Abstract

The massive levels of integration following Moore's Law making modern multi-core chips prevail in various domains ranging from scientific applications to bioinformatics applications for consumer electronics. With higher and higher number of cores on the same die traditional bus based interconnections are no longer a scalable communication infrastructure. On-chip networks were proposed enabled a scalable plug-and-play mechanism for interconnecting hundreds of cores on the same chip. Wired interconnects between the cores in a traditional Network-on-Chip (NoC) system, becomes a bottleneck with increase in the number of cores thereby increasing the latency and energy to transmit signals over them. Hence, there has been many alternative emerging interconnect technologies proposed, namely, 3D, photonic and multi-band RF interconnects. Although they provide better connectivity, higher speed and higher bandwidth compared to wired interconnects; they also face challenges with heat dissipation and manufacturing difficulties. On-chip wireless interconnects is one other alternative proposed which doesn't need physical interconnection layout as data travels over the wireless medium. They are integrated into a hybrid NOC architecture consisting of both wired and wireless links, which provides higher bandwidth, lower latency, lesser area overhead and reduced energy dissipation in communication. An efficient media access control (MAC) scheme is required to enhance the utilization of the available bandwidth. A token-passing protocol proposed to grant access of the wireless channel to competing transmitters. This limits the number of simultaneous users of the communication channel to one although multiple wireless hubs are deployed over the chip. In principle, a Frequency Division Multiple Access (FDMA) based medium access scheme would improve the utilization of the wireless resources. However, this requires design of multiple very precise, high frequency transceivers in non-overlapping frequency channels. Therefore, the scalability of this approach is limited by the state-of-the-art in transceiver design. The Code Division Multiple Access (CDMA) enables multiple transmitter-receiver pairs to send data over the wireless channel simultaneously. The CDMA protocol can significantly increase the performance of the system while lowering the energy dissipation in data transfer. The CDMA based MAC protocol outperforms the wired counterparts and several other wireless architectures proposed in literature in terms of bandwidth and packet energy dissipation.

However, the reliability of CDMA based wireless NoC's is limited, as the probability of error is eminent due to synchronization delays at the receiver. The thesis proposes the use of an advanced filter which improves the performance and also reduces the error due to synchronization delays. This thesis also proposes investigation of various channel modulation schemes on token passing wireless NoC's to examine the performance and reliability of the system. The trade-off between performance and energy are established for the various conditions. The results are obtained using a modified cycle accurate simulator.

Library of Congress Subject Headings

Networks on a chip--Design and construction; Interconnects (Integrated circuit technology); Code division multiple access

Publication Date

1-2014

Document Type

Thesis

Student Type

Graduate

Degree Name

Computer Engineering (MS)

Department, Program, or Center

Computer Engineering (KGCOE)

Advisor

Amlan Ganguly

Advisor/Committee Member

Andres Kwasinski

Advisor/Committee Member

Muhammad Shaaban

Comments

Physical copy available from RIT's Wallace Library at TK505.546 .Y88 2014

Campus

RIT – Main Campus

Plan Codes

CMPE-MS

Share

COinS