Description

Analysis of eyetracking data can serve as an alternative method of evaluation when assessing the quality of computer-synthesized animations of American Sign Language (ASL), technology which can make information accessible to people who are deaf or hard-of-hearing, who may have lower levels of written language literacy. In this work, we build and evaluate the efficacy of descriptive models of subjective scores that native signers assign to ASL animations, based on eye-tracking metrics.

Date of creation, presentation, or exhibit

3-2016

Creative Commons License

Creative Commons Attribution-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.

Comments

Presented at the 31st Annual International Technology and Persons with Disabilities Conference, March 21-26, 2016, San Diego, CA. Proceedings published in the Journal on Technology and Persons with Disabilities

Document Type

Conference Proceeding

Department, Program, or Center

Information Sciences and Technologies (GCCIS)

Campus

RIT – Main Campus

Share

COinS