Description

LCD televisions have LC response times and hold-type data cycles that contribute to the appearance of blur when objects are in motion on the screen. New algorithms based on studies of the human visual system's sensitivity to motion are being developed to compensate for these artifacts. This paper describes a series of experiments that incorporate eyetracking in the psychophysical determination of spatio-velocity contrast sensitivity in order to build on the 2D spatiovelocity contrast sensitivity function (CSF) model first described by Kelly and later refined by Daly. We explore whether the velocity of the eye has an additional effect on sensitivity and whether the model can be used to predict sensitivity to more complex stimuli. There were a total of five experiments performed in this research. The first four experiments utilized Gabor patterns with three different spatial and temporal frequencies and were used to investigate and/or populate the 2D spatio-velocity CSF. The fifth experiment utilized a disembodied edge and was used to validate the model. All experiments used a two interval forced choice (2IFC) method of constant stimuli guided by a QUEST routine to determine thresholds. The results showed that sensitivity to motion was determined by the retinal velocity produced by the Gabor patterns regardless of the type of motion of the eye. Based on the results of these experiments the parameters for the spatio-velocity CSF model were optimized to our experimental conditions.

Date of creation, presentation, or exhibit

2-3-2006

Comments

Proceedings of SPIE Human Vision and Electronic Imaging XI 6057 (2006) 605705-1-12 Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in the Proceedings of the Symposium on Electronic Imaging: Science and Technology, held Jan. 16-19, 2006, SPIE vol. 6057, and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The authors would like to acknowledge Sharp Labs of America, sponsor of this project. ISSN: 0277-786X Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Proceeding

Department, Program, or Center

Chester F. Carlson Center for Imaging Science (COS)

Campus

RIT – Main Campus

Share

COinS