We experimentally demonstrate subwavelength resolution imaging at microwave frequencies by a three-dimensional (3D) photonic crystal flat lens using full 3D negative refraction. The flat lens is made of a body-centered cubic photonic crystal (PhC) whose dispersion at the third band results in group velocity opposite to phase velocity for electromagnetic waves. The photonic crystal was fabricated in a layer-by-layer process. Two different sources (monopole and pinhole) were used as imaged objects and a monopole detector was employed for detection in the image region. By scanning the detector, we obtained the images of the pinhole and monopole sources, separately. The image of the pinhole sources had subwavelength feature size in all three dimensions, which predicts a 3D imaging capability of the flat lenses. An image of two pinhole sources with subwavelength spacing showed two resolved spots, which further verified subwavelength resolution.

Date of creation, presentation, or exhibit



Proceedings of the SPIE Conference on Photonic Crystal Materials and Devices IV, vol. 6128, January 3, 2006 Note: imported from RIT’s Digital Media Library running on DSpace to RIT Scholar Works in February 2014.

Document Type

Conference Proceeding

Department, Program, or Center

Microsystems Engineering (KGCOE)


RIT – Main Campus