This work will present a more accurate frequency prediction model for single-ended ring oscillators (ROs), a case-study comparing different ROs, and a design method for LC voltage-controlled oscillators (LCVCOs) that uses a MATLAB script based on analytical equations to output a graphical design space showing performance characteristics as a function of design parameters. Using this method, design trade-offs become clear, and the designer can choose which performance characteristics to optimize. These methods were used to design various topologies of ring oscillators and LCVCOs in the GlobalFoundries 28 nm HPP CMOS technology, comparing the performance between different topologies based on simulation results. The results from the MATLAB design script were compared to simulation results as well to show the effectiveness of the design methods.

Three varieties of 5 GHz voltage controlled ring oscillators were designed in the GlobalFoundries 28 nm HPP CMOS technology. The first is a low current low dropout regulator (LDO) tuned ring oscillator designed with thin oxide devices and a 0.85 V supply. The second is a high current LDO-tuned ring oscillator designed with medium oxide devices and a 1.5 V supply. The third is varactor-tuned ring oscillator with no LDO, and 0.85 V supply. Performance comparison of these ring oscillator systems are presented, outlining trade-offs between tuning range, phase noise, power dissipation, and area. The varactor-tuned ring oscillator exhibits 8.89 dBc/Hz (with power supply noise) and 16.27 dBc/Hz (without power supply noise) improvement in phase noise over the best-performing LDO-tuned ring oscillator. There are advantages in average power dissipation and area for a minimal tradeoff in tuning range with the varactor-tuned ring oscillator.

Four multi-GHz LCVCOs were designed in the GlobalFoundries 28 nm HPP CMOS technology: 15 GHz varactor-tuned NMOS-only, 9 GHz varactor-tuned self-biased CMOS, 14.2 GHz digitally-tuned NMOS-only, and 8.2 GHz digitally-tuned self-biased CMOS. As a design method, analytical ex-pressions describing tuning range, tank amplitude constraint, and startup condition were used in MATLAB to output a graphical view of the design space for both NMOS-only and CMOS LCVCOs, with maximum varactor capacitance on the y-axis and NMOS transistor width on the x-axis. Phase noise was predicted as well. In addition to the standard varactor control voltage tuning method, digitally-tuned implementations of both NMOS and CMOS LCVCOs are presented. The performance aspects of all designed LCVCOs are compared. Both varactor-tuned and digitally-tuned NMOS LCVCOs have lower phase noise, lower power consumption, and higher tuning range than both CMOS topologies. The varactor-tuned NMOS LCVCO has the lowest phase noise of -97 dBc/Hz at 1 MHz offset from 15 GHz center frequency, FOM of -172.20 dBc/Hz, and FOMT of -167.76 dBc/Hz. The digitally-tuned CMOS LCVCO has the greatest tuning range at 10%. Phase noise is improved by 3 dBc/Hz with the digitally-tuned CMOS topology over varactor-tuned CMOS.

Library of Congress Subject Headings

Voltage-controlled oscillators--Design and construction; Metal oxide semiconductors, Complementary

Publication Date


Document Type


Student Type


Degree Name

Electrical Engineering (MS)

Department, Program, or Center

Electrical Engineering (KGCOE)


P. R. Mukund

Advisor/Committee Member

James Moon

Advisor/Committee Member

Robert Pearson


Physical copy available from RIT's Wallace Library at TK7872.O7 J67 2015


RIT – Main Campus

Plan Codes