This paper focuses on the design of smart control surfaces for micro air vehicles using nano- and microscale actuators and sensors. These thin-film-based actuators/sensors are uniquely suitable for mini air vehicles, missiles, and interceptors. We use multi-layered microactuators (fabricated using thin-film technology) to displace and change the geometry of control surfaces. These thin-film actuators/sensors (transducers) are integrated as the large-scale arrays. Furthermore, nano- and microscale transducers should be controlled changing the applied voltage supplied to each actuator or measuring the voltage induced by each sensor. The major objective of this paper is to report fundamental and applied research in modeling, analysis and design of flight surfaces with thin-film-based actuator-sensor arrays controlled by hierarchically distributed systems. We demonstrate the feasibility and effectiveness of the application of smart flight surfaces for coordinated longitudinal and lateral vehicle control (pitch, roll, and yaw moments are developed deflecting and changing the geometry of control surfaces). Active aerodynamic flow control can be achieved in order to reduce the drag.

Date of creation, presentation, or exhibit



Copyright 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. ISBN: 0-7803-7538-6Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Proceeding

Department, Program, or Center

Microelectronic Engineering (KGCOE)


RIT – Main Campus