The compensation for atmospheric effects in the VNIR/SWIR has reached a mature stage of development with many algorithms available for application (ATREM, FLAASH, ACORN, etc.). Compensation of LWIR data is the focus of a number of promising algorithms. A gap in development exists in the MWIR where little or no atmospheric compensation work has been done yet an increased interest in MWIR applications is emerging. To obtain atmospheric compensation over the full spectrum (visible through LWIR), a better understanding of the radiative effects in the MWIR is needed. The MWIR is characterized by a unique combination of reduced solar irradiance and low thermal emission (for typical emitting surfaces), both providing relatively equal contributions to the daytime MWIR radiance. In the MWIR and LWIR, the compensation problem can be viewed as two interdependent processes: compensation for the effects of the atmosphere and the uncoupling of the surface temperature and emissivity. The former requires calculations of the atmospheric transmittance due to gases, aerosols, and thin clouds and the path radiance directed towards the sensor (both solar scattered and thermal emissions in the MWIR). A framework for a combined MWIR/LWIR compensation approach is presented where both scattering and absorption by atmospheric particles and gases are considered.

Date of creation, presentation, or exhibit



Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (2004) 4191-4194 "Radiative transfer in the midwave infrared applicable to full spectrum atmospheric characteristics," Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Institute of Electrical and Electronics Engineers (IEEE). Held in Anchorage, Alaska: 20-24 September 2004. ©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. ISBN: 0-7803-8742-2Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Proceeding

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)


RIT – Main Campus