Interference imaging systems are being used more extensively for R&D applications where NA manipulation, polarization control, relative beam attenuation, and other parameters are explored and projection imaging approaches may not exist. To facilitate interferometric lithography research, we have developed a compact simulation tool, ILSim, for studying multi-beam interferometric imaging, including fluid immersion lithography. The simulator is based on full-vector interference theory, which allows for application at extremely high NA values, such as those projected for use with immersion lithography. In this paper, ILSim is demonstrated for use with two-beam and four-beam interferometric immersion lithography. The simulation tool was written with Matlab, where the thin film assembly (ambient, top coat, resist layer, BARC layers, and substrate) and illumination conditions (wavelength, polarization state, interference angle, demodulation, NA) can be defined. The light intensity distributions within the resist film for 1 exposure or 2-pass exposure are displayed in the graph window. It also can optimize BARC layer thickness and top coat thickness.

Date of creation, presentation, or exhibit



Proceedings of the SPIE Conference on Optical Microlithography XVIII, vol. 5754, pp.1805-1816 , 2005 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Proceeding

Department, Program, or Center

Microelectronic Engineering (KGCOE)


RIT – Main Campus