Transition Metal Oxide Resistive Memory
Wilkie Olin-Ammentorp
Advisor: Dr. Santosh Kurinec

Introduction
- NAND flash has reached fundamental scaling limits.
- To continue 2D scaling of memory, a new type of memory must be used.
- Resistive random access memory (RRAM) is a leading candidate to replace flash.
- In RRAM, a passive element stores information by changing resistance.
- Low current levels can be used to read the cell, and high currents or voltages can be used to program it.
- Devices which change their resistance state based on previous biasing conditions are called “memristive.”

- Transition metal oxides are a class of materials which can change resistance by undergoing a reversible soft breakdown.
- These materials include titanium dioxide, hafnium dioxide, and nickel oxide.
- A process was created to fabricate devices which could investigate this memristive behavior.

Theory
- A great deal of research has focused on titanium dioxide, making it the best-characterized memristive film.
- Titanium dioxide can form many phases, some of which are conductive and some of which are insulating.
- Under-stoichiometric films with oxygen vacancies are conductive.
- Electrical biasing can drive a reaction to create oxygen vacancies.
- These vacancies can rearrange into filaments which conduct current through the material.
- High currents passed through the filaments causes them to heat, which causes the filament to react and/or dissipate.

Results
- Devices were created using aluminum top and bottom electrodes and a under-stoichiometric titanium oxide film.
- Electrical testing confirmed that the structures could switch between a high and low resistance state.
- On average, the on/off ratio was 10^4 at 1 V.

References & Acknowledgements

Acknowledgements:
Dr. Santosh Kurinec
Dr. Michael Jackson
Dr. Karl Hirschman
Dr. Casey Miller
SMFL Staff: Patricia Meller, Sean O'Brien, John Nash, Bruce Tolleson, Rich Battaglia
Scott Blondell, Dave Yackoff, Tom Grimsley
Karine Florent
Matt Filner
Jim Carroll
Eric Perthshire

References: