A block cipher, in general, consist of several repetitions of a round transformation. A round transformation is a weak block cipher which consists of a nonlinear substitution transformation, a linear diffusion transformation and a key mixing. Differential cryptanalysis is a well known chosen plaintext attack on block ciphers. In this project, differential cryptanalysis is performed on two kinds of block ciphers: Substitution Permutation Networks(SPN) and Rijndael-like Ciphers. In order to strengthen a block cipher against differential attack, care should be taken in the design of both substitution and diffusion components and in the choice of number of rounds. In this context, most of the researches has been focused on the design of substitution component. In this project, differential cryptanalysis is carried out on several SPNs to find the role of permutation. Differential analysis on Rijndael-like ciphers is done to find the strength of the cipher as a whole. Tools are developed to configure and to perform differential analysis on these ciphers. In the context of SPN, the importance of permutation, the effect of bad permutation, no permutation and sequentially chosen plaintext pairs are discussed. The diffusion strength of SPN and Rijndael-like ciphers are discussed and compared.

Publication Date


Document Type

Master's Project

Student Type


Department, Program, or Center

Computer Science (GCCIS)


Radziszowski, Stanislaw - Chair

Advisor/Committee Member

Homan, Christopher

Advisor/Committee Member

Raj, Rajendra


Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2013.


RIT – Main Campus