Description

The emergence of compact optical spectral imaging technologies has motivated the study of their use in a variety of applications, including medical diagnosis and monitoring. In particular, large format CCD focal planes in conjunction with spectrally tunable devices offer enhanced spatial information together with visible and near infrared (NIR) spectroscopic data for the passive, noninvasive, measurement of human skin and near surface tissue characteristics. One such spectral imaging system was recently developed by mating a Liquid Crystal Tunable Filter (LCTF) together with a 2048x2048 silicon CCD focal plane. This system is capable of collecting more than 30 co-registered spectral images spaced every 10 nanometers and spanning 400 to 720 nanometers. This system combines the potential of near infrared diffuse reflectance spectroscopy with the high spatial resolution of traditional optical imaging techniques. Spectral images were acquired of portions of the hands and arms of several test subjects with a variety of features observable. The observations were collected in a “light box” under controlled illumination conditions. Images of a diffuse reflectance standard and instrument dark frames were collected to allow conversion of the raw images to spectral reflectance images. This paper presents examples of the spectral images collected, instrument characteristics and performance, and results of analysis algorithms applied to the data. Results also are shown for a new algorithm extracting the saturated oxygen hemoglobin fraction from these data.

Date of creation, presentation, or exhibit

2006

Comments

Proceedings of the Physics of Medical Imaging 6142 (2006) Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proceedings of Physics of Medical Imaging, SPIE vol. 6142 and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The authors acknowledge the support of this project by the Medical Science and Technology Center of the Eastman Kodak Company.Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Proceeding

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Campus

RIT – Main Campus

Share

COinS