We investigate paths, cycles and wheels in graphs with independence number of at most 2, in particular we prove theorems characterizing all such graphs which are hamiltonian. Ramsey numbers of the form R (G,K3), for G being a path, a cycle or a wheel, are known to be 2n (G) - 1, except for some small cases. In this paper we derive and count all critical graphs 1 for these Ramsey numbers.

Publication Date



This article is also available at the journal's website at: http://ajc.maths.uq.edu.au/ ISSN:1034-4942 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type


Department, Program, or Center

Center for Advancing the Study of CyberInfrastructure


RIT – Main Campus