Deaf STEM Community Alliance: Establishing a model virtual academic community

Lisa B. Elliot, Donna Easton, and E. William Clymer

Abstract—This presentation describes the incremental and iterative development of the Deaf STEM Community Alliance’s virtual academic community, the Deaf and Hard of Hearing Virtual Academic Community (DHHVAC). The DHHVAC components address three critical barriers to the success of students who are deaf or hard-of-hearing: student preparation, socialization, and access to media.

Index Terms—Deaf and hard-of-hearing; online learning; communities of practice

I. INTRODUCTION

The educational needs of students who are deaf or hard of hearing (D/HH) are often overlooked, especially for those students who are preparing for science, technology, engineering, and mathematics (STEM) careers [1]-[2]. Educational marginalization creates a “participation gap” for students who are D/HH because their modes of communication and learning styles are different from their hearing peers [3]-[4].

Hearing loss may be invisible to the general public, but it poses significant barriers for students specializing in STEM fields. Specialists in postsecondary education for students who are D/HH identify several critical barriers for these STEM students including: student preparation, socialization issues and media access [5]-[6]. The Deaf STEM Community Alliance [7] was created to address these issues. The Alliance involves students and professionals from Rochester Institute of Technology/National Technical Institute for the Deaf (RIT/NTID) (Rochester, NY), Camden County College (Blackwood, NJ), and Cornell University (Ithaca, NY). This presentation describes components and activities of the Deaf STEM Community Alliance’s virtual academic community, the Deaf and Hard of Hearing Virtual Academic Community (DHHVAC).

Project Rationale

Student preparation

Students who are D/HH receive limited exposure to quality STEM education in elementary and secondary school as their education often emphasizes speech, literacy and language skills but much less attention to STEM [5]-[6]; [8]-[9]. Walter [10] also notes that, D/HH students perform more poorly than their hearing peers on average on standardized assessments for reading comprehension, science, social studies, and math. Weak skills and inadequate exposure contribute to poor preparation for the rigorous demands of STEM education at the postsecondary level. Consequently, postsecondary tutors provide support for skill building and academic success [11]-[13]. Educators of D/HH students and D/HH students themselves often embrace new technologies [14]-[13]. Educators of D/HH students and D/HH students themselves often embrace new technologies [14]-[13].

In a recent study at RIT/NTID, one tutor offered students both in-person tutoring and remote (online) tutoring for her writing course. Of her 22 students, 14 participated in tutoring — five in in-person tutoring and nine via remote tutoring. The tutor noted that without the online tutoring option, she would typically have about five of the 22 students receiving in-person tutoring [16]. Bryant’s [16] study suggests that students may not always take advantage of
traditional tutoring services, but may be more receptive to tutoring alternatives.

Students who are D/HH have diverse learning and communication needs [17]. In general education, it is common to rely on digital resources for personalized learning opportunities, including digital libraries, remote tutoring, and remote collaboration opportunities [18]. According to Wolf [19], essential elements of personalized learning include: (a) flexible, anytime/everywhere learning; (b) redefinition and expansion of the role of a teacher; and, (c) student-driven learning. The Deaf STEM Community Alliance addresses these issues of personalized learning by providing resources responsive to students’ needs.

Socialization

Lack of community and a need for role models are two socialization issues confronting D/HH students in STEM. Similar to other students with disabilities (SWDs), many D/HH students in STEM programs feel rejected and isolated, frequently being the only deaf person in class [20]-[21]. They want to connect with their hearing peers and with other D/HH students in STEM programs throughout the world [22]. Computer-mediated communication connects people separated by time and space who might not otherwise meet. The Internet provides a medium with the potential to build and sustain human relationships over great distances, especially for SWDs [23]-[25].

D/HH students may have difficulty envisioning a STEM career without role models [5]-[6];[9]. Walter [10] found that overall, 17.9 percent of persons who are hearing are employed in STEM occupations versus 15.5 percent of workers who are D/HH and the types of STEM jobs in which persons who are hearing and D/HH are employed differ. Without exposure and significant interaction with D/HH professionals who have successfully completed postsecondary STEM programs and entered STEM professions, students’ aspirations will be negatively affected. These role models could serve as excellent mentors.

Accessible media

A common complaint expressed by Foster’s [5] and Walter’s [6] focus groups was that STEM courses often incorporate uncaptioned media. Uncaptioned videos are inaccessible to D/HH students, and in-class interpreters or captionists find it difficult to interpret or caption quickly enough to capture information presented in the videos [26]-[30]. Furthermore, Lang & Steely [14] suggest that web-based content needs to address such factors as reading ability, student engagement, and visual reinforcement of content to be appropriate for D/HH learners.

Cyberinfrastructures and Communities of Practice

The National Science Foundation (NSF), U.S. Department of Education, and others have made substantial investments to create resources supporting STEM learning. Resources are housed in many different domains, including free-standing software packages, YouTube videos, websites for various projects, and thus not always easy to locate [31]-[33]. Cyberinfrastructures consolidate diverse resources, ensuring the preservation of these resources for the future [31]-[32].

Cyberinfrastructures can impact knowledge and information sharing by creating communities of practice (CoPs) [34]-[36]. CoPs have emerged in which groups of individuals unite online to share their knowledge and to generate new understanding within their realm of common interest.

Description of the Project

The DHHVAC is using an engineering-based construct of model building. According to this construct, model building incorporates both iterative and incremental steps to facilitate a functioning prototype [37]. The Deaf STEM Community Alliance is developing an Internet-based cyberinfrastructure/CoP to support postsecondary students who are D/HH. The platform provides activities designed to address barriers to student preparation, socialization, and accessible media that often confront D/HH learners. The goal of the Deaf STEM Community Alliance is to establish a model for a Virtual Academic Community (VAC) to increase graduation rates of D/HH STEM majors in postsecondary education in the long term.

Methods

Participants
Students. Since February, 2012, the project has enrolled 30 students who are STEM majors. Of the 30 students, 26 attend RIT, 3 attend Camden County College, and one attends Cornell University. **Tutors.** Fourteen individuals have provided tutoring, including five tutors who are themselves D/HH. Two tutors were graduate students in an RIT-sponsored Master’s program in Education of the Deaf, one was an upperclassman at Cornell, and one was a professional civil engineer working as an adjunct for RIT, living out of state. The remaining tutors were RIT/NTID faculty whose primary job was to provide face-to-face tutoring to students. **Mentors.** Mentors are all D/HH individuals who are employed in STEM-related fields. Nine mentors have been enrolled in the project, including an accountant, an air quality engineer, an architect, two biologists, a building engineer, a civil engineer, a computer software engineer, and a public health professional. **Staff.** Eight staff members participate in the DHHVAC. Six are associated with RIT and one each at Camden and Cornell. Staff include D/HH undergraduate and graduate students as well as faculty and disability service staff. Staff members built the project website, regularly participate in DHHVAC discussions, recruit participants, collect data, prepare reports and conduct presentations. **Materials** **Hardware.** Everyday activities associated with the DHHVAC use any type of computer or mobile device with Internet access. For remote tutoring and mentoring sessions and intercampus staff meetings, participants use standard desktop or laptop computers and Chromebooks with webcams that are either external to or built into the computer. **Software.** Considerations for the appropriate platform included accessibility, administration options, collaboration and variety of features, cost, user interface (UI) ease, operating system (OS) compatibility, and user analytics tools. The DHHVAC infrastructure includes six main components: email accounts; Google+ Hangouts; Google+ private community; Google+ public community; a YouTube channel; and, a project website: http://www.dhhvac.org. These features work in concert to facilitate DHHVAC activities. In circumstances where speech-to-text captioning is required, the project uses C-Print® Lite, a web-based version of the C-Print application that has been developed at RIT [38].

Procedures **Recruitment.** Partner schools at Camden County College and Cornell University were recruited based on information from a needs assessment of colleges and universities around the country that serve D/HH students in STEM majors. Once the project was initiated, tutors were the first participants recruited. STEM department chairs identify potential tutors from among the faculty who provide face-to-face tutoring as part of their normal workload. Nominated faculty members receive personal e-mail invitations to participate. Students from RIT are nominated by tutors. Each tutor is asked to invite one or two students whom they think would be willing to try on-line tutoring. At partner schools, partner school liaisons in the disability services offices recruit participants. Mentors are recruited by recommendation from university administration or through personal contacts. Following their recommendation, mentors complete an application including a background check before they are allowed to join the DHHVAC. **Orientation.** During year one, the consent and orientation session for participants was a 60-90 min in-person session that included a project team researcher, the Virtual Academic Community (VAC) Manager, the tutor, and the student(s). Information from these sessions was used to create a step-by-step email protocol for participants at remote sites. The online orientation includes links to six brief videos that are posted on the DHHVAC YouTube channel. The videos are signed in American Sign Language, and are captioned. **DHHVAC Activities.** Activities that engage DHHVAC members include remote tutoring, remote mentoring, and social media opportunities. **Results** **Model Building** This project is using an incremental and iterative approach to build the virtual academic community [37]. Following an incremental model means that components are developed sequentially,
according to needs of the project. Components have
been developed in the following incremental order:
public website, synchronous remote tutoring,
socialization activities in the private community.

The iterative approach implies continuous
improvements in development based on updates or
changes in software, feedback from project
participants and requirements of the project. For
example, the website which is hosted on an RIT
server, was created in Drupal 6, and subsequently
reworked when Drupal 7 was adopted at RIT.
Another example of iterative process is
demonstrated by our email system. The project
collects data on user activity. Project participants
initially received project-specific email accounts
with an @gmail domain name, however it was
difficult to track user activity. In order to better
track user activities, we created a Google
educational enterprise account with @dhhvac.org
domain that allowed us to achieve our data
collection objectives.

Student Preparation
Remote tutoring is the key activity
associated with student preparation in the
DHHVAC. Tutors and their students participate in
both remote synchronous and asynchronous tutoring
sessions. Tutoring has been provided in a variety
STEM courses including: Biochemistry, Calculus,
Circuit Theory, Computer Science, Differential
Equations, Endocrinology, Engineering, and
Physics.

Synchronous tutoring. Since the start of
tutoring activities in February 2012, 109
synchronous remote tutoring sessions have
occurred. Tutoring sessions lasted, on average, 61
minutes, the range between 15 - 120 minutes.
Tutoring sessions occurred one to three times per
week, depending on student needs.

For initial sessions, students used
computers in a campus learning center, while the
tutors were in their offices. As tutor/tutee pairs
became more comfortable with the technology, they
ventured to other locations, such as the library,
dorm room, or home. The VAC Manager provides
technical assistance during the tutoring sessions and
through email. Technical assistance required
depends on participants’ technical expertise and
comfort level with the Google applications.

Students and tutors have been solicited for
their reactions to synchronous remote tutoring.
Students’ favorable responses included comments
about the permanence of the text, “The ability to
save everything that was said for future reference”
and the convenience of this type of tutoring, “When
I don't have the time or methods to go to see a tutor,
it is much easier to do it remotely and only work for
a short time.”

Tutors made similar comments regarding the
convenience of the program, for example: “I found
it convenient to chat and to use the Google Docs to
try and communicate with the video. Also it was
great to be able to be able to tutor from home!”
and, “It makes it easier to meet with students who
have a limited time window (esp. since my office it
so far from their classes).”

Asynchronous tutoring. Tutors and students
often use asynchronous methods such as email and
document sharing when their schedules conflict, or
if the students only have a few questions. The
project staff considered the use of asynchronous
tutoring as an unexpected consequence. A more
detailed description of the uses and benefits of
asynchronous tutoring can be found in [39].

Socialization
The primary mode of socialization for the
DHHVAC is the Google+ Private Community page.
This is the platform for sharing information about
STEM information, work & scholarship
opportunities, etc. Since its launch in late January
2013, the community has logged over 400 posts,
nearly 700 comments, and over 1000 “+1s.”

Accessibility
Providing accessible information is achieved
through several means for the DHHVAC. Within
the Google+ private community, video posts are
screened to assure that captions are available.
Project products such as videos housed on YouTube
are typically signed and captioned. The project
website includes accessible resources such as
STEM-ASL dictionaries and tutorials. The website
was designed to be accessible to those with hearing,
vision, and mobility challenges.

Discussion and Conclusions
The Deaf STEM Community Alliance has created a virtual academic community using incremental and iterative model building. Components of the community are designed to address critical barriers that confront postsecondary students who are D/HH in STEM fields. To the best of our knowledge, this is a novel activity for postsecondary STEM students who are D/HH.

Preliminary data from the project suggest that participants are embracing the DHHVAC. As the project continues, additional modifications will be made to address the needs of participants. Lessons learned by this CoP will be applied to other CoPs that have their own reasons for uniting in the online world.

REFERENCES

