Abstract

Integration of III-V components on Si substrates is required for realizing the promise of Silicon Photonic systems. Specifically, the direct bandgap of many III-V materials is required for light sources, efficient modulators and photodetectors. Several different approaches have been taken to integrate III-V lasers into the silicon photonic platform, such as wafer bonding, direct growth, butt coupling, etc. Here, we have devised a novel laser design that overcomes the above limitations. In our approach, we use InAs quantum dot (QD) lasers monolithically integrated with silicon waveguides and other Si photonic passive components. Due to their unique structures, the QD lasers have been proven by several groups to have the combination of high temperature stability, large modulation bandwidth and low power consumption compared with their quantum well counterparts, which makes it an ideal candidate for Si photonic applications. The first section of this dissertation introduces the theory and novelty of QD lasers, the DC and RF characterization methods of QD lasers are also discussed. The second section is focused on the growth of QD gain chip which a broadband gain chip based on QD inhomogeneous broadening properties was demonstrated. In third section, the lasers devices are built on Si substrate by Pd wafer bonding technology. Firstly, a ridge waveguide QD laser is demonstrated in this section which have better heat dissipation and lower threshold current compared to the unbonded lasers. In section four, a on Si comb laser is also developed. Due to inhomogeneous broadening and ultrafast carrier dynamics, InAs quantum dots have key advantages that make them well suited for Mode-locked lasers (MLLs). In section five, a passively mode-locked InAs quantum dots laser on Si is achieved at a repetition rate of ~7.3 GHz under appropriate bias conditions. In section six, a butt-joint integration configuration based on QD lasers and silicon photonics ring resonator is tested by using to translation stage. In order to achieve the on chip butt-joint integration, an on chip laser facet was created in section seven. A novel facet etching method is developed by using Br-ion beam assist etching (Br-IBAE). In section eight, a Pd-GaAs butt-joint integration platform was proposed, a hybrid tunable QD laser which consist of a QD SOA gain chip butt joint coupled with a passive Si3N4 photonic integrated circuit is proof of concept by using an external booster SOA coupled with a Si3N4 ring reflector feedback circuit. The final section summarized the work discussed in this thesis and also discussed some future approaches by using QD lasers integrated with silicon photonics integrated circuits based on the Pd-GaAs wafer bonding butt-joint coupled platform.

Publication Date

4-27-2018

Document Type

Dissertation

Student Type

Graduate

Degree Name

Microsystems Engineering (Ph.D.)

Department, Program, or Center

Microsystems Engineering (KGCOE)

Advisor

Stefan F. Preble

Advisor/Committee Member

Seth Hubbard

Advisor/Committee Member

Jing Zhang

Campus

RIT – Main Campus

Share

COinS