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where σk and εk are the in-plane stress and strain vectors in the material co-ordinates for lamina 

k and [Sk
*] = inv [Qk

*] is the reduced in-plane compliance matrix as discussed in Chapter 2. For a 

specific kind of loading (axial and shear), the stress and the strain vectors in the global 

coordinates are determined. These stress and strain vectors are used to determine the stress and 

strain vectors in the material coordinates, which in turn is used to calculate the work done and 

damping factor as shown in equations (69) and (70).  

In our research work, the effective extensional damping factor (due to uniaxial loading) and shear 

damping factor (due to pure shear loading) are evaluated for the 3-layer [//] laminate 

structure as functions of the two angles  and . The results are presented next. All results 

presented next are purely analytical. The analysis was done using MATLAB and the code can be 

found in Appendix A.   

Figure. 55 shows the color map plot of the effective axial (extensional) damping factor as a 

function of the two angles θ and β of the 3-layer laminate at two frequencies of 1Hz (Figure 55a) 

and 10Hz (Figure 55b). It is clear that at 1 Hz a high damping factor of more than 0.11 can be 

found at a wide range of θ and β, whereas at 10 Hz a higher damping factor of more than 0.12 

can be found at the same range. So in general, since a higher damping is preferred for vibration 

isolation application (in order to dissipate more of the excessive energy of vibration), high 

damping can be easily achieved under uniaxial loading of the 3-layer laminate. But, on the other 

hand low damping is confined to a very narrow region which is difficult to achieve. Consequently, 

this is not suitable to be used for pumping applications.  

 

 
(a) 
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(b) 

Figure.55: Plot of axial damping factor vs laminate angles (a) Axial damping factor at 1Hz (b) Axial damping factor 

at 10Hz vs Laminate angles. 

 

Similarly, Figure. 56 shows the color map plot of the effective shear damping factor as a function 

of the two angles θ and β of the 3-layer laminate at two frequencies of 1Hz (Figure 56a) and 10Hz 

(Figure 56b). It is clear that at 1 Hz a high damping factor of more than 0.11 can be found at a 

wide range of θ and β, whereas at 10 Hz a higher damping factor of more than 0.12 can be found 

at the same range of θ and β [which roughly ranges between (θ=200–900 and β= 200-900)].  
 

 
(a) 
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(b) 

 Figure.56: Plot of shear damping factor vs laminate angles (a) Shear damping factor at 1Hz (b) Shear damping 

factor at 10Hz vs Laminate angles. 

 

Taking a closer look (zooming in) at the color-map plots of the effective axial and shear loss 

factors is displayed in Figures 57 (a & b) and 58 (a & b), respectively. They reveal that there exists 

a very tight area of high effective loss factor in the vicinity of θ=β (any slight deviation from θ= β 

renders a huge change in η). This range is very impractical since it is too tight to be achieved.  

 



69 | P a g e  
 

.  
(a) 

 

 

 
 (b) 

Figure.57: A zoom in plot of axial damping factor vs laminate angles (a) Axial damping factor at 1Hz (b) Axial 

damping factor at 10Hz vs Laminate angles. 
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(a) 

 

 

(b) 

Figure.58: A zoom in plot of shear damping factor vs laminate angles (a) Shear damping factor at 1Hz (b) Shear 

damping factor at 10Hz vs Laminate angles. 

 

According to Ghoneim and Yin [2], the high negative effective Poisson’s ratio values are confined 

to a very tight zone. This tight zone occurs in the vicinity of θ = 00 - 50 and β = 100 – 500, which 

requires a very precise fiber lay-up technique to manufacture. This zone, in general, is 

characterized by a high effective axial (extensional) and shear loss factor, as shown in Figures 59 
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and 60 respectively. Consequently, the problem of selecting the proper fiber-angle orientation 

may be a trade-off problem between the high negative Poisson’s ratio, which contributes to 

increasing the volumetric efficiency, and the low damping factor required to achieve a high power 

efficiency. 

 

 

 
(a) 

 

 
(b) 

Figure 59: Zoom in plot of the effective axial loss factor (a) at 1Hz (b) at 10Hz. 
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(a) 

 

 
(b) 

Figure 60: Zoom in plot of the effective shear loss factor (a) at 1Hz (b) at 10Hz. 
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Chapter 5 

Conclusions and Future Work 
The viscoelastic material characteristics of Polyurethane (PU) were found using the Dynamic 

Mechanical Analyzer (DMA). Assuming that the carbon fiber is purely elastic, the in-plane 

viscoelastic properties such as longitudinal (E1), transverse (E2) and shear (G12) moduli were 

computed using the correspondence principle along with the micromechanics approach. Since 

the longitudinal modulus (E1) is a fiber dominated property, only transverse (E2) and in-plane 

shear (G12) moduli were tested using the DMA. A fair agreement in the moduli are found between 

the experimental results and the analytical prediction. Applying the Classical Lamination Theory 

(CLT), the laminate moduli (Ex, Ey, Gxy and Eb) were calculated and compared with the 

corresponding experimental results for two different laminates ([5/35/5] and [30/-60/30]). A fair 

agreement in the moduli between the experiments and the analytical prediction was found. The 

differences in the results can be attributed to the following: 

 Imperfect test specimens. Though care has been exercised upon the preparation and 

manufacturing of the laminates, they are being prepared manually, which may render 

inconsistent thickness and fiber angle orientation. 

 Use of a different batches of PU for the laminate, which may have a slightly different 

viscoelastic properties. 

 The assumptions which are employed, as discussed in Section 4.1, for the analytical 

evaluation of the viscoelastic properties of the carbon/PU laminae (Rule of mixture and 

Tsai-Hahn assumptions).  

 The difficulty in determining the shear modulus experimentally. The optimum pressure 

needed to prevent the shear sample from slipping without affecting the applied shearing 

poses major challenge.   

By applying the Adams Bacon criteria, the effective axial (extensional) and shear loss factors of 

the 3-layer laminate [θ/β/θ] were realized as functions of the two angles θ and β. The results 

were compared with the corresponding results of the effective Poison’s Ratio provided by 

Ghoneim and Yin [6]. No clear correlation between the damping factor and Poisson’s Ratio are 

found. The high pumping potential (PP) of the [5/35/5] laminate, with a negative effective 

Poisson’s Ratio as proposed by Ghoneim and Yin [6], has an inherent high damping and is not 

suitable for the novel pump proposed. However, the arrangement may be appropriate for 

vibration isolation applications.  

The recommended future work includes: 

1. Apply a more accurate method (manufacturing process) for preparing the laminates, for 

example, the composite 3-D printer; which renders a more accurate volume fraction and 

orientation angles and a better inter laminar bonding.  
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Gf=Ef/(2*(1+vf));                % Shear Modulus of Carbon Fiber% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of the Lamina(Carbon-PolyUrethane)% 

Vf= 0.3308; 

Vm=0.6692; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Longitudinal Modulus (E1) Calculated using Different Models% 

%Using Rule of Mixture% 

E1=(Ef*Vf)+(Em*Vm);   

%%%%%%%%%%%%%%%%%%%%%%% 

%Seperating Real and Imaginary Values% 

E1r=real(E1); 

E1i=imag(E1); 

%%%%%%%%%%%%%%%%%%%%%% 

figure 

loglog(w,E1r,'*b') 

hold on 

loglog(w,E1i,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Longitudinal Modulus [E1] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Longitudinal Modulus [E1] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%In Plane Poisson's Ratio Calculated using Different Models% 

%Using Rule of Mixture% 

v12=(vf*Vf)+(vm*Vm); 

%Seperating Real and Imaginary Parts% 

v12r=real(v12); 

v12i=imag(v12); 

%%%%%%%%%ROM%%%%%%%%%%% 

figure 

loglog(w,v12r,'*b') 

hold on 

loglog(w,v12i,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('In-plane Poissons Ratio [v12] ') 

title('In-plane Poissons Ratio [v12] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Transverse Modulus (E2) Calculated Using Different Emperical models% 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Seperating Real and Imaginary Parts% 
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E2r=real(E2); 

E2i=imag(E2); 

%%%%%%%%%Halpin-Tsai%%%%%%%%%%% 

figure 

loglog(w,E2r,'*b') 

hold on 

loglog(w,E2i,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Shear Modulus Calculated Using Different Emperical Models% 

%Using Halpin-Tsai% 

Z= 2;                            %Curve Fitting Parameter% 

n = ((Gf./Gm)-1)./((Gf./Gm)+Z); 

G12= Gm.*((1+Z*n*Vf)./(1-n*Vf)); 

%Seperating Real and Imaginary Parts% 

G12r=real(G12); 

G12i=imag(G12); 

%%plot%% 

figure 

loglog(w,G12r,'*b') 

hold on 

loglog(w,G12i,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Shear Modulus[G12](Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Shear Modulus[G12] vs Frequency') 

  

A.1.3. Function for comparing the in-plane properties of the lamina 
clear all 

clc 

close all 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Calculation of Volume Fractions% 

%wf - Weight of Fiber in Kg% 

wf=25.515e-3; 

%wc - Weight of Composite in Kg% 

wc=60.91e-3; 

%wm - Weight of Matix in Kg% 

wm=wc-wf; 

%Wf - Fiber Weight Fraction% 

Wf=wf/wc; 

%Wm - Matrix Weight Fraction% 
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Wm=wm/wc; 

%pf - Density of Fiber in Kg/m3% 

pf=1750; 

%pm - Density of Matrix in Kg/m3% 

pm=1200; 

%pc - Density of Composite% 

pc=(pm*pf)/((Wf*pm)+(Wm*pf)); 

%Vf - Volume Fraction of Fiber % 

Vf=(Wf*pc)/pf 

%Vm - Volume Fraction of Matrix% 

Vm=(Wm*pc)/pm 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Modulus is in the form of the Equation, E = a2*x^2 + a1*x + a0% 

%Where, x= log(at*w) is the Reduced Frequency%=288 

%Properties of Polyurethane% 

a21 = 97.611e3; a11 = 31.112e3; a01 = 965.287e3; 

a22 = 71.511e3; a12 = -30.415e3; a02 = 111.848e3; 

b21 = 15.494e3; b11 = 24.085e3; b01 = 259.327e3; 

b22 = 13.629e3; b12 = -0.84646e3; b02 = 26.003e3; 

w=1:1:100; %Reference Frequency in Hz% 

T0=288; %Reference Temperature in Kelvin% 

C1e=0.47;  %Shift Factor Constants% 

C2e= 43.36; %Shift Factor Constants% 

C1g=0.53; %Shift Factor Constants% 

C2g=46.45; %Shift Factor Constants% 

% For Reference Temperature of 15C or 288K% 

T=288; 

%calculation of Shift Factor% 

Xe=(-C1e*(T-T0))/(C2e+(T-T0)); 

Xg=(-C1g*(T-T0))/(C2g+(T-T0)); 

Ate=10^Xe;         %Shift Factor of Elastic Modulus% 

Atg=10^Xg;         %Shift Factor of Shear Modulus% 

xe=log10(Ate*w); 

xg=log10(Atg*w); 

Eprime=(a21*xe.^2)+(a11*xe)+a01;    %Elastic Storage Modulus of Poly-

Urethane in KPA% 

Edprime=(a22*xe.^2)+(a12*xe)+a02;   %Elastic Loss Modulus of 

Polyurethane in KPA% 

Gprime= (b21*xg.^2)+(b11*xg)+b01;   %Shear Storage Modulus of 

Polyurethane in KPA% 

Gdprime=(b22*xg.^2)+(b12*xg)+b02;   %Shear Loss Modulus of 

Polyurethane in KPA% 

Em=Eprime+Edprime*i;             %Extentional Modulus(Complex) of 

Polyurethane in KPA% 

Gm=Gprime+Gdprime*i;             %Shear Modulus(Complex) of 

Polyurethane in KPA % 

vm=(Em)/(2*Gm)-1          %Poisson's Ratio(Complex) of Polyurethane% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of Carbon Fiber% 
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Ef=231*10^9;                    %Elastic Modulus of Carbon Fiber in 

KPA% 

vf=0.2;                            %Poisson's Ratio of Carbon Fiber% 

Gf=Ef/(2*(1+vf));                % Shear Modulus of Carbon Fiber% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Properties of the Lamina(Carbon-PolyUrethane)% 

Vf= 0.3308; 

Vm=0.6692; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Longitudinal Modulus (E1) Calculated using Different Models% 

%Using Rule of Mixture% 

E1=(Ef*Vf)+(Em*Vm);   

%%%%%%%%%%%%%%%%%%%%%%% 

%Seperating Real and Imaginary Values% 

E1r=real(E1); 

E1i=imag(E1); 

%%%%%%%%%%%%%%%%%%%%%% 

figure 

loglog(w,E1r,'*b') 

hold on 

loglog(w,E1i,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Longitudinal Modulus [E1] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Longitudinal Modulus [E1] vs Frequency') 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%In Plane Poisson's Ratio Calculated using Different Models% 

%Using Rule of Mixture% 

v12=(vf*Vf)+(vm*Vm); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% 

%Transverse Modulus (E2) Calculated Using Different Emperical models% 

%Using Halpin-Tsai% 

Z= 3;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2H= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Using Tsai-Hahn% 

n=1;                           %Stress Partitioning Parameter% 

E2T = (1/(Vf+n*Vm)*((Vf./Ef)+n*(Vm./Em))).^-1; 

%Using Matrix Dominated Cylindrical Assembly Model (CAM)% 

E2C= Em *((1+Vf)/(1-Vf)); 

%Using Inverse Rule of Mixture% 

Z= 0;                            %Curve Fitting Parameter% 

n = ((Ef./Em)-1)./((Ef./Em)+Z); 

E2I= Em.*((1+Z*n*Vf)./(1-n*Vf)); 

%Seperating Real and Imaginary Parts% 

E2Hr=real(E2H); 
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E2Hi=imag(E2H); 

E2Tr=real(E2T); 

E2Ti=imag(E2T); 

E2Cr=real(E2C); 

E2Ci=imag(E2C); 

E2Ir=real(E2I); 

E2Ii=imag(E2I); 

%%%%%%%%%Halpin-Tsai%%%%%%%%%%% 

figure 

loglog(w,E2Hr,'*b') 

hold on 

loglog(w,E2Hi,'*r') 

hold on 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (Halpin Tsai)') 

%%%%%%%Tsai-Hahn%%%%%%%%%% 

figure 

loglog(w,E2Tr,'*b') 

hold on 

loglog(w,E2Ti,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (GPa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (Tsai-Hahn)') 

%%%%%%%%%CAM%%%%%%%%%%%% 

figure 

loglog(w,E2Cr,'*b') 

hold on 

loglog(w,E2Ci,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (CAM)') 

%%%%%Inverse Rule of Mixture%%%%%%%%%%%% 

figure 

loglog(w,E2Ir,'*b') 

hold on 

loglog(w,E2Ii,'*r') 

hold off 

grid on 

xlabel('Log Frequency(Hz)') 

ylabel ('Transverse Modulus [E2] (Pa)') 

legend ( 'Storage Modulus','Loss Modulus') 

title('Transverse Modulus [E2] vs Frequency (IROM)') 


