Abstract

Individuals deaf from early age often outperform hearing individuals in the visual periphery on attention-dependent dorsal stream tasks (e.g., spatial localization or movement detection), but sometimes show central visual attention deficits, usually on ventral stream object identification tasks. It has been proposed that early deafness adaptively redirects attentional resources from central to peripheral vision to monitor extrapersonal space in the absence of auditory cues, producing a more evenly distributed attention gradient across visual space. However, little direct evidence exists that peripheral advantages are functionally tied to central deficits, rather than determined by independent mechanisms, and previous studies using several attention tasks typically report peripheral advantages or central deficits, not both. To test the general altered attentional gradient proposal, we employed a novel divided attention paradigm that measured target localization performance along a gradient from parafoveal to peripheral locations, independent of concurrent central object identification performance in prelingually deaf and hearing groups who differed in access to auditory input. Deaf participants without cochlear implants (No-CI), with cochlear implants (CI), and hearing participants identified vehicles presented centrally, and concurrently reported the location of parafoveal (1.4◦ ) and peripheral (13.3◦ ) targets among distractors. NoCI participants but not CI participants showed a central identification accuracy deficit. However, all groups displayed equivalent target localization accuracy at peripheral and parafoveal locations and nearly parallel parafoveal-peripheral gradients. Furthermore, the No-CI group’s central identification deficit remained after statistically controlling peripheral performance; conversely, the parafoveal and peripheral group performance equivalencies remained after controlling central identification accuracy. These results suggest that, in the absence of auditory input, reduced central attentional capacity is not necessarily associated with enhanced peripheral attentional capacity or with flattening of a general attention gradient. Our findings converge with earlier studies suggesting that a general graded trade-off of attentional resources across the visual field does not adequately explain the complex task-dependent spatial distribution of deaf-hearing performance differences reported in the literature. Rather, growing evidence suggests that the spatial distribution of attention-mediated performance in deaf people is determined by sophisticated cross-modal plasticity mechanisms that recruit specific sensory and polymodal cortex to achieve specific compensatory processing goals.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

5-16-2017

Comments

This Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission.

Document Type

Article

Department, Program, or Center

Liberal Studies (NTID)

Campus

RIT – Main Campus

Share

COinS