+(T-T0)); 

Xg=(-C1g*(T-T0))/(C2g+(T-T0)); 

Ate=10^Xe;         %Shift Factor of Elastic Modulus% 

Atg=10^Xg;         %Shift Factor of Shear Modulus% 

xe=log10(Ate*w); 

xg=log10(Atg*w); 

Eprime=(a21*xe.^2)+(a11*xe)+a01;    %Elastic Storage Modulus of Poly-

Urethane in KPA% 

Edprime=(a22*xe.^2)+(a12*xe)+a02;   %Elastic Loss Modulus of 

Polyurethane in KPA% 

Gprime= (b21*xg.^2)+(b11*xg)+b01;   %Shear Storage Modulus of 

Polyurethane in KPA% 

Gdprime=(b22*xg.^2)+(b12*xg)+b02;   %Shear Loss Modulus of 

Polyurethane in KPA% 

Em=Eprime+Edprime*i;             %Extentional Modulus(Complex) of 

Polyurethane in KPA% 

Gm=Gprime+Gdprime*i;             %Shear Modulus(Complex) of 

Polyurethane in KPA % 

vm=(Em)/(2*Gm)-1          %Poisson's Ratio(Complex) of Polyurethane% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of Carbon Fiber% 
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Ef=231*10^9;                    %Elastic Modulus of Carbon Fiber in 

KPA% 

vf=0.2;                            %Poisson's Ratio of Carbon Fiber% 

Gf=Ef/(2*(1+vf));                % Shear Modulus of Carbon Fiber% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of the Lamina(Carbon-PolyUrethane)% 

Vf= 0.3308; 

Vm=0.6692; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Longitudinal Modulus (E1) Calculated using Different Models% 

%Using Rule of Mixture% 

E1=(Ef*Vf)+(Em*Vm);   

%%%%%%%%%%%%%%%%%%%%%%% 

%Seperating Real and Imaginary Values% 

E1r=real(E1); 

E1i=imag(E1); 

%%%%%%%%%%%%%%%%%%%%%% 

figure 

loglog(w,E1r,'*b') 

hold on 

loglog(w,E1i,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Longitudinal Modulus [E1] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Longitudinal Modulus [E1] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%In Plane Poisson's Ratio Calculated using Different Models% 

%Using Rule of Mixture% 

v12=(vf*Vf)+(vm*Vm); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Transverse Modulus (E2) Calculated Using Different Emperical models% 

%Using Halpin-Tsai% 

Z= 3;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2H= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Using Tsai-Hahn% 

n=1;                           %Stress Partitioning Parameter% 

E2T = (1/(Vf+n*Vm)*((Vf./Ef)+n*(Vm./Em))).^-1; 

%Using Matrix Dominated Cylindrical Assembly Model (CAM)% 

E2C= Em *((1+Vf)/(1-Vf)); 

%Using Inverse Rule of Mixture% 

Z= 0;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2I= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Seperating Real and Imaginary Parts% 

E2Hr=real(E2H); 
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E2Hi=imag(E2H); 

E2Tr=real(E2T); 

E2Ti=imag(E2T); 

E2Cr=real(E2C); 

E2Ci=imag(E2C); 

E2Ir=real(E2I); 

E2Ii=imag(E2I); 

%%%%%%%%%Halpin-Tsai%%%%%%%%%%% 

figure 

loglog(w,E2Hr,'*b') 

hold on 

loglog(w,E2Hi,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (Halpin Tsai)') 

%%%%%%%Tsai-Hahn%%%%%%%%%% 

figure 

loglog(w,E2Tr,'*b') 

hold on 

loglog(w,E2Ti,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (GPa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (Tsai-Hahn)') 

%%%%%%%%%CAM%%%%%%%%%%%% 

figure 

loglog(w,E2Cr,'*b') 

hold on 

loglog(w,E2Ci,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (CAM)') 

%%%%%Inverse Rule of Mixture%%%%%%%%%%%% 

figure 

loglog(w,E2Ir,'*b') 

hold on 

loglog(w,E2Ii,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (IROM)') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Shear Modulus Calculated Using Different Emperical Models% 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Gf./Gm)-1)./((Gf./Gm)+Z); 

G12H= Gm.*((1+Z*n*Vf)./(1-n*Vf)); 

%Using Periodic Micro structure Model (PMM)% 

S3=0.49247-0.47603*Vf-0.02748*Vf^2; 

G12P=Gm.*(1+((Vf*(1-Gm/Gf))/((Gm/Gf)+S3*(1-Gm/Gf)))); 

%Using Matrix Dominated Cylindrical Assembly Model (CAM)% 

G12C= Gm.*((1+Vf)/(1-Vf)); 

%Seperating Real and Imaginary Parts% 

G12Hr=real(G12H); 

G12Hi=imag(G12H); 

G12Pr=real(G12P); 

G12Pi=imag(G12P); 

G12Cr=real(G12C); 

G12Ci=imag(G12C); 

%%%%%%%%%Halpin-Tsai%%%%%%%%%%% 

figure 

loglog(w,G12Hr,'*b') 

hold on 

loglog(w,G12Hi,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Shear Modulus[G12](Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Shear Modulus[G12] vs Frequency (Halpin Tsai)') 

%%%%%%%Tsai-Hahn%%%%%%%%%% 

figure 

loglog(w,G12Pr,'*b') 

hold on 

loglog(w,G12Pi,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Shear Modulus [G12] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Shear Modulus [G12] vs Frequency (PMM)') 

%%%%%%%%%CAM%%%%%%%%%%%% 

figure 

loglog(w,G12Cr,'*b') 

hold on 

loglog(w,G12Ci,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Shear Modulus [G12] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Shear Modulus [G12] vs Frequency (CAM)') 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
A.1.4. Function for calculating the properties of a laminate  
clc 

clear all 

close all 

thickness   = 2.36; %Thickness of the Laminate in mm% 

nl          = 3;    %Number of Layers in the Laminate% 

d = thickness/nl; 

z = [-1.5*d, -0.5*d, 0.5*d, 1.5*d]; %Z-Vector of the Laminate% 

thetav = [10, 40, 10];  %Orientation Angle Vector of the Laminate% 

ii = 0; 

for x = 0:0.1:2 

ii = ii + 1; 

A0 = zeros(3); 

B0 = zeros(3); 

D0 = zeros(3); 

for j=1:3 

thetd = thetav(j); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Calculation of Volume Fractions% 

%wf - Weight of Fiber in Kg% 

wf=25.515e-3; 

%wc - Weight of Composite in Kg% 

wc=60.91e-3; 

%wm - Weight of Matix in Kg% 

wm=wc-wf; 

%Wf - Fiber Weight Fraction% 

Wf=wf/wc; 

%Wm - Matrix Weight Fraction% 

Wm=wm/wc; 

%pf - Density of Fiber in Kg/m3% 

pf=1750; 

%pm - Density of Matrix in Kg/m3% 

pm=1200; 

%pc - Density of Composite% 

pc=(pm*pf)/((Wf*pm)+(Wm*pf)); 

%Vf - Volume Fraction of Fiber % 

Vf=(Wf*pc)/pf; 

%Vm - Volume Fraction of Matrix% 

Vm=(Wm*pc)/pm; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Material Properties of Polyurethane (PU) Matrix% 

a21 = 97.611e3; a11 = 31.112e3; a01 = 965.287e3; 

a22 = 71.511e3; a12 = -30.415e3; a02 = 111.848e3; 

b21 = 15.494e3; b11 = 24.085e3; b01 = 259.327e3; 

b22 = 13.629e3; b12 = -0.84646e3; b02 = 26.003e3; 

Eprime=(a21*x.^2)+(a11*x)+a01;    %Elastic Storage Modulus of Poly-

Urethane in KPA% 
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Edprime=(a22*x.^2)+(a12*x)+a02;   %Elastic Loss Modulus of 

Polyurethane in KPA% 

Gprime= (b21*x.^2)+(b11*x)+b01;   %Shear Storage Modulus of 

Polyurethane in KPA% 

Gdprime=(b22*x.^2)+(b12*x)+b02;   %Shear Loss Modulus of Polyurethane 

in KPA% 

Em=Eprime+Edprime*i;              %Extentional Modulus(Complex) of 

Polyurethane in KPA% 

Gm=Gprime+Gdprime*i;              %Shear Modulus(Complex) of 

Polyurethane in KPA % 

vm=(Em)/(2*Gm)-1;                 %Poisson's Ratio(Complex) of 

Polyurethane%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%  

%Properties of Carbon Fibers% 

Ef  = 230.0e9;  

vf = 0.2;     

Gf  = Ef/(2*(1+vf)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of Carbon Polyrethane (C/PU) Lamina Only% 

%Using Rule of Mixture% 

E1=(Ef*Vf)+(Em*Vm); 

%In Plane Poisson's Ratio Calculated using Different Models% 

%Using Rule of Mixture% 

v12=(vf*Vf)+(vm*Vm); 

%Transverse Modulus (E2) Calculated Using Different Emperical models% 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Gf./Gm)-1)./((Gf./Gm)+Z); 

G12= Gm.*((1+Z*n*Vf)./(1-n*Vf)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%General Material Constants% 

nu23    = 0.5; 

G13 = G12; 

G23 = E2/(2*(1+nu23)); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Calculating the Stiffness Matrix [Q] and Complaince Matrix [Sb]% 

S11  = 1./E1; 

S12  = - v12./E1; 

S21  = S12; 

S22  = 1./E2; 

S33  = 1./G12; 

S    = [S11 S12 0; S21 S22 0; 0 0 S33]; 

Q    = inv(S); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% Calculating the Transformation matrices [Sbar] and [Qbar]% 

theta = thetd*pi/180; 

n     = sin(theta); 

m     = cos(theta); 

nn    = n*n; 

mm    = m*m; 

nm    = n*m; 

T     = [mm nn 2*nm; nn mm -2*nm; -nm nm mm-nn]; 

invT  = inv(T); 

R     = [1 0 0; 0 1 0; 0 0 2]; 

invR  = inv(R); 

Qbar    = invT*Q*R*T*invR; 

Sbar    = inv(Qbar); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% Calculating the [A], [B] and [D] Matrices% 

A = A0 + Qbar*(z(j+1)-z(j)); 

B = B0 + Qbar*(z(j+1)^2-z(j)^2)/2; 

D = D0 + Qbar*(z(j+1)^3-z(j)^3)/3; 

A0 = A; 

B0 = B; 

D0 = D; 

end 

K = [A B; B D]; 

C = inv(K); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

% Effective properties of the Laminate% 

Ex= 1/(C(1,1)*thickness);    %Effective in-plane x-elastic modulus% 

Ey=1/(C(2,2)*thickness);     %Effective in-plane y-elastic modulus% 

G=1/(C(3,3)*thickness);      %Effective in-plane shear modulus% 

vxy=-(C(1,2)/C(1,1));        %Effective inplane major Poisson's Ratio% 

D= 12/thickness^3; 

Ebx= D/C(4,4);              %Effective out-of-plane stiffnes(X-

Direction)% 

Eby=D/C(4,5);               %Effective out-of-plane stiffnes(Y-

Direction)% 

Gb=D/C(6,6);                %Effective out-of-plane shear modulus% 

Ex_prime= real(Ex); 

Ex_dprime= imag(Ex); 

Epx(ii) = Ex_prime; 

Edpx(ii)= Ex_dprime; 

rfrq(ii)= x; 

Ey_prime= real(Ey); 

Ey_dprime= imag(Ey); 

Epy(ii) = Ey_prime; 

Edpy(ii)= Ey_dprime; 

rfrq(ii)= x; 

G_prime= real(G); 

G_dprime= imag(G); 
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Gp(ii) = G_prime; 

Gdp(ii)= G_dprime; 

rfrq(ii)= x; 

end 

% Plot of the Effective Modulus (X-Direction)% 

figure  

plot(rfrq, Epx,'*') 

hold on 

plot(rfrq, Edpx, '*') 

hold off 

grid on 

xlabel('Reduced Frequency') 

ylabel('Modulus') 

legend('Storage modulus','Loss Modulus') 

title('Effective Modulus of a Laminate (X-Direction)') 

% Plot of the Effective Modulus (Y-Direction)% 

figure  

plot(rfrq, Epy,'*') 

hold on 

plot(rfrq, Edpy, '*') 

hold off 

grid on 

xlabel('Reduced Frequency') 

ylabel('Modulus') 

legend('Storage modulus','Loss Modulus') 

title('Effective Modulus of a Laminate (Y-Direction)') 

% Plot of the Effective in- plane shear modulus% 

figure  

plot(rfrq, Gp,'*') 

hold on 

plot(rfrq, Gdp, '*') 

hold off 

grid on 

xlabel('Reduced Frequency') 

ylabel('Modulus') 

legend('Storage modulus','Loss Modulus') 

title('Effective In-Plane Shear Modulus of a Laminate') 

 

A.1.5. Function for generating the damping properties of a three layer laminate 
 

1. At 1Hz of Frequency 
 

%%%%TO EVALUATE THE EFFECTIVE DAMPING OF THE 3-LAYER LAMINATE AT 1Hz 

FREQUENCy%%%% 

close all 

clc  

clear all 

PropertiesofLamina 

%Material Properties at !hz and 10Hz% 

%Properties of the Lamina at 1Hz% 

E1=E1(1,1); 
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E2=E2(1,1); 

G12=G12(1,1); 

%Some assumed data% 

v23=0.5; 

G13=G12; 

G23=E2/(2*(1+v23)); 

v21=v12*E2/E1; 

%Laminate Details% 

thickness   = 2.36;  %Thickness of the Laminate% 

nl          = 3;   %Number of the layers% 

d = thickness/nl;  %Thickness of each layer% 

z = [-1.5*d, -0.5*d, 0.5*d, 1.5*d];  %Z-Coordinate vector% 

% Constitutive Equation% 

Sigx = [1000; 0; 0];  %Uniaxial loading% 

Tauxy = [0; 0; 1000]; % Shear loading% 

Com = [1000; 0; 1000]; % Combined loading% 

%work done per cycle% 

W_elast = 0; 

W_visco = 0; 

theta0 = 0; beta0 = 0; 

%Damping for the laminate at 1Hz% 

for ii = 1:90 

    theta = theta0 + 1*ii; 

for jj = 1:90 

    beta = beta0 + 1*jj; 

    thetav = [theta, beta, theta]; 

% The global Stiffness and Compliance matrices 

A0 = zeros(3); 

B0 = zeros(3); 

D0= zeros(3); 

for j=1:nl 

thetad = thetav(j); 

Theta=thetad*pi/180; 

% Complaince Matrix[S] and Stiffness Matrix[Q] at 1 hz Frequency [S]% 

S11  = 1/E1; 

S12  = - v12/E1; 

S21  = S12; 

S22  = 1/E2; 

S33  = 1/G12; 

S    = [S11 S12 0; S21 S22 0; 0 0 S33]; 

Q    = inv(S); 

n    = sin(Theta); 

m    = cos(Theta); 

nn   = n*n; 

mm  = m*m; 

nm    = n*m; 

T     = [mm nn 2*nm; nn mm -2*nm; -nm nm mm-nn]; 

invT = inv(T); 

R     = [1 0 0; 0 1 0; 0 0 2]; 

invR  = inv(R); 

%Transformation Matrices for 1hz Frequency% 

Qbar    = invT*Q*R*T*invR; 
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Sbar   = inv(Qbar);    

A = A0 + Qbar*(z(j+1)-z(j)); 

B=  B0 + Qbar*(z(j+1)^2-z(j)^2)/2; 

D = D0 + Qbar*(z(j+1)^3-z(j)^3)/3; 

A0 = A; 

B0 = B; 

D0 = D; 

end 

K = [A B; B D];   %Stiffness matrix% 

C = inv(K);             %Complaince Matrix% 

alpha=C(1:3, 1:3);       %Inverse of A matrix% 

S_L=alpha*thickness;     %S matrix for the laminate% 

Epsxy=S_L*Com;          %The Global Strain Vector% 

%To calculate the work done in each layer% 

%W=We+Wd*i, W=Work Done, We=Total elastic strain energy, Wd=Total 

dissipated energy% 

for j=1:nl 

thetad=thetav(j); 

THeta=thetad*pi/180; 

S11  = 1./E1; 

S12  = - v12./E1; 

S21  = S12; 

S22  = 1./E2; 

S33  = 1./G12; 

S    = [S11 S12 0; S21 S22 0; 0 0 S33]; 

Q    = inv(S); 

n    = sin(THeta); 

m    = cos(THeta); 

nn   = n*n; 

mm   = m*m; 

nm   = n*m; 

Teps = [mm nn nm; nn mm -nm; -2*nm 2*nm mm-nn]; %Transformation 

Matrix% 

Eps12=Teps*Epsxy; %Local STrain Vector% 

Sig12=Q*Eps12; 

W=Sig12.'*Eps12/2; 

We(j)=real(W); 

Wd(j)=imag(W); 

end 

if ii ==1 BETA(jj) = beta; end 

THETA(ii)  = theta; 

Se(jj,ii) = sum(We); 

Sd(jj,ii) = sum(Wd); 

Eta(jj,ii) = - sum(Wd)/sum(We); 

end 

end 

%Contour Plot% 

figure 

pcolor(THETA,BETA,Eta) 

shading interp 

hold on 

contour(THETA,BETA,Eta,100,'k') 
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title('Contour Plot of Shear Loss Factor(n) @ 1hz ') 

xlabel('THETA') 

ylabel('BETA') 

2. At 10Hz of Frequency 
%%%%TO EVALUATE THE EFFECTIVE DAMPING OF THE 3-LAYER LAMINATE AT 10Hz 

FREQUENCY%%%% 

close all 

clc  

clear all 

PropertiesofLamina 

%Material Properties at !hz and 10Hz% 

%Properties of the Lamina at 1Hz% 

E1=E1(1,10); 

E2=E2(1,10); 

G12=G12(1,10); 

%Some assumed data% 

v23=0.5; 

G13=G12; 

G23=E2/(2*(1+v23)); 

v21=v12*E2/E1; 

%Laminate Details% 

thickness   = 2.36;  %Thickness of the Laminate% 

nl          = 3;   %Number of the layers% 

d = thickness/nl;  %Thickness of each layer% 

z = [-1.5*d, -0.5*d, 0.5*d, 1.5*d];  %Z-Coordinate vector% 

% Constitutive Equation% 

Sigx = [1000; 0; 0];  %Uniaxial loading% 

Tauxy = [0; 0; 1000]; % Shear loading% 

Com = [1000; 0; 1000]; % Combined loading% 

%work done per cycle% 

W_elast = 0; 

W_visco = 0; 

theta0 = 0; beta0 = 0; 

%Damping for the laminate at 1Hz% 

for ii = 1:90 

    theta = theta0 + 1*ii; 

for jj = 1:90 

    beta = beta0 + 1*jj; 

    thetav = [theta, beta, theta]; 

% The global Stiffness and Compliance matrices 

A0 = zeros(3); 

B0 = zeros(3); 

D0= zeros(3); 

for j=1:nl 

thetad = thetav(j); 

Theta=thetad*pi/180; 

% Complaince Matrix[S] and Stiffness Matrix[Q] at 1 hz Frequency [S]% 

S11  = 1/E1; 

S12  = - v12/E1; 

S21  = S12; 

S22  = 1/E2; 
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S33  = 1/G12; 

S    = [S11 S12 0; S21 S22 0; 0 0 S33]; 

Q    = inv(S); 

n    = sin(Theta); 

m    = cos(Theta); 

nn   = n*n; 

mm  = m*m; 

nm    = n*m; 

T     = [mm nn 2*nm; nn mm -2*nm; -nm nm mm-nn]; 

invT = inv(T); 

R     = [1 0 0; 0 1 0; 0 0 2]; 

invR  = inv(R); 

%Transformation Matrices for 1hz Frequency% 

Qbar    = invT*Q*R*T*invR; 

Sbar   = inv(Qbar);    

A = A0 + Qbar*(z(j+1)-z(j)); 

B=  B0 + Qbar*(z(j+1)^2-z(j)^2)/2; 

D = D0 + Qbar*(z(j+1)^3-z(j)^3)/3; 

A0 = A; 

B0 = B; 

D0 = D; 

end 

K = [A B; B D];   %Stiffness matrix% 

C = inv(K);             %Complaince Matrix% 

alpha=C(1:3, 1:3);       %Inverse of A matrix% 

S_L=alpha*thickness;     %S matrix for the laminate% 

Epsxy=S_L*Sigx;          %The Global Strain Vector% 

%To calculate the work done in each layer% 

%W=We+Wd*i, W=Work Done, We=Total elastic strain energy, Wd=Total 

dissipated energy% 

for j=1:nl 

thetad=thetav(j); 

THeta=thetad*pi/180; 

S11  = 1./E1; 

S12  = - v12./E1; 

S21  = S12; 

S22  = 1./E2; 

S33  = 1./G12; 

S    = [S11 S12 0; S21 S22 0; 0 0 S33]; 

Q    = inv(S); 

n    = sin(THeta); 

m    = cos(THeta); 

nn   = n*n; 

mm   = m*m; 

nm   = n*m; 

Teps = [mm nn nm; nn mm -nm; -2*nm 2*nm mm-nn]; %Transformation 

Matrix% 

Eps12=Teps*Epsxy; %Local STrain Vector% 

Sig12=Q*Eps12; 

W=Sig12.'*Eps12/2; 

We(j)=real(W); 

Wd(j)=imag(W); 
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end 

if ii ==1 BETA(jj) = beta; end 

THETA(ii)  = theta; 

Se(jj,ii) = sum(We); 

Sd(jj,ii) = sum(Wd); 

Eta(jj,ii) = - sum(Wd)/sum(We); 

end 

end 

%Contour Plot% 

figure 

pcolor(THETA,BETA,Eta) 

shading interp 

hold on 

contour(THETA,BETA,Eta,100,'k') 

title('Contour Plot of Shear Loss Factor(n) @ 10hz ') 

xlabel('THETA') 

ylabel('BETA') 
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Appendix B 
Drawing of the Open Mold for Laminate (10/40/10):- 
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Drawing of the Open Mold for Lamina:- 
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Drawing of the Shear Fixtures:- 
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Appendix C 

Sample Plots of the Raw Data from the DMA 
Extensional Moduli of Polyurethane (PU) 
 

(a) Plot of the Extensional(Storage and Loss) Moduli for Polyurethane 
 

 
 

(b) Plot of the Loss Tangent (Tan(δ)) values for Extensional Moduli 
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Shear Moduli of Polyurethane (PU) 
 

(a) Plot of the Shear (Storage and Loss) Moduli for Polyurethane 
 

 
 

(b) Plot of the Loss Tangent (Tan(δ)) values for Shear Moduli 
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Transverse Moduli of a Carbon/Polyurethane (C/PU) Lamina 
 

(a) Extensional Transverse (Storage and Loss) Moduli 

 

 
 

(b) Plot of Loss Tangent Values for Transverse Moduli 
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In-Plane Shear Moduli of a Carbon/Polyurethane (C/PU) Lamina 
 

(a) In-Plane Shear (Storage and Loss) Moduli 

 

 

 

(b) Plot of Loss Tangent Values for In-Plane Shear Moduli 
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Elastic Moduli (Ex) of a Carbon/Polyurethane (C/PU) Laminate 
 

(a) Elastic (Storage and Loss) Moduli (Ex) 
 

 
 

(b) Plot of Loss Tangent Values for Laminate Extensional Moduli (Ex) 
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Elastic Moduli (Ey) of a Carbon/Polyurethane (C/PU) Laminate 
 

(c) Elastic (Storage and Loss) Moduli (Ey) 
 

 
 

(d) Plot of Loss Tangent Values for Laminate Extensional Moduli (Ey) 
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Shear Moduli (Gxy) of a Carbon/Polyurethane (C/PU) Laminate 
 

(a) Shear (Storage and Loss) Moduli (Gxy) 
 

 
 
 

(b) Plot of Loss Tangent Values for Laminate Extensional Moduli (Gxy) 
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Bending Moduli (Eb) of a Carbon/Polyurethane (C/PU) Laminate 
 

(a) Bending (Storage and Loss) Moduli (Eb) 
 

 
 
 

(b) Plot of Loss Tangent Values for Laminate Extensional Moduli (Eb) 
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